AutoStepME< xType, yType, zType, Instance > Class Template Reference

Automatic multi-steps integration algorithm with Modified Euler scheme. More...

#include <autostepme.h>

List of all members.

Public Types

typedef int(Instance::*) pTgDyDz (xType const &x, yType const &y, zType const &z, xType const &dx, yType &dy, zType &dz) const
typedef REAL(Instance::*) pCalcErr (yType const &Ey, yType const &y_high, zType const &Ez, zType const &z_high) const

Public Member Functions

 AutoStepME (IntegSchemesCtes const &ISC)
int Solve (Instance const *p2Inst, pTgDyDz tg_dy_dz, pCalcErr calc_error, xType &x, yType &y, zType &z, xType const &Dx)
 Solve the DAS.
std::string Results ()

Private Attributes

int _maxSS
 Max number of sub-steps.
REAL _STOL
 Local truncation error tolerance.
REAL _dTini
 Initial "pseudo-time" increment.
REAL _mMin
 Lower bound for step-size multiplier.
REAL _mMax
 Upper bound for step-size multiplier.
std::ostringstream _results


Detailed Description

template<typename xType, typename yType, typename zType, typename Instance>
class AutoStepME< xType, yType, zType, Instance >

Automatic multi-steps integration algorithm with Modified Euler scheme.

Definition at line 45 of file autostepme.h.


Member Function Documentation

template<typename xType, typename yType, typename zType, typename Instance>
int AutoStepME< xType, yType, zType, Instance >::Solve ( Instance const *  p2Inst,
pTgDyDz  tg_dy_dz,
pCalcErr  calc_error,
xType &  x,
yType &  y,
zType &  z,
xType const &  Dx 
) [inline]

Solve the DAS.

Parameters:
x,y,z In/Out Actual states that will evolve until the final state x+Dx
Returns:
the number of iterations taken, -1 if failed or -2 if stopped by tg_dy_dz

Definition at line 66 of file autostepme.h.


The documentation for this class was generated from the following file:
Generated on Wed Jan 24 15:56:28 2007 for MechSys by  doxygen 1.4.7