XORP BGP Test Harness
Version 1.0

XORP Project
International Computer Science Institute
Berkeley, CA 94704, USA
feedback@xorp.org

July 8, 2004

1 Introduction

This document describes a test harness that was built piymartest the XORP
BGP implementation. It may be possible to augment the harioasse it for testing
other protocols.

A single BGP process is placed in the harness and tests dwarped on it.
The tests can range from testing the decision process tiyingrithat a session is
dropped when the hold timer expires.

Not all of the features mentioned below have been implendeyge Section 6
has a list of these features.

2 Requirements

A major requirement was to allow the testing of any BGP precest just our own.
In the case of our own BGP process it was essential that mgretests could be
run and results verified totally from within scripts, withtdhe need for any man-
ual configuration. The XORP BGP regression tests can be meathli from the
“Makefiles”.

The test harness supports testing at various levels:

e Decision process.

The BGP decision process can be tested by sending updatetpacBGP,
then verifying that the correct update packets are sent &\B{BP process

Test TCP TCP Test
Peer BGP Peer

XRL XRL

[Coordinator }

A

XRL

[Test Script }

Figure 1: Test harness processes.

to the other BGP peers. The actual packets sent by the BGBgzroan be
compared to expected packets.

Another way that the BGP decision process can be tested iesting the
routing tables held at the peers.

e Low level testing.
Testing responses to deliberately corrupted packets.

e Load testing.
Testing reaction to introducing a large number of routek badack.

e Timer testing.
Correct operation of timers such as the HOLD TIME timer.

3 Usage

Figure 1 shows a BGP process under test that is connectedttesivpeers. The
test harness has been split into a number of separate pesceBse main reason

2

reset

target xorp 179

initialise attach peerl

initialise attach peer2

peerl establish active true AS 1 keepalive true holdtinme 0 id 10.10.10. 10
peerl assert established

peer2 establish active true AS 2 keepalive true holdtime 0 id 20.20.20.20
peer2 assert established

Figure 2: Establish BGP Sessions

for using multiple processes is that a third party BGP preegsnay not be able to
accept multiple connections from the same host (IP addrébg) harness was also
simpler to implement by splitting functionality into septe processes.

The test harness consists ot@ordinator process through which all interac-
tions with the harness are mediated. There are also one @tesbpeers. Each
test peer is capable of forming one BGP session with the BGP processruedt.
The coordinator process communicates with thest peers using XRLs [1]. The
coordinator process accepts commands via XRLs from test scripts. Giyreur
test scripts are written in the shell programming languagéthey could be writ-
ten in almost any language. The full set of commands accdytéiae coordinator
can be found in 4.1.

Figure 2 shows an example of a simple program that might befsam a
test script to aoordinator. It is assumed that before the script is sent that all the
processes are already running. One important point to sdteat due to the asyn-
chronous nature of XRLs a command returning does not nedgsseean that it
has completed successfully. pnding method is available that can be used to test
if all outstanding commands have completed. This exampmesghe coordinator
beingreset, then its given the hostname and port number of the BGP psageter
test. Then thecoordinator attaches to the twtest peers peerl and peer2, these
are the XRL target names by which ttest peers are known. The majority of the
commands are sent to thest peers themselves. In order to send a command to a
test peer the command is preceded by test peer name. In our example eaddst
peer forms a session with the BGP process and therathert command is used
to assert that a session is still established. As noted aeestablish command
completing does not mean that a session was establisheshu@fecattempting to
send gpacket on a session that has not yet been established will generaea.

Theexpect packet ... command is used to create a queue of expected packets.
Whenever a packet arrives on a peer it is checked againstudgecpf expected
packets. If there are no expected packets on the queue thaction is taken. If

there is a packet on the expect queue it is compared agamisicthming packet. If
the incoming packet matches, all is fine and the packet isvethfsom the queue.
If the incoming packet does not match the packet at the hetteafueue, then an
error is flagged and the non matching packet is saved. At tthefaset of tests the
assert queue command can be used to verify that queue is at the expectgthlen
If an error has occurred, this is the point at which the norchiag packet and the
expected packet are returned, along with an error statgsiré-B is a example of
a code fragment that is waiting for a notify packet on peerlnotify packet is
added to the queue of expected packets, then an update pattiait an origin is
sent to the BGP process. An update packet without an origin &ror and should
generate the notify packet that is expected. Note that litdgésponsibility of test
script to add a delay between sending tipdate packet and theassert.

Update error, missing well known attribute.

peer 1l expect packet notify 3 3

An updat e packet without an origin

peer1l send packet update aspath 1 nexthop 20.20.20.20 nlri 10.10.10.0/24
Del ay

peerl assert queue O

Figure 3: Wait for a notify packet

Eachpeer has two tries associated with it, a sent and a received trechE
update packet that is sent to, or received from, the BGP psdsegpassed to the ap-
propriate trie. At this time two types ddokups can be performed on a trie (Figure
4). If alookup fails then an error is returned. A test might therefore imeadend-
ing many update packets from different peers and then wegfthat the routing
tables at the various peers are correct. Saving the updeketgan the tries makes
it possible to dump the routing tables for post processing.

peerl trie recv | ookup 212.174.196. 0/ 24
peerl trie recv | ookup 212.174.196.0/24 aspath 1

Figure 4: Performing lookup in trie

4 Commands

4.1 COORD XRLs

e Command("command string”)
Accept commands via XRLs.

e Status(’peername”)

Returns the status of the named test peer. Can be used to fletqueer
is established or not. Plus the number of update messagesrs@teived
by the peer. This XRL will not return an error if the requesjeer does
not exist. Can be used in test scripts to wait for establishetlestablished
transitions. As well as waiting for a peering to become ghegause all the
state is synchronised.

e Pending()

Returns true while there are any uncompleted commands. €asdy to
poll the coordinator to verify that the previous command ¢t@spleted.

4.1.1 Commands currently accepted by coord

e reset

Reset all the state in the coordinating process.

e target <hostname> <port>
Specify the BGP process under test.

e initialise attach/create peername

Form an association with a tegeer. If the second argument is attach then
it is assumed that the tepeer is already running. If the second argument is
create then the tegteer is started (not currently supported).

4.1.2 Peer specific commands

e connect

Connect to the BGP target under test.

e disconnect
Disconnect from the BGP target under test.

listen
Listen for a connection from the BGP test target.

establish active <true/false> AS <value> keepalive <true/false> hold-
time <value> id <ipv4> ipv6 <true/false-

The active, AS, keepalive, holdtime, id and ipv6 argumemés agptional.
Active defaults to being true and actively makes a connegcsgetting active
to false sets up a listener. The AS value is recommended ifiaemion is
wanted. The ipv6 argument defaults to false.

send packet update origin <num> aspath <path> nexthop <ipv4>
nexthop6 <ipv6> localpref <num> nlri <net4> nlri6 <net6> with-

draw <net4> withdraw6 <net6> med <value> pathattr <num,num,num,...

Send a BGP update packet to the BGP test target with the smkoifth-

drawn routes, NLRI, and path attributes. The “pathattruangnt takes a list
of commma separated byte values in decimal or hex. The ‘qtaittlexists

to test optional path attributes. It should be noted thahiattime it is not

possible to create an illegal path attribute.

send packet notify <error code> <sub error code>

Send a notification packet. Tkeerror code- is mandatory. Thecsub error
code> is optional.

send packet keepalive

Send a keepalive packet.

send packet open asnum <value> bgpid <ipv4> holdtime <value>
Send an open packet. All fields shown are mandatory.

send dump mrtd update filename <packet count>

Given a file in mrtd dump format send the update packets infileis Op-
tionally supply a packet count for the number of update pesctteat should
be sent.

trie <recv/sent> lookup <net>

Test to see if this net is in the test peer’s send or receige tri

trie <recv/sent> lookup <net> not
Test to see if this net is not in the trie.

>

trie <recv/sent> lookup <net> aspath <path>
Test to see if this net is in the trie and associated with tbgiged AS path.

expect packet notify <error code> <sub error code>

Place a notification packet on the expect queue. J&eor code- is manda-
tory. The<sub error code is optional.

expect packet update origin <num> aspath <path> nexthop <ip>
localpref <num> nlri <net> withdraw <net>

Place an update packet on the expect queue.

expect packet open asnum <value> bgpid <ipv4> holdtime <value>
Place an open packet on the expect queue. All fields shownamdatory.

expect packet notify
Place a notify packet on the expect queue.

assert queue <queue length>

Check the queue length of the expect queue. Every messagmadtehes
removes an entry from the queue. If an error has previoustyroed then
this call will return the error. The length of the queue chieciptional.
assert connected

Verify that a TCP session exists.

assert established

Verify that a BGP session has actually been establishede$ests can pass
without a BGP process being present. These tests requsrentiiface.

assert idle

Verify that no session is currently established. Usefulirifying that after

an error the session has actually been torn down.

dump <recv/sent> <mtrd/text> <ipv4/ipv6> <traffic/routeview/replay/debug>
<filename>

A mechanism for saving conversations or dumping routingeg@bThe re-
ceived and sent cases can be dealt with independently. yoes dbf dumps
are supported:

1. Traffic.

The is basically all the traffic which is sent and receivede Tamp-
ing can be disabled by making a call with tkdilename> argument
removed.

2. Routeview.
The current state of the routing table.

3. Replay

Trawls through the routing table and dumps all the updat&giachat
have caused entries in the routing table. The packets arpatlim the
order in which they arrived.

4. Debug.

Visit all nodes in the trie and dump the update packet thatresyonsi-
ble for this entry. Update packets can have multiple NLR$'saxiated
with them so a packet can be in the dump many times.

The save file can be either in mtrd dump format or in xorp texinfat.

4.2 TEST PEER XRLs

Commands that are accepted by the test peer. This intedacged by the coor-
dinating process to control the test peers. It should negarded directly and is
documented here for completeness.

e Reqgister("coord”)
This is an external registration to the test peer. All pasketeived by the
test peer are sent to the "coord”.

e Packetisation("bgp”)

Tell the test peer to treat incoming packets as BGP packetefise them
accordingly. Otherwise just packetise the the packets te tivey appear
from the connection.

e Connect("host”, "port”)

Connect to the named host and port.

e Listen("address”, "port”)
Listen for connections on this address and port.

e Bind("address”, "port”)
Bind on this address and port. This command exists solelgdbthat the
entity under test does not block in connect. It is not a rexgoant to make a
call to “bind” before the “connect” or “listen” commands.

e Send("Data”)
Send data on the TCP connection.

e Disconnect()
Drop the current TCP connection.

e Terminate()
Terminate the process.

4.3 TEST PEER CLIENT XRLs

This interface is implemented by the coordinator which itient of the test peer.
e Packet(’peer”, "status”, "time”, "data”)

— "peer”
The peer that the packet came from.

— "status”
If the remote peer had been asked to perform packetisatitwen
a bad message is received signify this. Also after a bad sived
packetisation is disabled.
— Htime”
The time when the packet was received in micro seconds s8w@ 1-1.
— "data”
The raw data that was read on the connection.

5 Outstanding Issues

e At the time of writing the harness has only been used agamsXORP
BGP process. There is no reason to believe that it could noséé against
implementations.

6 Notyet implemented or TODO list

e Constructing corrupted packets.

References

[1] XORP Inter-Process Communication Library. XORP techhidocument.
http://www.xorp.org/.

10

