

Integrating 3rd Party Logging
Frameworks into SAP NetWeaver

SAP Plat form Ecosystem

Integrating 3rd Party Logging Frameworks into SAP NetWeaver

SAP AG 2005 2

Copyright

© Copyright 2005 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose without the express
permission of SAP AG. The information contained herein may be changed without prior notice.

Some software products marketed by SAP AG and its distributors contain proprietary software components of
other software vendors.

Microsoft, Windows, Outlook, and PowerPoint are registered trademarks of Microsoft Corporation.

IBM, DB2, DB2 Universal Database, OS/2, Parallel Sysplex, MVS/ESA, AIX, S/390, AS/400, OS/390, OS/400,
iSeries, pSeries, xSeries, zSeries, z/OS, AFP, Intelligent Miner, WebSphere, Netfinity, Tivoli, and Informix are
trademarks or registered trademarks of IBM Corporation in the United States and/or other countries.

Oracle is a registered trademark of Oracle Corporation.

UNIX, X/Open, OSF/1, and Motif are registered trademarks of the Open Group.

Citrix, ICA, Program Neighborhood, MetaFrame, WinFrame, VideoFrame, and MultiWin are trademarks or
registered trademarks of Citrix Systems, Inc.

HTML, XML, XHTML and W3C are trademarks or registered trademarks of W3C®, World Wide Web Consortium,
Massachusetts Institute of Technology.

Java is a registered trademark of Sun Microsystems, Inc.

JavaScript is a registered trademark of Sun Microsystems, Inc., used under license for technology invented and
implemented by Netscape.

MaxDB is a trademark of MySQL AB, Sweden.

SAP, R/3, mySAP, mySAP.com, xApps, xApp, SAP NetWeaver, and other SAP products and services mentioned
herein as well as their respective logos are trademarks or registered trademarks of SAP AG in Germany and in
several other countries all over the world. All other product and service names mentioned are the trademarks of
their respective companies. Data contained in this document serves informational purposes only. National product
specifications may vary.

These materials are subject to change without notice. These materials are provided by SAP AG and its affiliated
companies ("SAP Group") for informational purposes only, without representation or warranty of any kind, and
SAP Group shall not be liable for errors or omissions with respect to the materials. The only warranties for SAP
Group products and services are those that are set forth in the express warranty statements accompanying such
products and services, if any. Nothing herein should be construed as constituting an additional warranty.

Integrating 3rd Party Logging Frameworks into SAP NetWeaver

SAP AG 2005 3

Icons in Body Text

Icon Meaning

Caution

Example

Note

Recommendation

Syntax

Additional icons are used in SAP Library documentation to help you identify different types of information at a
glance. For more information, see Help on Help → General Information Classes and Information Classes for
Business Information Warehouse on the first page of any version of SAP Library.

Typographic Conventions

Type Style Description

Example text Words or characters quoted from the screen. These include field
names, screen titles, pushbuttons labels, menu names, menu paths,
and menu options.

Cross-references to other documentation.
Example text Emphasized words or phrases in body text, graphic titles, and table

titles.

EXAMPLE TEXT Technical names of system objects. These include report names,
program names, transaction codes, table names, and key concepts of a
programming language when they are surrounded by body text, for
example, SELECT and INCLUDE.

Example text Output on the screen. This includes file and directory names and their
paths, messages, names of variables and parameters, source text, and
names of installation, upgrade and database tools.

Example text Exact user entry. These are words or characters that you enter in the
system exactly as they appear in the documentation.

<Example text> Variable user entry. Angle brackets indicate that you replace these
words and characters with appropriate entries to make entries in the
system.

EXAMPLE TEXT Keys on the keyboard, for example, F2 or ENTER.

Integrating 3rd Party Logging Frameworks into SAP NetWeaver

SAP AG 2005 4

Table of Contents
Integrating 3rd Party Logging into SAP Logging .. 5

Introduction ... 5
Prerequisites ...5

Pitfalls.. 5
Bridges of 3rd Party Logging to SAP Logging... 6

Apache Log4j bridge ..6
Jakarta Commons Logging ...7

The sample application.. 8
Running the sample ... 10
Using bridges in your project... 11

About the author.. 11

Integrating 3rd Party Logging Frameworks into SAP NetWeaver

SAP AG 2005 5

Integrating 3rd Party Logging into SAP Logging

Introduction
Logging is an important instrument for developers, administrators and the support of applications. SAP has a
common Logging API which is used by the J2EE engine and all SAP Java applications, so all the logs have a
common format and can be displayed and analyzed in the same viewer. For your applications it is recommended
to make use of the SAP Logging API.

Nevertheless often you have to deal with existing applications or 3rd Party libraries that already make heavy use of
a different Logging API. For instance Log4j is a good example for a wide spread logging API, which is used by
many open source projects like JBoss, TheServerSide, Velocity and many more. So frequently you are in the
uncomfortable situation where you have two logging solutions in your applications. The consequence of this
coexistence brings at least a loss of quality for manageability, since there are two different concepts for logging
with different destinations for the logging output.

So what to do, when you have to deal with components that use a different logging API? The ideal solution would
be replacing the 3rd Party logging with SAP logging, which in practice not seldom means that you would have to
change thousands lines of code. With that in mind, we've decided to find more practicable solutions for this
common problem. The intention of this document is to provide easy solutions to integrate 3rd Party logging
solutions into SAP logging, that allow you to benefit of the SAP logging without having to change your code. This
goal is basically achieved by routing the log messages of the 3rd party loggers to SAP logging. This tutorial will
show you exemplarily how this can be done for Log4j and Commons Logging. Beside that the tutorial enable you
to write your own bridge to a logging API or modify the bridges of the tutorial, since it teaches you how this can be
done.

Prerequisites
Systems, installed applications, and authorizations

 SAP Web AS – Java 6.40

Knowledge
 Understanding of SAP logging

Pitfalls
Although most logging APIs share basic concepts, there can be essential differences between the APIs.
Therefore routing one’s API messages to the SAP logging API forces you to make compromises. To get a feeling
for the limitations and to decide if these limitations are acceptable in your context, an understanding of the
concept of SAP logging is needed. Explaining SAP logging in detail is beyond the scope of this document. To
make yourself familiar with SAP logging the Logging Chapter in the online help (http://help.sap.com) is a good
starting point.

The following points list problems that you have to face, when you route messages of a 3rd Party Logging
framework to SAP Logging. It is very important to be aware of these restrictions, since they influence the way you
have to read your logs.

http://help.sap.com/saphelp_nw04/helpdata/en/4a/c3953ff1353c17e10000000a114084/content.htm
http://help.sap.com/saphelp_nw04/helpdata/en/4a/c3953ff1353c17e10000000a114084/content.htm
http://logging.apache.org/log4j/docs/index.html
http://www.jboss.com/
http://www.theserverside.com/
http://jakarta.apache.org/velocity/index.html
http://help.sap.com/saphelp_nw04/helpdata/en/b7/54e63f48e58f15e10000000a155106/frameset.htm
http://help.sap.com/

Integrating 3rd Party Logging Frameworks into SAP NetWeaver

SAP AG 2005 6

SAP logging draws a straight line between logs and traces. Logs are for administrators and traces for
developers. Log-files have the ending “log” and trace-files “trc”. Reproduction of this separation into SAP
logging from logging solutions that do not have this differentiation can be tricky. You have to be aware of the
way the bridge routes the messages, to know where to look for the entries.

Severities of the 3rd party logging API have to be mapped to SAP logging, which may lead to unwished
results.

Timestamps are set at the time the bridge calls SAP logging instead of the time where the message was
written by the 3rd party logging API.

Bridges of 3rd Party Logging to SAP Logging
In the next sections we will explain by example how a bridge from a 3rd party logging API to SAP logging can be
realized. For the demonstration we’ve chosen Log4j and Commons Logging. As already mentioned, Log4j is wide-
spread. Commons Logging is not a classical logging toolkit. It provides you an API for logging which abstracts the
underlying logging solution, to get independent of a certain logging solution. The underlying logging solution can
be easily changed by configuration without having to get hands on the source code. Caused by this added value,
commons logging has wide acceptance in the open source community. For instance the very popular Apache
Struts Web Application Framework uses Commons Logging. For these reasons we’ve decided to go for these
frameworks. Nevertheless by reading this document and doing the examples you get a feeling what it takes to
write a bridge to SAP logging, so for instance writing a handler for JDK 1.4 logging won’t be hard.

Apache Log4j bridge
The Log4j framework writes the log messages to so called appenders. In a configuration file can be defined which
appenders should be used. Out of the box Log4j comes with a few appenders like Console Appender, File
Appender and many more. For our tutorial we’ve written a new appender that writes the messages to SAP logging
and configured Log4j to use our appender in the log4j.properties file which you can see below.

Log4j.properties
Configuration of: 1) rootLogger Log-Level 2) Appenders

log4j.rootLogger=debug, SAPLogging

#=== Configuration SAP Logging Appender ===

The appender class

log4j.appender.SAPLogging=com.sap.logging.bridge.log4j.SapLogAppender

Name of the SAP Logging Category under "Applications"

log4j.appender.SAPLogging.categoryName=MyCategory

The file tells log4j, that the root logger should write out all messages that have at least the debug-level. The only
appender (destination for your log messages) is our SAPLogging-Appender, which can be loaded by Log4j by
using the fully qualified name of our appender class.

In the last line of the file is a parameter categoryName, that defines the name of the Category under the
Application node to which the log messages will be written, which is important for you to know when you are
searching for the log messages in the LogViewer.

The following table shows how the severities are mapped and where the messages are written to.

http://struts.apache.org/
http://struts.apache.org/

Integrating 3rd Party Logging Frameworks into SAP NetWeaver

SAP AG 2005 7

Log4j SAP logging

Debug Debug written to Trace

Info Info written to Log (Category defined in Log4j-Configuration file)

Warn Warning written to Log (Category defined in Log4j-Configuration file)

Error Error written to Log (Category defined in Log4j-Configuration file)

Fatal Fatal written to Log (Category defined in Log4j-Configuration file)

Other (i.e. user defined
levels)

Warning written to Log (Category defined in Log4j-Configuration file)

All debug messages will go to SAP Traces and everything else will go to the configured Category log. Unknown
levels like user defined levels or the new Trace level of Log4j version 1.2.12 will get the Severity Warning. If you
already use Log4j version 1.2.12 we recommend to map the Trace level to SAP Severity Debug. In the demo the
Trace level isn’t handled, because we expect you use an older Log4j version.

For a deeper understanding take a look at the Appender Source code where you can quickly find the according
sections to the table.

Jakarta Commons Logging
The basic idea of Commons Logging is to offer an API for logging that is implemented by the different logging
toolkits, so the logging toolkits can be changed without touch the source codes. So if you want to use SAP logging
with Commons Logging you need to have an implementation class, that we’ve created for this tutorial (in the web
project in the example: com.sap.logging.bridge.jcl.SapLogJclImpl).

Which Implementation is used can be set in a configuration file called commons-logging.properties that has to be
in the classpath during runtime.

commons-logging.properties

org.apache.commons.logging.Log=com.sap.logging.bridge.jcl.SapLogJclImpl

As you can see the name of the category to which log entries are written is not configured here. For the sake of
simplicity and concentration on the essence the category name is hard coded in the Implementation class. Feel
free to implement a reading out of a configuration file.

Commons Logging basically asks the implementer to implement the methods listed in the following table, that
shows how these methods are mapped to SAP logging.

JCL-Method SAP logging – Severity and destination for message

trace Debug written to Trace

debug Debug written to Trace

info Info written to Log (Category defined in implementation class)

warn Warning written to Log (Category defined in implementation class)

error Error written to Log (Category defined in implementation class)

fatal Fatal written to Log (Category defined in implementation class)

As you can see the concept for routing the messages is basically the same for Log4j and Commons Logging.

Integrating 3rd Party Logging Frameworks into SAP NetWeaver

SAP AG 2005 8

The sample application
This tutorial comes with two NetWeaver Developer Studio Projects. Where to get these projects and how to work
with them is discussed in the following chapter Running the Sample. This chapter gives you an overview of the
projects.

There is an Enterprise Application Project TutLogging_Integration_Ear and a Web Module Project
TutLogging_Integration_Web. The Enterprise Application Project’s purpose is to package the Web Module into a
deployable EAR-file.

The web module basically consists of two JSPs, a few Java classes and two properties configuration files. The
JSP pages are for triggering some logging. By loading these pages you simply call a method in a Java class that
either calls Log4j logging API or Commons Logging API depending on the JSP-Site (see following source codes
Log4jExampleUsage and JclExampleUsage). Log4j and Commons logging are configured in properties
files to write the messages to the SAP logging API.

The following source codes show you how the 3rd Party Logging is used.

Class Log4jExampleUsage
package org.example.app;
import org.apache.log4j.Logger;
/**
 * Does some logging with log4j API for demonstration.
 */
public class Log4jExampleUsage {

 /** The log4j-Logger*/
 private static final Logger log4j =
Logger.getLogger("org.example.app.Log4jExampleUsage");
 /**
 * Just some log4j log output.
 */
 public static void logSomething() {
 // traces
 log4j.debug("Log4j - debug-method");
 log4j.debug(
 "Log4j - debug-method with exception",
 new NullPointerException("Developer's best friend."));
 //logs
 log4j.info("Log4j - info-method");
 log4j.warn("Log4j - warn-method");
 log4j.error("Log4j - error-method");
 log4j.fatal("Log4j - fatal-method");
 log4j.fatal(
 "Log4j - debug-method with exception",
 new NullPointerException("Developer's best friend."));
 }
}

Class JclExampleUsage

Integrating 3rd Party Logging Frameworks into SAP NetWeaver

SAP AG 2005 9

package org.example.app;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

/**
 * Does some logging with commons logging API for demonstration.
 */
public class JclExampleUsage {

 /** The JCL-Logger*/
 private static Log jcl = LogFactory.getLog(JclExampleUsage.class);

 /**
 * Just some commons logging log output.
 */
 public static void logSomething() {
 // traces
 jcl.debug("JCL - debug-method");
 jcl.debug(
 "JCL - debug-method with exception",
 new NullPointerException("Developer's best friend."));

 //logs
 jcl.info("JCL - info-method");
 jcl.warn("JCL - warn-method");
 jcl.error("JCL - error-method");
 jcl.fatal("JCL - fatal-method");
 jcl.fatal(
 "JCL - debug-method with exception",
 new NullPointerException("Developer's best friend."));
 }
}

So after you’ve triggered the methods in the the classes above you’ll have the following messages in your Log
Viewer.

Picture 1 defaultTrace.trc

Integrating 3rd Party Logging Frameworks into SAP NetWeaver

SAP AG 2005 10

Picture 2 applications.log

The log messages have been successfully routed to the SAP logs.

Running the sample
...

1. Call the SAP NetWeaver Developer Network using the URL http://sdn.sap.com and log on with your user
ID and the corresponding password. If you do not have a user ID, you must register before you can log
on.

2. Navigate to Web Application Server area and then to the Samples and Tutorials section.

3. Download the ZIP file TutLogging_Integration.zip

4. Unzip the contents of the ZIP file into the work area of the SAP NetWeaver Developer Studio or in local
directory.

5. Call the SAP NetWeaver Developer Studio.

6. Import the sample projects

a. To do this, choose File Import in new menu.

b. In the next window choose Multiple Existing Projects into Workspace and choose Next to confirm.

c. Choose Browse, open the folder in which you unzipped the projects TutLogging_Integration

d. Select the projects TutLogging_Integration_Ear and TutLogging_Integration_Web, check the the
open checkbox and choose Finish to confirm.

7. Build the EAR

a. Switch into J2EE Explorer View in the J2EE Perspective in the Developer Studio

b. In the context menu of the TutLogging_Integration_Ear select “Build application archive”

c. Choose Build Application Archive from Popup

8. Deploy EAR

a. In the context menu of the EAR File under TutLogging_Integration_Ear select “Deploy to J2EE
engine”

b. Choose Deploy to J2EE Engine

9. Open the following links in your web browser:

a. http://<host>:<port>/logging/log4j.jsp

b. http://<host>:<port>/logging/jcl.jsp

10. Start the Visual Admin

11. Connect to your server and login

12. View the logs

a. Got to Cluster tab

b. Open the node: server<your server>/ Services

c. Click on the LogViewer-Service

http://sdn.sap.com/
http://<host>:<port>/logging/jcl.jsp
http://<host>:<port>/logging/jcl.jsp

Integrating 3rd Party Logging Frameworks into SAP NetWeaver

SAP AG 2005 11

d. At the marked position you can view logs and traces

13. By reloading the URLs and Refreshing the log and trace you can see that log messages are completely
routed to SAP logging

Using bridges in your project
You are in a project situation where you have to handle different log solutions at once and you accept the
restrictions coming along by routing the messages. In case of Log4j all you have to do is:

• Make sure log4j.jar your classpath

• Copy the com.sap.logging.bridge.log4j.SapLogAppender + log4j.properties from the
TutLogging_Integration_Web/source folder to your project source-folder

• Set your category name in log4j.properties

• Modify the SapLogAppender to your needs

In case of Jakarta Commons Logging:

• Make sure the commons-logging jars are in your classpath

• Copy the com.sap.logging.bridge.jcl.SapLogJclImpl + commons-logging.properties from the
TutLogging_Integration_Web/source folder to your project source-folder

• Set your category name in SapLogJclImpl

• Modify the SapLogJclImpl to your needs

For all other toolkits this document combined with documentation of your logging solution gives you hopefully
enough information to easily write a bridge on your own, that satisfies your needs.

About the author
Johannes Hamel is a technology consultant with main interest on J2EE. He is experienced on different J2EE
platforms and different Open Source products. Currently he is focused on the SAP NetWeaver platform as a team
member of the Platform Ecosystem – Market Development Engineering for SAP in Walldorf.

	Integrating 3rd Party Logging into SAP Logging
	Prerequisites
	Systems, installed applications, and authorizations
	Knowledge

	Apache Log4j bridge
	Jakarta Commons Logging

	The sample application
	About the author

