challengerl.3 - user

Challenger1.3 - User

challengerl.3 - user

INTRODUCTION

The User's manual is intended for anyone who pub-
lishes web pages through a Roxen Challenger server.
It describes what functionality Challenger provides
that can be used to make it easier to create static web
pages as well as dynamic content.

It is assumed that the reader is familiar with HTML.
Most of Challengers functions are available as RXML
tags, that will be easy to learn for anyone who knows

HTML.

Introduction
This chapter, introducting the concepts and RXML.

Information tags
Simple RXML tags that provide information about
the client or server.

String tags
Container tags that process input.

Variable tags
Tags that handle form variables.

URL tags
Tags that handle properties of URLs and HTTP like
prestates, cookies and authorization.

If tags
Tags that make it possible to conditionally show dif-
ferent content.

Grapbhics tags
Tags that draw and manipulate graphical images.

Database tags
Tags that communicate with SQL databases.

Programming tags
Miscellaneous tags that are useful for programmers
and advanced RXML users.

Supports System
Supports system that makes it possible to create pages
that are optimized for any browser.

SSI
SSI, Server Side Include, tags that make Challenger
compatible with the NCSA / Apache web servers.

-htaccess security
How to limit who can view your pages.

Image Maps
How to handle server side image maps.

Introduction

Appendix
Lists of all RXML tags, different content types and
supports.

Concepts

RXML

Content on the Web is written using HTML, that is a
text format with markup in the form of <<tags>>. Ev-
erything the browser can display is controlled by dif-
ferent HTML tags. Challenger comes with it's own
macro-language, RXML, that uses tags like the ones
in HTML. But RXML is never sent to the browser,
Challenger converts all RXML tags into HTML by
use of the RXML parser.

RXML can be used for a number of things, creating
graphical headers and diagrams, connecting to data-
bases or creating pages that will work on any browser.
The bulk of this manual describes the various RXML
tags and how they can be combined. The key to
RXML is that each tag solves a separate task. Hence
several tags can be combined to perform an even
greater task.

Modules

Roxen Challenger is written using a module system.
The different functions of Challenger is handled by
different modules. Modules are enabled and config-
ured through the configuration interface by the ad-
ministrator. Some modules handle different RXML
tags. Therefore, which RXML tags you can use do de-
pend on how the administrator has configured Chal-
lenger. The documentation for each tag includes
information about which module handles it, ask your
administrator to enable it, if you need the tag.

Modules that handle RXML tags can be written by
third-party developers or programmers within your
organization. It is also possible to create packages of
RXML tags, for use with the <use> tag. Apart from
learning the RXML tags in this manual you should
learn the special tags available at your site.

challengerl.3 - user

Content Types

Each file fetched through a web server contains a
MIME content type that identifies what type of file it
is. Thus an HTML file has the content type text/ht-
m1, while a GIF image has the content type image/
gif.

On a Challenger server, the file extension determines
the content type of that file. Usually .htm1 or .htm
files are given the content type text/htm] while .gif
files are given the content type image/gif.

As a user, you usually don't have to bother with con-
tent types. If you just give your files their standard ex-
tensions everything will work. But sometimes, when

you try out new plugins that use their own file format,
the extension and content type that you want to use

is not handled by the server. Then the administrator

for the server has to change the configurations for the
Content types module.

Some extensions might be handled by the web server
itself. The most common use is to run files through
the Main RXML parser module. This makes it possible
to use RXML tags on such pages. Depending on the
policy of your site this might be done for all . htm1
files, or only for special . rxm1 files.

A list of the most common file extensions and content
types can be found in the appendix.

RXML

RXML, RoXen Macro Language, is a language han-
dled by the Challenger web server. RXML will always
be translated to HTML by the server, before it is sent
to the browser. The RXML tags are divided into the
following different categories:

Information tags
Information tags are simple tags that provide infor-
mation about the client, the server or the date.

String tags

String tags are container tags that transform some in-
put into HTML. The input differs, some tags use
HTML while other use tab separated text.

Variable tags

Variable tags are tags that handle form variables as
well as the various variable types internal to Challeng-
er. With variable tags it is also possible to define your
own RXML tags.

Introduction

URL tags
Tags that handle properties of URLs and HTTP like
prestates, cookies and authorization.

If Tags

If tags handle conditional showing of different con-
tent. They make it possible to optimize the pages for
all browsers as well as making advanced dynamic con-
tent.

Graphic tags

Graphic tags create and manipulate images. They can
create graphical headers, real-time diagrams as well as
animated clocks.

Database tags

Database tags communicate with SQL databases and
makes it easy to incorporate data from those databas-
es into RXML pages. It is possible to connect to any
number of databases.

Programming tags

Programming tags are useful for doing advanced
RXML as well as for debugging Challenger modules.
It is also possible to run Pike code within your RXML

pages.

challengerl.3 - user

INFORMATION TAGS

Information tags are simple tags that provide infor-
mation about the client, the server or some external
event. Examples are the <accessed> tag, that counts
accesses to the page and the <modified> tag which
shows when the page was last updated.

<accept-language>
<accept-language> is defined in the Main RXML
parser module.

Returns the language code of the language the user
prefers, as specified by the first language in the ac-
cept-language header.

If no accept-language is sent by the users browser
None will be returned.

full
Returns all languages the user has specified, as a com-
ma separated list.

Example

Your preferred language is
<accept-Tanguage>

Results in

Your preferred language is en

<accessed>

<accessed> is defined in the Main RXML parser mod-
ule.

<accessed> generates an access counter that shows
how many times the page has been accessed. In com-
bination with the <gtext>tag you can generate one of
those popular graphical counters.

A file, Accessedps, in the logs directory is used to
store the number of accesses to each page. Thus it will
use more resources than most other tags and can
therefore be deactivated in the RXML parser module.
By default the access count is only kept for files that
actually contain an <accessed> tag, but that can also
be configured.

Information Tags

add=number
Increments the number of accesses with this number
instead of one, each time the page is accessed.

addreal

Prints the real number of accesses as an HTML com-
ment. Useful if you use the cheat attribute and still
want to keep track of the real number of accesses.

capitalize
Capitalizes the first letter of the result.

cheat=number

Adds this number of accesses to the actual number of
accesses before printing the result. If your page has
been accessed 72 times and you add <accessed
cheat=100> the result will be 172.

factor=percent
Multiplies the actual number of accesses by the factor.

file=filename

Shows the number of times the page filename has
been accessed instead of how many times the current
page has been accessed. If the filename does not begin
with "/", it is assumed to be a URL relative to the di-
rectory containing the page with the <accessed> tag.
Note, that you have to type in the full name of the
file. If there is a file named tmp/index.html, you can-
not shorten the name to tmp/, even if you've set Chal-
lenger up to use index.html as a default page. The
filename refers to the virtual filesystem.

One limitation is that you cannot reference a file that
does not have its own <accessed> tag. You can use
<accessed silent> on a page if you want it to be pos-
sible to count accesses to it, but don't want an access
counter to show on the page itself.

lang=ca es CA hr cs nl en fi fr de hu it jp mi no pt ru
St sies sv

Will print the result as words in the chosen language
if used together with type=string. Available languages
are ca, es_CA (Catala), hr (Croatian), cs {Czech), nl
(Dutch), en (English), fi (Finnish), fr (French), de
(German), hu (Hungarian), it (Italian), jp (Japanese),
mi (Maori), no (Norwegian), pt (Portuguese), ru
(Russian), sr (Serbian), si (Slovenian), es (Spanish) and

sv (Swedish).

lower
Prints the result in lowercase.

challengerl.3 - user

per=second minute hour day week month
Shows the number of accesses per unit of time.

prec=number

Rounds the number of accesses to this number of sig-
nificant digits. If prec=2 show 12000 instead of
12148.

reset

Resets the counter. This should probably only be
done under very special conditions, maybe within an
<if> statement.

This can be used together with the file argument, but
it is limited to files in the current- and sub-directories.

silent

Print nothing. The access count will be updated but
not printed. This option is useful because the access
count is normally only kept for pages with actual <ac-
cess> on them. <accessed file=filename> can then
be used to get the access count for the page with the
silent counter.

upper
Print the result in uppercase.

since

Inserts the date that the access count started. The lan-
guage will depend on the lang tag, default is English.
All normal date related attributes can be used. See the
<date> tag.

type=number string roman iso discordian stardate
Specifies how the count are to be presented. Some of
these are only useful together with the since attribute.

Example

This page has been accessed
<accessed type=string cheat=90 addreal>
times since <accessed since>.

Results in

This page has been accessed ninetytwotimes since
today, 0302,

<clienthame>

<clientname> is defined in the Main RXML parser
module.

Prints the name of the browser the user is using.

Information Tags

full

Returns the full name of the browser.

Example

Your browser idientifies itself as
<clientname>.

Results in

Your browser idientifies itself as Mozilla/4.51.

<configurl>

<configurls> is defined in the Main RXML parser
module.

Prints an URL to the configuration interface for this
Challenger server.

Example

<a href="<configurl>"'>
Link to the configuration interface

Results in

Link to the configuration interface

<configimage>
<configimage> is defined in the Main RXML parser
module.

Inserts an image used by the configuration interface.

src=back err_1 err_2 err_3 fold fold2 help ihfc man-
ual-note manual-tip manual-warning pike power rox-
en unfold unfold2 unit

Specifies which image to use.

All other attributes are sent through to the generated
 tag.
Example

<configimage src=fold>

Results in

challengerl.3 - user

<countdown>

<countdown> is defined in the Countdown module.
This tag counts the time to or from a specified date.
Time related attributes

day=number, weekday
Sets the weekday.

hour=number
Sets the hour.

iso=year-month-day
Sets the year, month and day, all at once.

mday=number
Sets the day of month.

min=number
Sets the minute.

month=number, month
Sets the month.

sec=number
Sets the second.

year=number
Sets the year.

Presentation related attributes

combined

Shows an English text describing the time period. Ex-
ample: 2 days, 1 hour and § seconds. You may use the
prec attribute to limit how precise the description
should be. You can also use the month attribute if you
want to see years/months/days instead of years/weeks/
days.

days
Prints the number of days until the time.

dogyears
Prints the number of dog years until the time, with
one decimal.

hours
Prints the number of hours until the time.

lang=ca es_CA hr cs nl en fi fr de hu it jp mi no pt ru
srsies sv

Will print the result as words in the chosen language
if used together with type=siring. Available languages
are ca, es_CA (Catalan), hr (Croatian), cs (Czech), nl
(Dutch), en (English), fi (Finnish), fr (French), de
(German), hu (Hungarian), it (Italian), jp (Japanese),

Information Tags

mi (Maori), no (Norwegian), pt (Portuguese), ru
(Russian), sr (Serbian), si (Slovenian), es (Spanish) and

sv (Swedish).

minutes
Prints the number of minutes until the time.

months
Prints the number of month until the time.

nowp
Returns 1 if the specified time is now, otherwise 0.

How precise now should be interpreted is defined by
the prec attributes. The default precision is one day.

prec=year month week day hour minute second
A modifier for the nowp and combined attributes.
Sets the precision for these attributes.

seconds
Prints how many seconds until the time.

since
Counts from a time rather than towards it.

type=string number ordered
How to present the result.

weeks
Prints the number of weeks until the time.

when
Prints when the time will occur. All valid <date> tag
attributes can be used.

years
Prints the number of years until the time.

Example

<p>I am <countdown is0=1980-06-28
since years type=string> years old.</p>

<p>There are <countdown year2000 days>
days left until year 2000.</p>

<p>Is this a sunday?

<if eval='<countdown day=sunday nowp>'>
Yes, this is a sunday.</if>

<else>No, it isn t.</else>

Results in
| am eighteen vears old,
There are 215 days left until vear 2000,

|5 this a Sundaw?
Mo, itisn™t,

challengerl.3 - user

<date>
<date> is defined in the Main RXML parser module.

This tag prints the date and time.

brief

Generates as brief a date as possible.

capitalize
Capitalizes the first letter of the result.

date
Shows the date only.

day=number
Adds this number of days to the current date.

hour=number
Adds this number of hours to the current date.

lang=ca es_CA hr cs nl en fi fr de hu it jp mi no pt ru
Srsies sv

Used together with type=string and the part attribute
to get written dates in the specified language. Avail-
able languages are ca, es_CA (Catala), hr (Croatian),
¢cs (Czech), nl (Dutch), en (English), fi (Finnish), fr
(French), de (German), hu (Hungarian), it (Italian), jp
(Japanese), mi (Maori), no (Norwegian), pt (Portu-
guese), ru (Russian), sr (Serbian), si (Slovenian), es
(Spanish) and sv (Swedish).

lower
Prints the results in lower case.

minute=number
Adds this number of minutes to the current date.

part=year month day date hour minute second yday
* year; The year

* month; The month

* day; The weekday, starting with Sunday.

* date; The number of days since the first this month.

* hour; The number of hours since midnight.

* minute; The number of minutes since the last full
hour.

* second; The number of seconds since the last full
minute.

* yday; The day since the first of January.

The return value of these parts are modified by both
type and lang.

second=number

Adds this number of seconds to the current date.
time

Prints the time only.

Information Tags

type=number string roman iso discordian stardate
Specifies what type of date you want. Discordian and
stardate only make a difference when not using part.
Note that type=stardate has a separate companion at-
tribute, prec, which sets the precision.

unix_time=_time_t

This attribute uses the specified Unix time_t time as
the starting time, instead of the current time. This is
mostly useful when the <date> tag is used from a
Pike-script or Roxen module.

upper
Prints the result in upper case.

Example
<date part=day type=string lang=de>
Results in
Sonntag
(]
<file>

<file> is defined in the Main RXML parser module.
Prints the path part of the URL used to get this page.

raw
Prints the full path part, including the query part with
form variables.

Example
<file>
Results in

Jdump-page.html

<help>

<help> is defined in the Main RXML parser module.

Gives help texts for tags. If given no arguments, it will
list all available help texts.

for=tag
Gives the help text for that tag.

challengerl.3 - user

Example

<help for=configurl>

Results in

<configurl>

<configurl> is defined in the Main RXML parser
module,

Prints an URL to the configuration interface for this
Challenger server,

d to the tag:

Arguments

Attributes

(=0 Link to the configuration interface

<available_languages>

<available_languages> is defined in the Language
module.

Lists the number of additional languages the current
page has been translated to, with links to them.

type=txt img
Whether to present the available languages with text
or images. See the module documentation for infor-

mation about how to configure which images to send.

<language>

<language> is defined in the Language module.

Prints the language of the current page.

type=txt img

Whether to present the language with text or an im-
age. See the module documentation for information
about how to configure which image to send.

<unavailable_language>

<unavailable_language> is defined in the Language
module.

Information Tags

Shows the language the user wanted in case the page
was not available in that language.

type=txt img

Whether to present the unavailable language with
text or an image. See the module documentation for
information about how to configure which image to
send.

<line>
<Tine> is defined in the Main RXML parser module.

Prints the current line number of the current page.

Example
The current line is Tine <line>.

Results in

The current line is line 5.

<list-tags>
<list-tags> is defined in the Main RXML parser
module.

Lists all available RXML tags.

verbose
Lists the tags with their help texts as well.

Example

<list-tags>

<modified>

<modi fied> is defined in the Main RXML parser mod-
ule.

Prints when or by whom a page was last modified, by
default the current page.

by

Print by whom the page was modified. Takes the
same attributes as the <user> tag.

capitalize
Capitalizes the first letter of the result.

challengerl.3 - user

date
Print the modification date. All attributes from the
<date> tag can be used.

file=path
Get information from this file rather than the current
page.

lower
Print the result in lower case.

realfile=path
Get information from this file in the computers file-
system rather than Challenger's virtual filesystem.

Example

This page was last modified <modified date
type=string>

Results in

This page was last modified May the 29th in the vear
of 1999

<number>

<number> is defined in the Main RXML parser module.
Prints a number as a word.

lang=ca es_CA hr cs nl en fi fr de hu it jp mi no pt ru
srsies sv

The language to use. Available languages are ca,
es_CA (Catala), hr (Croatian), cs (Czech), nl (Dutch),
en (English), fi (Finnish), fr (French), de (German),
hu (Hungarian), it (Italian), jp (Japanese), mi (Maori),
no (Norwegian), pt (Portuguese), ru (Russian), sr
(Serbian), si (Slovenian), es (Spanish) and sv (Swed-

ish).

Example
<number Tang=es num=42>
Results in

cuarenta v dos
<pr>

<pr> is defined in the Main RXML Parser module.

Information Tags

Displays a Powered by Roxen Challenger logo.

size=small medium large
Defines the size of the logo.

color=blue brown green purple
Defines the color of the logo.

align=left center right
Defines the alignment of the logo.

Example

<pr size=medium color=green>

roxen

Results in

<referrer>

<referrers> is defined in the Main RXML parser mod-
ule.

Prints the URL of the page on which the user fol-
lowed a link that brought her to this page. The infor-
mation comes from the referrer header sent by the
browser.

alt=string
If no referrer header is found print this value instead.

Example

You came from
<a href="<referrer'>><referrer>
, didn't you?

Results in

You came from =, didn't vou?

<user>

<user> is defined in the Main RXML parser module.

Prints information about the specified user. By de-
fault, the full name of the user and her e-mail address
will be printed, with a mailto link and link to the
home page of that user.

challengerl.3 - user

The <users> tag requires an Authentification module
to work.

name
The login name of the user.

realname
Only print the full name of the user, with no link.

email
Only print the e-mail address of the user, with no

link.

link
Include links. Only meaningful together with the re-
alname or email attribute.

nolink
Don't include the links.

Example

<user name=wing realname>
Results in

Mattias wingstedt

<version>
<versions> is defined in the Main RXML parser mod-

ule.

Print the version number of the Roxen Challenger
web server you are using.

Example

This page has been brought to you by
<version>

Results in

This page has been brought to vou by Roxen
Challenger/1.3.110

Information Tags

10

challengerl.3 - user

STRING TAGS

String tags are container tags that process their con-
tents somehow. Examples are the <sort> tag that
sorts its contents and the <tab1ify> tag that creates
good looking tables from tab separated text files.

The contents of an RXML container tag may contain
other RXML tags. However, this is not as simple as it
may seem since the outer tag is, by default, handled
first. The following example will try to explain what
happens.

Our example contains an <obox> tag enclosing a
<smallcaps> tag.
<obox>

<smallcaps=Hello World</smallcaps>
</oboxs

Which will result in:

The first thing that will happen is that the RXML
parser handles the <obox> tag, which creates some
HTML table code to draw a box around its contents.
The result from the first pass will be something like:

<generated HTML table codes>
<smallcaps=Hello World</smallcapss>
</generated HTML table codes

This result will then be parsed another time by the
RXML parser, which will then run the <smallcaps>
tag.

That the outer tag is handled first is usually not a
problem, but in some special cases it will cause a
problem. It is, therefore, possible to give the preparse
attribute to all RXML container tags. This will cause
the RXML parser to parse the contents of the tag be-
fore parsing the actual tag.

Below follows an example where the preparse at-
tribute makes a huge difference.
<sources

<smallcaps=Hello World</smallcapss>
</fsources

generates

<sources
<smallcaps=Hello World</smallcapss>
</fsources

while

<SOUrCe preparses>
<smallcaps=Hello World</smallcapss>
</fsources

String Tags

generates

H<font size=-1:ELLO</font: We<font size=-1:0

HELLD WORLD

Special Attributes
preparse is not the only special attribute that can be
given to all RXML tags. They are

nooutput

The tag will generate no output at all. Side effects, for
example sending queries to databases, will have ef-
fect.

noparse
Don't run the results of the tag through the RXML
parser.

preparse
Run the contents of the tag through the RXML pars-
er, before the tag itself is handled.

<ai> ... </

<ai> is defined in the Indirect href module.

Makes it possible to use a database of links. Each link
is referred to by a symbolic name instead of the URL.

The database is updated through the configuration in-
terface.

name
Which link to fetch from the database. There is a spe-
cial case, name=random that will choose a random
link from the database.

Example

<ai name=roxen>Roxen Platform</ai>
Results in

Roxen Platform

11

challengerl.3 - user

<autoformat> ... </

<autoformat> is defined in the Main RXML parser
module.

Replaces all linefeeds in the content with
 tags.

nobr
Don't add any
 br tags.

pre
Replaces all double linefeeds with <p> tags.

Example

<autoformat>

It is almost like
using the pre tag.
</autoformat>
Results in

1T is almost like
using the pre tag.

<case> ... </

<case> is defined in the Main RXML parser module.
Changes the case of the text in the contents.

lower
Changes all upper case letters to lower case.

upper
Changes all lower case letters to upper case.

capitalize
Capitalizes the first letter in the content.
Example

<case uppersupper case</case>
Results in

UFPPER CASE

<comment> ... </

<comment> is defined in the Main RXML parser mod-
ule.

String Tags

The contents will be completely removed from the
page. As opposed to HTML comments where you can
still see the comment by doing View Source in the
browser.

RXML tags within the <comment> tag will not be
parsed.

<doc> ... </
<doc> is defined in the Main RXML parser module.

This tag simplifies writing htm] examples. Within the
<doc> tag { will be replaced by < and } by >. Thus
eliminating the need to write < and > manually.

pre
Encloses the section within a <pre> tag as well.

Example

<doc pre>

{table}
{tr}
{td} First cell {/td}
{td} second cell {/td}

{/tr}
{/table}
</doc>
Results in
<table:
<tr:
<td> First cell </td>
<td> Second cell «</td>
< /St
</table:
<fl> ... </

<f1> is defined in the Folder list tag module.

This tag is used to build folding lists, that are like <d1>
lists, but where each element can be unfolded. The
tags used to build the list elements are <ft> and <fd>.

folded
An argument to both the <fd> itself as well as the <ft>
tag. Will make all elements in the list or that element

folded by default.

unfolded
An argument to both the <fd> itself as well as the <ft>
tag. Will make all elements in the list or that element

unfolded by default.

12

challengerl.3 - user

Example

<f1 >

<ft folded>Moose
<fd>Tastes great.
<ft unfolded>Elk

<fd>Beware.
</f1>
Results in
P moose
“Elk
Baware,

<obox> ... </

<obox> is defined in the Outlined box module.
This tag draws outlined boxes.

align=left right
Vertical alignment of the box.

bgcolor=color
Color of the background and title label.

lefe=number
Length of the line on the left of the title.

outlinecolor=color
Color of the outline,

outlinewidth=number
Width, in pixels, of the outline.

right=number
Length of the line on the right of the title.

Note that the left and right attributes are constrained
by the width argument.

spacing=number
Width, in pixels, of the space in the box.

style=caption groupbox
Style of the box. Groupbox is default

textcolor=color
Color of the text inside the box.

titlecolor=color
Color of the title text.

width=number
Width, in pixels, of the box.

If the title is not specified in the argument list, you can
put it in a <titTle> container in the obox contents.

String Tags

Example

<obox outlinecolor="#555555" outlinewidth="5
width="200" align="Tleft">
<title>Sample box</title>
This is just a sample box.

</obox>

Results in

Sample boy =—————
I This is just a sample box,

<smallcaps> ... </

<smallcaps> is defined in the Main RXML parser
module.

This tag prints the contents in smallcaps

size
Sets the base font size, which can be between 1 and 7.
This is used for the upper case letters.

small
Sets the font size for the lower case letters.

space
Inserts a space between every letter.
Example

<smallcaps size=6 small=2 space>Roxen
challenger</smallcaps>

Results in

RONEN C HALLENGER

<sort> ... </

<sort> is defined in the Main RXML parser module.

Sorts the contents divided by newline or the specified
separator.

separator
The separator used to separate the elements that are
to be sorted.

13

challengerl.3 - user

Example

<sort>

1

Hello

3

world

Are

2

You
Listening
</sort>

Results in

123 Are Hello Listening world ¥ou

<source> ... </

<source> is defined in the Main RXML parser module.

This tag is used to show examples of HTML or
RXML code. It will first show the source code, then
a separator and last the results of the code.

separator
Use this string as a separator between the presentation
of the source of the result.

Example

<source separator="The result of the above
code">

Bold

<h5>This is a small heading</h5></source>

Results in

<font size=+9:<b:Bold< /b« /font:
<h5:This 1is a small heading</h5:

The result of the above code

Bold

This is a small heading

<spell> ... </

<spell> is defined in the Spell checker module.

Checks and marks common misspellings in the con-
tents.

String Tags

warn
Report all unknown words.

Example

<spell warn>
Acctually spelling is not what I do best.
</spell>

Results in
Acctually spelling is not what | do best,
Spell checking report:

"acctually' is unknown to spellchecker

<tablify> ... </

<tablify> is defined in the Tablify module.

This tag generates tables from the contents, by default
in tab separated form. This simplifies making tables
significantly.

cellalign=Ileft center right
Alignment of the contents of the cells.

cellseparator=string
The separator for separating columns, default is tab.

fields=num text

This is not an argument but rather a container tag
used in the contents that sets the field type for each
column. Fields marked numerically will be right
aligned and formatted

nice
Generates tables with customizable layouts. The first

row is referred to as the title row. The additional at-
tributes are:

bgcolor=color
Sets the background color of your table.

titlebgcolor=color
Sets the background color of the title cell.

titlecolor=color
Sets the font color of the title cell.

fgcolorX=color
Sets the background color of cell X.

14

challengerl.3 - user

nicer

Generates tables with even more customizable layouts
and gtext font capabilities for the title field. Nicer
uses the same attributes as nice plus these:

font=fon:
Selects which gtext font to use for the title field.

scale=factor
Sets the scaling of the gtext font.

face=font
Sets the font face to use for the HTML text.

size=number
Sets the font size to use for the HTML text.

modulo=number
The number of rows that are to use the same color,
default is one.

rowalign=left center right
This tag aligns the contents of the rows.

rowseparator =string
Sets the separator used for separating rows, default is
newline.

Example

<tablify cellseparator="," nice="nice">
Country, Population

Sweden, 8 865 051

Denmark, 5 305 042

</tablify>

Results in

Country Population
Sweden & 865 051

Denmark 5 305042

<trimlines> ... </

<trimlines> is defined in the Main RXML parser
module.

This tag removes all empty lines from the contents.

Example

<pre>
<trimlines>

Foo

Bar

String Tags

Gazonk

</trimlines>

</pre>

Results in
Foo
Bar
Gazonk

15

challengerl.3 - user

VARIABLE TAGS

Variable tags can be used to create dynamic web pages
as well as making web pages thats easier to maintain.
The tags have one thing in common, they store and
retrieve information from different places:

variables

Form variables, as well as variables created with tags
like <set> and <cset>. Variables are the backbone of
RXML programming.

other

Other variables only exist in output tags, like
<sqloutput>. The most common use is to transfer a
value available from the output tag to a real variable,
by using <set variable=foo other=bars>.

defines

or macros are fully internal to the server. They are
mostly used for to save pages' authors typing repeti-
tive blocks of text.

tags
It is possible to define new tags, or to redefine an ex-
isting HTML tag.

packages
Packages are ready-to-use defines and tags provided
by the administrator of the server.

<set>

<set> is defined in the Main RXML parser module.
Sets a variable to a new value.

variable=variable
The variable to set.

debug
Provide debug messages in case the operation fails.
<set> will normally fail silently.

define=define
Set the variable to the contents of this define.

expr=expression

Set the variable to the result of a simple mathematical
expression. Operators that can be used are +, -, *, /,
9% and |. Only numerical values can be used in the ex-
pression.

eval=rxml expression
Set the variable to the result of this rxml expression.

Variable Tags

from=variable
Set the variable to the value of the named variable.

other=variable

Set the variable to the value of this other variable.
This is mostly useful from within output tags like
<sqloutput> where all columns from the SQL result
will be available as other variables.

value=string
Set the variable to this value.

If none of the above attributes are specified, the vari-
able is unset. If debug is currently on, more specific
debug information is provided if the operation failed.

Example
<set variable=foo value="Hello world">
<insert variable=foo>

Results in

Hello waorld

<set variable=foo eval="<date>">
<insert variable=foo>
Results in

03:07, May the 30th, 1999

<unset>

<unset> is defined in the Main RXML parser module.
Unsets a variable.

variable=variable
Specifies which variable to unset.

Example

<set variable=foo value="Hello world">
set: <insert variable=foo>

<unset variable=foo>
unset: <insert variable=foo>

Results in

set Hello world
unset:

16

challengerl.3 - user

<cset> ... </

<cset> is defined in the Main RXML parser module.
Sets a variable to the contents of the tag.

variable=variable
The variable to set.

Example

<cset variable=foo>
Hello world
</cset>

<insert variable=foo>
Results in

Hello waorld

<append>
<append> is defined in the Main RXML parser module.

Append a value to a variable.

variable=variable
The variable to append to.

debug
Provide debug messages in case the operation fails.
<append> will normally fail silently.

define=define

Append the contents of this define.

from=uvariable
Append the value of the named variable.

other=variable

Append the value of this other variable. This is mostly
useful from within output tags like <sqloutput>
where all columns from the sql result will be available
as other variables.

value=string
Append the variable to this value.

Example

<set variable=foo value="Hello">
<append variable=foo value=" world">

<insert variable=foo>

Variable Tags

Results in

Hello waorld

<define> ... </
<define> is defined in the Main RXML parser module.

Defines new tags, container tags or defines.

container=name
Define a new RXML container tag, or override a pre-
vious definition.

name
Sets the specified define. Can be inserted later by the
<insert> tag.

tag

Defines a new RXML tag, or overrides a previous def-
inition.

default_attribute=vaiue

Set a default value for an attribute, that will be used

when the attribute is not specified when the defined
tag is used.

You can use a few special tokens in the definition of
tags and container tags:

#Hargs#

All arguments sent to the tag. Useful when defining a
new tag that is more or less only an alias for an old
one.

&attribute;
Inserts the value of that attribute.

Example

<define container=hl>
<gtext fg=blue #args#><contents></gtext>
</define>

<h1l>HelTlo</h1l>

Results in

Hello

<define tag=test default_foo=foo
default_bar=bar>

The test tag: Testing testing.
Foo is &foo;, bar is &bar;
</define>

17

challengerl.3 - user

<test foo=Hello bar=world>

<test foo=Hello>

Results in
The test tag: Testing testing. Foo is Hello, bar is wWorld

The test tag: Testing testing. Foo is Hello, bar is bar

<undefine>

<undefine> is defined in the Main RXML parser mod-
ule.

Undefines a previously defined tag, container tag or
define.

name
Undefine this define.

tag
Undefine this tag.

container
Undefine this container tag.

Example

<define container=hl>
<gtext><contents></gtext>
</define>

<h1l>HeTlTlo</h1>

<undefine container=hl>

<hl>world</h1>
Results in
Hello
World
<insert>

<insert> is defined in the Main RXML parser module.

Inserts values from files, cookies, defines or variables.
If used to insert cookies or variables <insert> will
quote before inserting, to make it impossible to insert
dangerous RXML tags.

Variable Tags

cookie=cookie
Inserts the value of the cookie.

cookies=full
Inserts the value of all cookies. With the optional ar-
gument full, the insertion will be more verbose.

encode=none html

Determines what quoting method should be when in-
serting cookies or variables. Default is hzml, which
means that <, > and & will be quoted, to make sure
you can't insert RXML tags. If you choose none noth-
ing will be quoted. It will be possible to insert danger-
ous RXML tags so you must be of what your variables
contain.

define=name

Inserts this define, which must have been defined by
the <define> tag before it is used. The define can be
done in another file, if you have inserted the file.

file=path

Inserts the file. This file will then be fetched just as if
someone had tried to fetch it through an HTTP re-
quest. This makes it possible to include things like the
result of Pike scripts.

If path does not begin with /, it is assumed to be a
URL relative to the directory containing the page
with the <insert> tag. Note that included files will be
parsed if they are named with an extension the main
RXML parser handles. This might cause unexpected
behavior. For example, it will not be possible to share
any macros defined by the <define> tags.

If you want to have a file with often used macros you
should name it with an extension that won't be
parsed. For example, . txt.

fromword=toword

Replaces fromword with toword in the macro or file,
before insering it. Note that only lower case character
sequences can be replaced.

nocache
Don't cache results when inserting files, but always

fetch the file.

variable=variable
Insert the variable.

Example
<define name=foo>This is a foo</define>
<insert name=foo>

<insert name=foo foo=cat>

<insert name=foo a=some foo=cats is=are>

18

challengerl.3 - user

Results in

This is a foo

This is a cat

Thare are some cats
<use>

<use> is defined in the Main RXML module module.

Reads tags, container tags and defines from a file or
package.

file=path
Reads all tags and container tags and defines from the

file.

This file will be fetched just as if someone had tried to
fetch it with an HTTP request. This makes it possible
to use Pike script results and other dynamic docu-

ments. Note, however, that the results of the parsing
are heavily cached for performance reasons. If you do
not want this cache, use <insert file=... nocache>

instead.

package=name

Reads all tags, container tags and defines from the
given package. Packages are files located in Tocal/
rxml_packages/.

By default, the package gtext_headers is available,

that replaces normal headers with graphical headers.
It redefines the h1, h2, h3, h4, h5 and hé container
tags.

The <use> tag is much faster than the <include>,
since the parsed definitions is cached.

Example
<use package=gtext_headers>

<hl>Hello world</hl>

Results in

Hello World

<formoutput> ... </

<formoutput> is defined in the Main RXML parser
module.

Variable Tags

A tag for inserting variables into just about any con-

text. By default anything within #'s will be interpret-
ed as a variable. Thus #name# will be replaced by the
value of the variable name. ## will be replaced by a

#.

By default, the variable will be HTML quoted, that is,
< will be inserted as < > as > and & as &.
However, there are instances when that is not what
you want, for example, when inserting variables into
SQL queries. Therefore, the quoting can be con-
trolled by #variable : quote=scheme#. The different
quoting schemes are:

none
No quoting. This is dangerous and should never be
used unless you have total control over the contents
of the variable. If the variable contains an RXML tag,
the tag will be parsed.

html
The default quoting, for inserting into regular HTML
or RXML.

dtag

For inserting into HTML or RXML attributes that
are quoted with ". For example <<img src="/base/
#image#">>.

stag

For inserting into HTML or RXML attributes that
are quoted with . For example <<img src="/base/
#image# ' >>.

url
For inserting variables into URLs.

pike

For inserting into Pike strings, for use with the <pike>
tag.

Js, javascript

For inserting into Javascript strings.

mysql

For inserting into MySQL SQL queries.

sql, oracle
For inserting into SQL queries.

quote
Select the string used for quoting the variable, default
is #.

19

challengerl.3 - user

Example

<set variable=foo value="world">
<formoutput quote=$>

Hello foo

</formoutput>

Results in

Hello waorld

Variable Tags

20

challengerl.3 - user

URL TAGS

URL tags are tags that somehow use or manipulate
the URL or HTTP headers. Among other things they
manipulate;

prestate options

Prestate options are a way to present options in the
URL, that will be persistent for a user over several
pages. A prestate for the options txt and en would be
stored as http://www.roxen.com/(en,txt) /my.page
in the URL. If you use prestate options you must only
use relative URLs in your links.

cookies

Cookies are a way for a web site to store a small
amount of information in the users' browsers. It is a
much better way than prestates to handle information
that should be persistent for a user over several pages.

authentification
HTTP can be used to transmit a user name and a pass-
word through HTTP.

expire
It is possible to tell the browser, and any proxy on the
way to it, how long it is to cache a page.

<apre> ... </
<apre> is defined in the Main RXML parser module.

Adds or removes prestate options.

Prestate options are simple true/false flags that are
added to the URL of the page. Use <if pr-
estate=...> to test for the presence of a prestate.
<apre> works just like a container tag,
but the href attribute can be omitted in which case the
current page is used.

option

Add the prestate option.
-option

Remove the prestate option.
href

Make the generated link point to this URL. The URL
must be local to this web site.

Example

<apre foo>Add the option</apre>

<apre -foo>Remove the option</apre>

URL Tags

<p><if prestate=foo>
The option is set.
</if>

<else>

The option is not set.
</else>

<aconf> ... </
<aconf> is defined in the Main RXML parser module.

Adds or removes config options.

Config options are simple toggles that are stored in
the cookie roxen-config. This ensures that they are
persistent for that user, the same user will have the
same config options even if he returns to the site an-
other day. If cookies cannot be used, prestate vari-
ables are used instead.

Use <if config=...> to test for the presence of a
config option. <aconf> works just like the container tag, but if no href attribute is
specified, the current page is used.

Example

<aconf +foo>Add the option</aconf>

<aconf -foo>Remove the option</aconf>

<p>if config=foo>

The option is set.
</if>

<else>

The option is not set.
</else>

<set_cookie>

<set_cookie> is defined in the Main RXML parser
module.

Sets a cookie that will be stored by the user's browser.
This is a simple and effective way of storing data that
is local to the user. The cookie will be persistent, the
next time the user visits the site, she will bring the
cookie with her.

name=string
The name of the cookie.

value=string
The value the cookie will be set to.

persistent
Keep the cookie for two years.

21

challengerl.3 - user

hours=number
Add this number of hours to the time the cookie is
kept.

minutes =number
Add this number of minutes to the time the cookie is
kept.

seconds=number
Add this number of seconds to the time the cookie is
kept.

days=number
Add this number of days to the time the cookie is
kept.

weeks =number
Add this number of weeks to the time the cookie is
kept.

months=number
Add this number of months to the time the cookie is
kept.

years =number
Add this number of years to the time the cookie is
kept.

It is not possible to set the date beyond year 2038. By
default the cookie will be kept until the year 2038.

Note that the change of a cookie will not take effect
until the next page load. Therefore, a reload will be
needed to see the effect of the example.

Example

<apre foo>Set the cookie</apre>

<apre -foo>Remove the cookie</apre>

<if prestate=foo><set_cookie name=foo
value="Hello world"></if>
<else><remove_cookie name=foo></else>

<p><insert cookie=foo>

<remove_cookie>
<remove_cookie> is defined in the Main RXML parser
module.

Removes a cookie.

name
Name of the cookie to remove.

Note that removing a cookie won't take effect until
the next page load. Therefore, a reload will be needed
to see the effect of the example.

URL Tags

Example

<apre foo>Set the cookie</apre>

<apre -foo>Remove the cookie</apre>

<if prestate=foo><set_cookie name=foo
value="Hello world"></if>
<else><remove_cookie name=foo></else>

<p><insert cookie=foo>

<auth-required>

<auth-required> is defined in the Main RXML parser
module.

Adds an HTTP auth required header and return code,
that will force the user to supply a login name and
password. This tag is needed when using access con-
trol in RXML in order for the user to be prompted to
login.

Example

<apre foo>
Try it.
</apre>

<if prestate=foo>
<auth-required>
</if>

Results in

Try it

<expire-time>
<expire-time> is defined in the Main RXML parser
module.

Sets the expire-time for the document. Caches along
the way to the user are only allowed to cache the page
for this amount of time.

hours=number
Add this number of hours to the expire time.

minutes =number
Add this number of minutes to the expire time.

seconds =number
Add this number of seconds to the expire time.

days=number
Add this number of days to the expire time.

22

challengerl.3 - user

months=number
Add this number of months to the expire time.

years =number
Add this number of years to the expire time.

Bugs: it is not possible to set the date beyond the year
2038.

You can check our example by asking your browser
about the Page Info.

Example

<expire-time hours=5>

<header>
<header> is defined in the Main RXML parser module.

Adds an HTTP header to the result from page.
See the Appendix for a list of HTTP headers.

name=string
The name of the header.

value=string
The value of the header.

Example
<apre foo>Try it</apre>

<if prestate=foo>

<header name=Location value=http://
www. roxen.com/>

<return code=301>

</if>

<redirect>

<redirect> is defined in the Main RXML parser mod-
ule.

Adds an HTTP redirect header and return code to the
response from this page.

to=URL
Redirect to this URL.

Example
<apre foo>Try it</apre>
<if prestate=foo>

<redirect to="http://www.roxen.com/">
</if>

URL Tags

<return>

<return> is defined in the Main RXML parser module.
Changes the HTTP return code for this page.
See the Appendix for a list of HTTP return codes.

code
The return code to set.

Example

<apre foo>Try it</apre>

<if prestate=foo>

<header name=Location value=http://
www. roxen. com/>

<return code=301>
</if>

<killframe>

<kil11frame> is defined in the Killframe tag module.

Prevents your page from being placed in a frame, by
adding some JavaScript code.

As an added bonus index. htm1 will be removed from
the end of the URL, as shown in the Location field in
your browser.

Example

<killframe>

23

challengerl.3 - user

IF TAGS

If-tags make it possible to make dynamic pages that
show different content based on conditions. Authen-
ticated users can get confidential information and
pages can be optimized for all browsers. They also
makes it possible to program web application in
RXML, without using any programming language.

<if> ... </
<if> is defined in the Main RXML parser module.

<if> is used to conditionally show its contents.
<else>, <elif> or <elseif> can be used to suggest al-
ternative content.

It is possible to use glob patterns in almost all at-
tributes, where * means match zero or more charac-
ters while ? matches one character. * Thus t*£?? will
match trainfoo as well as * tfoo but not trainfork
or tfo.

accept=typel[,typel,...]

Returns true is the browser accept certain content
types as specified by it's Accept-header, for example
imagel/jpeg or text/btml. If browser states that it ac-
cepts ¥/* that is not taken in to account as this is al-
ways untrue.

config=name
Has the config been set by use of the <aconf> tag?

cookie=name[is value]
Does the cookie exist and if value is given, does it
contain the value value?

date=yyyymmdd
Is the date yyyymmdd? The attributes before, after
and inclusive modifies the behavior,

defined=define
Is the define defined?

domain=pattern[,pattern...]

Does the users computer's DNS name match any of
the patterns? Note that domain names are resolved
asynchronously, and the the first time someone ac-
cesses a page, the domain name will probably not
have been resolved.

eval=RXML expression

Returns true if RXML expression returns a string that
evaluates to true if casted to an integer in Pike, i.e. the
string begins with 1-9 or a number of zeroes followed

If Tags

by 1-7 (octal greater than zero). Future versions of
Roxen (starting from version 1.4) will evaluate to
true on a number of zeroes followed by 1-9 (decimal
greater than zero).

exists=path

Returns true if the file path exists. If path does not be-
gin with /, it is assumed to be a URL relative to the
directory containing the page with the <i f>-state-
ment.

filename=filepatiernl],filepattern2,...]
Returns true if the current page is among the listed
filepatterns.

host=pattern[,pattern...]
Does the users computers IP address match any of the
patterns?

language=Ilanguage1[,lang2,...]
Does the client prefer one of the languages listed, as
specified by the Accept-Language header?

match=string[is pattern[,pattern,...]]
Does the string match one of the patterns?

name=pattern[,pattern...|
Does the full name of the browser match any of the
patterns?

prestate=optionl[,option2, ...]
Are all of the specified prestate options present in the
URL?

referrer=[=pattern[,paitern,...]]
Does the referrer header match any of the patterns?

supports=feature

Does the browser support this feature? See the sup-
port feature page page for a list of all available fea-
tures.

time=ttmm
Is the date ttmm? The attributes before, after and in-
clusive modifies the behavior.

user=name[,name,...J | any
Has the user been authenticated as one of these users?
If any is given as argument, any authenticated user

will do.

variable=name[is pattern]
Does the variable exist and, optionally, does it's con-
tent match the pattern?

Modifier Attributes

24

challengerl.3 - user

after
Used together with the date attribute.

and

If several conditional attributes are given all must be
true for the contents to be shown. This is the default
behavior.

before
Used together with the date attribute.

file=path

Used together with the user attribute. An external file
will be used to authenticate the user, rather than the
current Authentication module. The file should have
the following format:

user name :
user name :

encrypted password

encrypted password

Unless the wuwwfile attribute is given the path is a path
in the computers real file system, rather than Chal-
lenger's virtual file system.

group =group, groupfile path

Used together with the user attribute to check if the
current user is a member of the group according the
the groupfile. The groupfile is of the following for-

mat:

group : userl, user2, user3

group : useré4

inclusive

Used together with the date and before or after at-
tributes. The contents will also be shown if the date is
the current date.

wwwiile

Used together with the file attribute to indicate what
Challenger's virtual file system should be used to find
the password file. This might be a security hazard,
since anyone will be able to read the password file.

not
Inverts the results of all tests.

or
If several conditional attributes are given, only one of
them has to be true for the contents to be shown.

Complex expressions
You might be tempted to write expressions like:

If Tags

<if variable="foo is bar" or variable="bar is
foo">something</if>

This will not work, as you can only use an attribute
once.

Another common problem is a misconception of how
the and, or and not attributes work.,

<if user=foo or not do-
main="%*.foobar.com"™>...</if>

will not work since the not attribute negates the
whole tag, not just the domain attribute.

Example

<if supports=tables>
Your browser supports tables.
</if>

Results in

Your browser supports tables,

<if user=any>

You are logged in.
</if>

<else>

You are not Tlogged in.
</else>

Results in

You are not logged in.

<if date=20000101 before>
The year 2000 is yet to come.
</if>

Results in

The vear 2000 is vet to come,

<else> ... </

<else> is defined in the Main RXML parser module.
Show the contents if the previous <if> tag didn't, or
if there was a <false> above. The result is undefined

if there has been no <if>, <true> or <false> tag
above.

25

challengerl.3 - user

Example

<false>
<else>
Show this.
</else>

Results in

Show this.

<elseif> ... </
<elseif>is defined in the Main RXML parser module.

Same as the <if>, but it will only evaluate if the pre-
vious <if> tag returned false.

<elif> ... </
<elif> is defined in the Main RXML parser module.

Alias for the <elseif> tag.

<true>

<true> is defined in the Main RXML parser module.

An internal tag used to set the return value of <if>
tags. It will ensure that the next <else> tag will not
show its contents. It can be useful if you are writing
your own <i f> lookalike tag.

<false>
<false> is defined in the Main RXML parser module.

Internal tag used to set the return value of <if> tags.
It will ensure that the next <else> tag will show its
contents. It can be useful if you are writing your own
<if> lookalike tag.

If Tags

26

challengerl.3 - user

GRAPHICS TAGS

Good looking graphics are an important part of the

layout of web pages. But creating graphics can also be
very time consuming. Especially, if it involves creat-
ing the same type of headers, only with different text.

Therefore, Challenger features graphic tags that cre-
ate images. They can be used to draw analog clocks
and graphical headers as well as diagrams.

File Formats

Some of the tags take images as attributes. For exam-
ple, to use as background. The images can be in GIF,
JPEG, PNM or PNG format.

Color Attributes
Color attributes can be specified in one of the follow-
ing ways:

name
For example black or darkred.

#RGB value
The color is specified as a hexadecimal-digits, #RRGG-
BB. For example, #ffdead or #00ff00.

@HSV value

The color is specified with the syntax @h,s,v where h
is the hue specified as degrees (0 to 359), s is the sat-
uration specified as a percentage and v the value also
specified as a percentage. For example, @150,70,70.

%CMTK value

The color is specified with the syntax %c,m, t, k where
all the values are percentages. For example,
%10,20,30,40.

<gtext> ... </

<gtext> is defined in the Graphics text module.
Renders a GIF image of the enclosed text.

Note: If the background and text colors are not set in
the <body> tag of the page, the bg and fg attributes
must be set, otherwise the <gtext> tag will only ren-
der a "Please reload this page"-message.

alpha=path
Use the specified image as an alpha channel, together
with the background attribute.

href=URL
Link the image to the specified URL. The link color

Graphics Tags

alt=string

Sets the alt attribute of the generated tag. Will
be default set to the alt attribute of the contents of the
<gtext> tag.

background=path
Specifies the image to use as background.

bevel=width

Draws a bevel box.

pressed
Inverts the direction of the bevel box, to make it look
like a button that is pressed down.

bg=color

Tells the <gtext> tag what the background color of
the page is. This is used for anti-alias purposes. The
module can be configured to try to find out this by it-
self, by parsing at appropriate HTML tags.

black

Use a black, or heavy, version of the font, if available.

bold

Use a bold version of the font, if available.

border=width,color
Draws a border around the text of the specified width
and color.

fadein=>blur,steps,delay,initialdelay
Generates an animated GIF file of a fade-in effect.

fg=color

Sets the color or the rendered text. The module can
be configured to try to find out an appropriate color
by parsing HTML tags.

fs
Apply floyd-steinberg dithering to the resulting im-
age.

fuzz=color
Apply a glow effect.

ghost=dist,blur,color
Apply a ghost effect. Cannot be used together with
shadow or magic.

glow=color
Apply a glowing outline around the text.

of the document will be used as the default fore-
ground rather than the foreground color.

27

challengerl.3 - user

italic

Use an italic version of the font, if available.
light

Use a light version of the font, if available.

magic=rmessage

Used together with the bref attribute to generate a
JavaScript that will highlight the image when the
mouse is moved over it.

magic_argument=value
Same as for any <gtext> attribute, except for the
highlighting image.

magicbg=color|path
Same as the background attribute, except for the high-
lighting image.

maxlen=number
Sets the maximum length of the rendered text, by de-
fault 300.

mirrortile

Tiles the background and foreground images around
x-axis and y-axis for odd frames, creating seamless
textures.

move=x,y

Moves the text relative to the upper left corner of the
background image. This will not change the size of
the image.

nfont=font
Use this font. If no font is specified, the define nfont
will be used, or the default font, if there is no define.

notrans

By default, the background of the image is set as a
transparent color. This option overrides that behav-
ior.

opaque=percentage
Generate text with this amount of opaqueness. 100%
is default.

quant=number

Use this number of colors in the generated image. For
GIF images, fewer colors implies smaller images but
also aliasing effects. It is advisable to use powers of 2
to optimize the palette allocation.

rescale
Rescale the background to fill the whole image.

rotate=angle
Rotates the image this number of degrees counter-
clockwise.

Graphics Tags

scale=float
Scale the font this much.

scolor=color
Use this color for the shadow. Used with the shadow
attribute.

scroll=width,steps,delay
Generate an animated GIF image of the text scroll-
ing.

shadow=intensity,distance
Draw a drop-shadow with the specified intensity and
distance. The intensity is specified as a percentage.

size=width,height
Set the size of the image.

spacing=number
Add space around the text.

split

Generate a separate GIF image out of each word. This
will allow the browser to word-wrap the text, but will
disable certain attributes like magic.

split=character
Split the string also at each occurrence of the charac-
ter.

talign=Ileft eight center
Adjust the alignment of the text.

textbelow=color
Place the text in a colored box.

textbox=opaque,color
Draw a box with an opaque value below the text of
the specified color.

texture=path
Uses the specified images as a field texture.

tile
Tiles the background and foreground images if they
are smaller than the actual image.

turbulence=frequency,color;frequency,color;frequen-
cy,color
Apply a turbulence effect.

verbatim
Allows the gtext parser to not be typographically cor-
rect.

xpad =percentage
Increases padding between characters.

28

challengerl.3 - user

xsize=number

Sets the width.

xspacing =number
Sets the horizontal spacing.

ysize=number
Sets the height.

yspacing=number
Sets the vertical spacing.

Example

<gtext>The time is <date time></gtext>

<gtext href=http://www.roxen.com/
magic>Roxen Platform</gtext>

Results in

The time is 03:09
Roxen Platform

<diagram> ... </

<diagrams is defined in the Business Graphics mod-
ule.

The <diagram> container tag is used to draw pie, bar,
or line charts as well as graphs. It is quite complex
with six internal container tags.

Internal Tags
<data>
The data the diagram is to visualize, in tabular form.

<colors>
The colors for different pie slices, bars or lines.

<legend>
A separate legend with description of the different pie
slices, bars or lines.

<xaxis>
Used for specifying the quantity and unit of the x-ax-
is, as well as its scale, in a graph.

<yaxis>

Used for specifying the quantity and unit of the x-ax-
is, as well as its scale, in a graph or line chart.

Graphics Tags

<xnames>

Separate tag that can be used to give names to put
along the pie slices or under the bars. The names are
usually part of the data.

Pie

<diagram type=pie width=200 height=200
name="pPopulation’
tonedbox="1ightblue,1ightblue,white,white’'>
<data separator=,>
5305048,5137269,4399993, 8865051

</data>

<legend separator=,>

Denmark, FinTand,Norway, Sweden</Tlegend>
</diagram>

Results in
Population
BDenmark [TlNorway
WFinland []Sweden
Bar

<diagram type=bar width=200 height=250
name="pPopulation' horgrid
tonedbox="1ightblue,1ightblue,white,white'>
<data xnamesvert xnames separator=,>
Denmark,FinTland,Norway, Sweden
5305048,5137269,4399993,8865051</data>
</diagram>

Results in
Population
8000000
6000000
4000000
2000000
0
¥2 85
o = T
EE 5§ g
5 L zZza
o

<diagram type=bar width=200 height=250
name="Age structure' horgrid
tonedbox="1ightblue,1ightblue,white,white'>

29

challengerl.3 - user

<data xnamesvert xnames form=column

separator=,>
Denmark, 951175, 3556339,797534
Finland,966593,3424107,746569

Norway, 857952,2846030, 696011
Sweden, 1654180, 5660410,1550461</data>

<legend separator=,>
0-14,15-64,65-

</Tegend>
</diagram>

Results in

Sumbar

<diagram type=sumbar width=200 height=250

Age structure

4000000
2000000
-
o
EE
@ e
[=]
Wo-14 65—
Bi5-64

name='Land Use' horgrid

tonedbox="Tightblue, Tightblue,white,white'>
<data xnamesvert xnames form=column

separator=,>

penmark, 27300,4200,10500
Finland,24400,231800,48800
Norway, 9240,83160,215600

Sweden, 32880,279480,102750</data>

<legend separator=,>
Arable,Forests,Other

</Tegend>

<yaxis quantity=area>
<yaxis unit=kmA2>

</diagram>

Results in

Norway

Land Use

area [kma2]

400000 4.—

300000
200000
100000

0

Denmark
Finland

Norway

B Arable B Other

BEFforests

Sweden

Sweden

Graphics Tags

Normalized Sumbar

<diagram type=normsumbar width=200 height=250
name="Land Use' horgrid

tonedbox="Tightblue, Tightblue,white,white'>

<data xnamesvert xnames form=column
separator=,>

Denmark,27300,4200,10500

Finland, 24400,231800, 48800
Norway, 9240, 83160, 215600

Sweden, 32880,279480,102750

</data>

<legend separator=,>

Arable, Forests,Other

</legend>

<yaxis quantity=%>

</diagram>

Results in
Land Use
%
100
80
60
40
20
0
E = 5 2
U W Z
o
B Arable @ Other
EForests

Line Chart

<diagram type=line width=200 height=250
name="Exchange Rates' horgrid
tonedbox="Tightblue, lightblue,white,white'>
<data form=row separator=,
Xnamesvert xnames>
1992,1993,1994,1995,1996
0.166,0.154,0.157,0.179,0.172
0.223,0.175,0.191,0.229,0.218
0.161,0.141,0.142,0.158,0.155
0.172,0.128,0.130,0.149,0.140
</data>

<yaxis start=0.09 stop=0.25>
<legend separator=,>

Danish kroner (DKr),

markkaa (FM™k),

Norwegian kronor (NKr),
swedish kronor (SKr)
</Tegend>

<xaxis quantity=year>

<yaxis quantity=Us$>
</diagram>

30

challengerl.3 - user

Results in

Exchange Rates

|/|Danish kroner (DKr)
|/IMarkkaa (FMk)
|“INorwegian kronor (NKr)
|/ swedish kronor (SKr)

Graph

<diagram type=graph width=200 height=300
name="Simple Functions' horgrid
tonedbox="Tightblue, Tightblue,white,white'>

<colors separator=" ">#60b0Off darkred</colors>
<data separator=,><pike>
float c;

for (c=-2.0; ¢ < 2.0; c+=0.1)
output("%f,%f,", ¢, ¢ * ¢);
output("%f,%f", 2.0, 2.0 * 2.0);
return flushQ;
</pike>
<pike>
float c;

0.1)
c*c);
2.0 % 2.0);

output("%f,%f,", ¢, c
output("%f", 2.0, 2.0
return flushQ;
</pike></data>
<axis start=-2.1 stop=2.1>
<axis start=-6.1 stop=6.1>
<legend separator=,>
XA2,XA3
</Tegend>
</diagram>

for (c=-2.0; ¢ < 2.0; c+=
%

Results in

Simple Functions

g/

Graphics Tags

3d=number
Draws a pie-chart on top of a cylinder, takes the
height of the cylinder as argument.

background=path
Use the image as background.

bgcolor=color
Set the background color to use for anti-aliasing.

center=number
Centers a pie chart around that slice.

eng
Write numbers in engineering fashion, i.e like 1.2M.

font=font
Use this font, Can be overridden in the <legends,
<xaxis>, <yaxis> and <names> tags.

fontsize=number
Height of the text.

height=number
Height of the diagram. Will not have effect below
100.

horgrid
Draw a horizontal grid.

labelcolor=color
Set the color for the labels of the axis.

legendfontsize=number
Height of the legend text.

name=string
Write a name at the top of the diagram.

namecolor=color
Set the color of the name, by default texicolor.

namefont=font
Set the font for the name.

namesize =number
Sets the height of the name, by default fontsize.

neng
As eng, but 0.1-1.0 is written as 0.xxx.

notrans
Make bgcolor opaque.

rotate=degree
Rotate a pie chart this much.

textcolor
Set the color for all text.

31

challengerl.3 - user

tonedbox=color1,color2,color3,color4
Create a background shading between the colors as-
signed to each of the four corners.

turn
Turn the diagram 90 degrees.

type=sumbars normsum line bar pie graph
The type of the diagram.

vertgrid
Draw vertical grid lines.

voidsep =string
Change the string that means no such value, by de-
fault VOID.

width=number
Set the width of the diagram.

xgridspace=number
Set the space between two vertical grid lines. The unit
is the same as for the data.

ygridspace
Set the space between two horizontal grid lines. The
unit is the same as for the data.

Regular arguments will be passed on to the
generated tag.

<data>

form

column row How to interpret the tabular data, by de-
fault row.

lineseparator
Set the separator between rows, by default newline.
lineseparator.

noparse
Do not parse the contents by the RXML parser, be-
fore data extraction begins.

separator
Set the separator between elements, by default tab.

xXnames
Treat the first row or column as names for the data to
come. The name will be written along the pie slice or
under the bar.

xnamesvert
Write the names vertically.

Graphics Tags

<colors>
separator
Set the separator between colors, by default tab.

<legend>
separator
Set the separator between legends, by default tab.

<xaxis>, <yaxis>

start

Limit the start of the diagram at this value. If set to
min the axis starts at the lowest value in the data.

stop
Limit the end of the diagram at this value.

quantity
Set the name of the quantity of this axis.

unit=string
Set the name of the unit of this axis.

<xnames>
separator
Set the separator between names, by default tab.

orient=vert horiz
How to write names, vertically or horizontally.

<gclock>

<gclock> is defined in the Pike Image Module mod-
ule.

Draw an analogue clock that will always show the
right time through creative usage of GIF animations.

background_image=path
Set the background image to use.

delay
Set the delay between the frames in the animation.

time_offset
Add or subtract a number of seconds to the actual
time,

Example

<gclock>

32

challengerl.3 - user

Results in

<pimage> ... </
<pimage> is defined in the Pike Image Module mod-
ule.

A <pike> tag optimized for creating images or GIF an-
imations.

<imgs>
<imgs> is defined in the Main RXML parser module.

Works like an tag where the server automati-
cally sets the width and height attributes. That way,
the page will be rendered faster by the browser while
no information about the image is hard-coded into
the page. If the image changes size, so will the width
and height attributes. The server will read the first
bytes of the image file to determine its size.

The <imgs> takes the same arguments as the
tag.

<config_tablist> ... </

<config_tablist> is defined in the Config tab-list
module.

Generates a list of tabs, like the one in the configura-
tion interface.

The <config_tablist> container tag does not take
any arguments, but it must always contain one or
more <tab> container tags. The following arguments
apply to the <tab> tags.

Graphics Tags

alt
Alternative text for the image. The default is to use
ascii-art to make it look like a tablist.

bgcolor
Set the background color. Default is white.

border
Set the width of the border of the image. Default is ze-
ro.

selected
Make this tab the selected tab.

Example

<config_tablist>

<tab href="gtext.html">gtext</tab>

<tab selected="selected">config-tablist</tab>
<tab href="gclock.html">gclock</tab>
</config_tablist>

Results in

M [config-tablist \ _FEITT0

33

challengerl.3 - user

DATABASE TAGS

The database tags interact with SQL databases. They
can be used to create interactive graphical reports as
well as complete web applications.

The database tags are almost always combined with
other RXML tags. Together with the <diagram> tag
they provide real-time diagrams, with the <tab1ify>
tag they provide nice looking tables. Combined with
the <wizard> tag they make easy-to-use web applica-
tions.

Each database tag needs to know which database it
should connect to. This is specified by the host-at-
tribute which usually is a symbolic name for the data-
base that the administrator has configured in the SQL
databases module. It is also possible to specify the da-
tabase host, user and password directly in the tags,
but this is not recommended. See the Database chap-
ter in the Administrator's manual for the syntax.

<sqlquery>
<sqlquery> is defined in the SQL module.

Executes a SQL query, but doesn't do anything with
the result. This is mostly used for SQL queries that
change the contents of the database, for example IN-
SERT or UPDATE.

host=database
Which database to connect to, usually a symbolic
name. If omitted the default database will be used.

query=SQL guery
The actual SQL-query.

quiet
Do not show any errors in the page, in case the query
fails.

parse
If specified, the query will be parsed by the RXML
parser. Useful if you wish to dynamically build the

query.

Example
<apre foo>Reset the database</apre>

<if prestate=foo>
<sqlquery host=test
query="DELETE from test">
</if>

Database Tags

<sqltable>

<sqltables is defined in the SQL module.

Creates a HTML or ASCII table from the results of an
SQL query.

ascii

Create an ASCII table rather than a HTML table. Use-
ful for

interacting with the <diagram> and <tab1i fy>

tags.

host=database

Which database to connect to, usually a symbolic
name.

If omitted the default database will be used.

query
The actual SQL-query.

quiet
Do not show any errors in the page, in case the query
fails.

parse
If specified, the query will be parsed by the RXML
parser.

Useful if you wish to dynamically build the query.

Example

<tablify preparse="preparse”
nice="nice">CountryPopulation

<sqltable ascii host=test query="SELECT
country, population FROM countries ORDER BY
country">

</tablify>

<sqloutput> ... </

<sqloutput> is defined in the SQL module.

Insert the results of a SQL query into HTML or
RXML. <sqloutput> works like all output tags. By
default anything within #'s will be interpreted as a
variable. Thus #column# will be replaced by the col-
umn value. ## will be replaced by a #. The inserted
SQL results will by default be HTML quoted, < will
for example be quoted to <. See the formoutput
page for more information about quoting.

34

challengerl.3 - user

The <sqloutput> tag will copy its contents and re-
place the columns for each row in the result of the
query. If the result is empty, the <sqloutput> will not
return anything.

Within the <sqloutput> the column values can be ac-
cessed as other variables. This is useful for transfer-
ring the result to normal RXML variables.

host=database
Which database to connect to, usually a symbolic
name. If omitted the default database will be used.

query=SQL guery
The actual SQL-query.

quiet
Do not show any errors in the page, in case the query
fails.

parse
If specified, the query will be parsed by the RXML
parser. Useful if you wish to dynamically build the

query.

Example

<table >

<tr>

<th>Country</th>
<th>Population</th>

</tr>

<sqloutput host=test
query="SELECT country, population FROM
countries ORDER BY country”>
<tr>

<td>#country#</td>
<td>#population#</td>

</tr>

</sqloutput>

</table>

<sqloutput host=test

query="SELECT population FROM countries WHERE
country="'Sweden'">

<set variable=swepop other=population>

</sqloutput>

The population of Sweden is <insert
variable=swepop>.

Database Tags

35

challengerl.3 - user

PROGRAMMING TAGS

Programming tags are tags that can be used for ad-
vanced RXML such as making web applications in
RXML. There are also tags of interest to Challenger
module programmers. And for the one who wants to
combine programming with RXML there is the
<pike> tag that lets you put pike code into your
RXML pages.

<catch> ... </

<catch> is defined in the Main RXML parser module.

This tag does normally just pass along it's contents.
However, in case there are an error in the RXML
evaluation of the contents, or a <throw> tag is evalu-
ated, only the error messages will be returned.

Example

<catch>
<h1l>HelTlo world</hl>

<throw>Error dude.</throw>
</catch>

Results in

Error dude.

<cgi>
<cgi> is defined in the CGI executable support mod-
ule.

Executes a CGI script, any attributes is forwarded
from the tag to the CGI script. The same can be
achived bu the <insert> tag or SSI <-- #exec -->,
but the <cgi> tag has a nicer syntax.

script
The CGI script to invoke.

default-argument
This argument will be sent to the CGI script, unless a
form variable exists with the same name.

Programming Tags

<throw> ... </

<throw> is defined in the Main RXML parser module.

This tag throws an exception, with the enclosed text
as the error message. The RXML parsing will stop at
the <throw> tag.

Has a close relation to the <catch> tag.

Example

<catch>
<set variable=foo value=Hi>
<throw>Error dude.</throw>
<set variable=foo value=Bye>
</catch>

<p><insert variable=foo>
Results in
Error dude.

Hi

<crypt>

<crypt> is defined in the Main RXML parser module.

Encrypts the contents as a Unix style password. Use-
ful when combined with services that use such pass-
words.

Unix style passwords are one-way encrypted, to pre-
vent the actual clear-text password from being stored
anywhere. When a login attempt is made, the pass-
word supplied is also encrypted and then compared
to the stored encrypted password.

Example

<wizard name="Password">

<page>Enter your password:

<var name=password type=password size=10>
</page>

<page>Your encrypted password is
<tt><crypt><insert var=password></crypt></
Tt>.

</page>

</wizard>

36

challengerl.3 - user

Results in
Password Page 1/2
Enter vour password: I
‘ Cancel | ‘ Next—>|

<debug>

<debug> is defined in the Main RXML parser module.
Sets debugging on or off. When debugging is on many
RXML tags will output more detailed error messages.

It is equivalent to giving the debug attributes to those
tags.

on
Enables debug mode.

off
Disables debug mode.

Example

with debug:

<debug on>
<append variable=foo from=bar>

<p>Without debug:

<debug off>
<append variable=foo from=bar>

Results in

with debug:
Append: from variable doesn’t exist

without debug:

<default>
<default> is defined in the Main RXML parser mod-

ule.

Makes it easier to give default values to <select> or
<checkbox> form elements.

The <default> container tag is placed around the
form element it should give a default value.

Programming Tags

This tag is especially useful in combination with data-
base tags.

value=string
The value to set.

name=string
Only affect form element with this name.

Example

<form>

<default value=2 name=number>
<select name=number>

<option value="1">0One

<option value="2">Two

<option value="3">Three
</select>

</default>

</form>

Results in

Two —||

<for> ... </
<for> is defined in the Main RXML parser module.

Makes it possible to create loops in RXML.

from
Initial value of the loop variable.

step
How much to increment the variable per loop itera-
tion. By default one.

to
How much the loop variable should be incremented
to.

variable
Name of the loop variable.

Example

<gauge>
<for variable=i from=1 to=5>
<set variable=foo from=i>
</for>

</gauge>

Results in

Time: 0.003869 seconds

37

challengerl.3 - user

<gauge>
<gauge> is defined in the Main RXML parser module.

<gauge> measures how much CPU time is takes to run
its contents through the RXML parser.

Example

<gauge>
<for variable=i from=1 to=5>
</for>
</gauge>

<gauge>
<for variable=i from=1 to=50>
</for>
</gauge>

<gauge>
<for variable=i from=1 to=500>

</for>
</gauge>

Results in
Time: 0.002087 seconds
Time: 0.016007 seconds

Time: 0.159013 seconds

<nooutput> ... </

<nooutput> is defined in the Main RXML parser mod-
ule.

The contents will not be sent through to the page.
Side effects, for example sending queries to databases,
will take effect.

Example

<set variable=foo value=Hi>
<nooutput>

<h1>Hi dude</h1>

<set variable=foo value=Bye>
</hooutput>

<p><insert variable=foo>
Results in

Bue

Programming Tags

<noparse> ... </

<noparse> is defined in the Main RXML parser mod-
ule.

The contents of this container tag won't be RXML
parsed.

Example
<use package=gtext_headers>
<h1l>HelTlo</h1l>

<hl>world</h1>

Results in

Hello
World

<pike> ... </

<pike> is defined in the Pike tag module.

Runs the content as Pike code. This tag is not always
available, since it can be a security hazard.

Example

<gtext><pike>
string a;

a = "Hello";

a += " world";
return a;
</pike></gtext>

Results in

Hello World

<random>

<random> is defined in the Main RXML parser module.
Randomly chooses a message from its contents.

separator=string
The separator used to separate the messages, by de-
fault newline.

38

challengerl.3 - user

Example

<cset preparse variable=num><random
>1

2

3

4

5</random></cset>

Your random number 1is <formoutput><number
num=#num#></formoutput>.

Results in

Your random number is Two.

<realfile>
<realfile> is defined in the Main RXML parser mod-

ule.

Prints the path to the file containing the page in the
computers file system, rather than Challenger's virtu-
al file system, or unknown if it is impossible to deter-
mine.

Example
<realfile>

Results in

unknown

<scope> ... </

<scope> is defined in the Main RXML parser module.

Creates a new scope for RXML variables. Variables
can be changed within the <scope> tag without hav-
ing any effect outside it.

extend
Copy all variables from the outer scope.

Example
<set variable=foo value="world">

<scope>
<hl>Hello <insert variable=foo></hl>
<set variable=foo value="Duck">
</scope>

<scope extend>
<hl>Hello <insert variable=foo></hl>
</scope>

Programming Tags

Results in

Hello
Hello World

<sed> ... </

<sed> is defined in the SED module module.

Emulates a subset of sed operations in RXML. (Sed is
the Unix "Stream EDitor" program which edits a
stream of text according to a set of instructions.)

append

chars

lines

prepend

split= <linesplit >

suppress

syntax :

<sed [suppress] [lines] [chars]
[split=<Tlinesplit>]

[append] [prepend]>

<e [rxml]>edit command</e>

<raw>raw, unparsed data</raw>

<rxml>data run in rxml parser before edited</
rxml>

<source variable|cookie=name [rxml]>
<destination variable|cookie=name>

</sed>

edit commands supported:

AA numeral (17) AA

or relative (+17, -17)

or a search regexp (/regexp/)

or multiple (17/regexp//regexp/+2)

- delete first Tine in space

- insert hold space

- append current space to hold space
- print current data

insert

- change current space

- delete current space

- copy current space to hold space

SN UTIONOO
I

39

challengerl.3 - user

- print string

- print current space

- print first Tine in data

- quit evaluating
s/regexp/with/x - replace
y/chars/chars/ - replace chars

aT — -

where 1line is numeral, first line==1

<strlen> ... </

<strlen> is defined in the Main RXML parser module.

Returns the length of the contents.

Example

<cset variable=num preparse>
<strlen>Roxen</strlen>
</cset>

Roxen is a <formoutput><number num=#num#></
formoutput> letter word.

Results in

Roxen is a five letter word.

<trace>

<trace> is defined in the Main RXML parser module.

Makes a trace report about how the contents are
parsed by the RXML parser.

Example

<trace>

<nooutput>

<for variable=i from=1 to=2>
<list-tags>

</form>

</nooutput>

</trace>

cancel-label =string

Programming Tags

Results in

Trace report

1. tag <tracex Main R=ML parser
1. container <nooutput> Main RxML parser
1. container <for> Main RXML parser
Tirne: 0.00041 (CPU = 0.00)

2. tag <set> Main RXML parser
Tirne: 0.00014 (CPU = 0.00)

3. tag <list—tags> Main REML parser
Tirme: 0.04507 (CPU = 0.00)

4. tag <set> Main RXML parser
Tirne: 0.00013 (CPU = 0.00)

5. tag <list—tags> Main R¥ML parser
Tirme: 0.04354 (CPU = 0.00)

Time: 011868 (CPU = 0.00)

Time: 011876 (CPU = 0.00)

<vfs>
<vfs> is defined in the Main RXML parser module.

Prints the mountpoint of the filesystem module that
handles the page, or unknown if it could not be deter-
mined. This is useful for creating pages or applica-
tions that are to be placed anywhere on a site, but for
some reason have to use absolute paths.

Example
<set variable=path eval="<vfs>">

<formoutput>

<a href="#path#/challengerl.2/user/
programming/vfs.html'>

Link to this page.
</formoutput>

(]
<wizard> ... </
<wizard> is defined in the Wizard generator module.
The <wizard> tag generates wizard-like user interfac-
es, where the user is guided through several pages of

controls. It is very useful for making web applications
in RXML.

The <wizard> tag must contain at least one <page>
page container tag. The <page> tag can in turn con-
tain <var> tags or <cvars container tags.

cancel=URL
The URL to go to when the cancel button is pressed.

The text on the cancel button.

40

challengerl.3 - user Programming Tags

done=URL Results in
The URL to go to when the done button is pressed.
. Sample wizard Page 1/2
name=string
The title of the wizard.
Message
next-label=string Hello World

The text on the next button.

ok-label=string
The text on the ok button.
page-label=text |1b1 ack
The text Page in the upper right corner.
K

previous-label =text
The text on the previous button.

‘ Cancel | ‘ Mext —>

Attributes for <var> and <cvar>

cols=number
Sets the number of columns.

default=value
The default value.

name=name
The name of the variable.

options=optionl,option,...
Available for select or select_multiple variables.

rows =number
Sets the number of rows.

size=number
Sets the size or the input form.

type=string password list text radio checkbox int
float color color-small font toggle select
select_multiple

The variable type.

Example

<wizard cancel="wizard.html" ok-Tabel="Done"
done="wizard.html" name="Sample wizard">

<page>
Message

<var name=message size=30
value="Hello world">

<p><var name=color type=color-small>
</page>

<page>
<formoutput>

<gtext fg=#color#>#message#</gtext>
</formoutput>

</page>

</wizard>

11

challengerl.3 - user

SUPPORTS SYSTEM

The supports system makes it possible to use features
that are only supported by a few browsers and still be
compatible with all browsers. This is done through a
database of capablities supported by the different
browsers. The <i f> is then used on the pages to make
versions that use different browser capabilities.

Pages are not customized for a certain browser, but
rather for browsers that support different features.
When a new browser is released, all that is necessary
is to determine what features it supports. Once that
has been done, and the database updated, all pages us-
ing the support system will work with it.

Some features might work to a lesser degree on some
browsers. Old versions of the Macintosh version of
Netscape supports JavaScripts, but some JavaScripts
make the Netscape browser hang. If you have such
JavaScripts, you would probably want the support
system to make sure they are not sent to that version
of Netscape. On the other hand, if you have less com-
plicated JavaScripts you will probably want to send
them.

To make the supports system work for you, you
might need to tweak it yourself. This can be done by
the Challenger administrator by changing the Global
Variables/Client supports regexps variable (you will
have to choose more options to see it).

Since new browsers get released all the time, updated
versions of the supports database are by default
fetched regularly from www.roxen.com.

Features
List of the available features:
backgrounds

The browser supports backgrounds according to the
HTMLS3 specifications.

bigsmall
The browser supports the <big> and <smal1> tags.

center
The browser supports the <centers> tag.

cookies

The browser can receive cookies.
divisions

The browser supports <div align=...>.

Supports System

font
The browser supports <font size=nums.

fontcolor
The browser can change color of individual charac-
ters.

fonttype
The browser can set the font.

forms
Thr broswer supports forms according to the HTML
2.0 and 3.0 specifications.

frames

The browser supports frames.

gifinline

The browser can show GIF images inlined.
imagealign

The browser supports align=Ileft and align=right in
images.

images

The browser can display images.

java

The browser supports Java applets.
javascript

The browser supports Java Scripts.
jpeginline

The browser can show JPEG images inlined.

mailto
The browser supports mailto URLs.

math
The <math> tag is correctly displayed by the browser.

perl
The browser supports Perl applets.

pjpeginline

The browser can handle progressive JPEG images,
.pjpeg, inline.

pnginline

The browser can hangle PNG images inlined.

pull
The browser handles Client Pull.

push
The browser handles Server Push.

42

challengerl.3 - user

python
The browser supports Python applets.

robot
The request really comes from a search robot, not an
actual browser.

stylesheets
The browser supports stylesheets.

supsub
The browser handles <sup> and <sub> tags correctly.

tables

The browser handles tables according to the
HTML3.0 specification.

tel
The browser supports TCL applets.

vrml
The browser supports VRML.

File Syntax

By default, the supports database is located in the file
server/etc/supports which is updated automatical-
ly from www.roxen.com.

The server/etc/supports file should not be edited
directly, since that might interfere with the automatic
updates. If you need to tweak the supports database it
is better to create your own local supports file, and
change the Global Variables/Client supports regexps
variable (you will have to choose more options to see
this variable).

The syntax used is:

patternfeature, -feature,

If the regular expression pattern matches the name of
the client, all features will be added to the list of fea-
tures handled by the client. If '-' is prefixed to the
name of the feature, it will be removed instead.

\ can be used to escape newlines.

If a line starts with '#, it is skipped, unless it is:
#include <path>

which means include the contents of that file here
#define fromto

which means replace all occurrances of the word
from with to

or

Supports System

#section pattern {

#}

which is used to speed up parsing. If the name of the
client matches pattern it will go through the section.

If the pattern doesn't match the entire section will be
skipped.

43

challengerl.3 - user

SSi

SSI, Server Side Includes, are similar to RXML tags
and have the advantage of being a standard supported
by many web servers. It is thus possible to write pages
using SSI that are portable to other web servers.

The downside is that SSI is in no way as flexible or
powerful as RXML. The tags are placed within
HTML comments, which makes it impossible to com-
bine different SSI tags. However, it is possible to com-
bine SSI tags with regular RXML tags.

Challenger does not implement all the SSI functional-
ity that Apache supports.

<!--#config-->
<!--#config--> is defined in the Main RXML parser
module.

The config command is used to configure how things
should be printed.

errmsg=string
Where msg is a message that is sent back to the client
if an error occurs while parsing the document.

sizefmt=bytes abbrev

The value sets the format to be used when displaying
the size of a file. Bytes gives a count in bytes while ab-
brev gives a count in Kb or Mb, as appropriate.

timefmt=value
The value is a string to be used when printing dates.

<!--#echo-->
<!--#echo--> is defined in the Main RXML parser
module.

Prints a variable from the server or request.

var=sizefmt document name path translated docu-
ment uri date local date gmt query string unescaped
last modified server software server name gateway in-
terface server protocol server port request method re-
mote host remote addr auth type remote user http
cookie cookie http accept http user agent http referer
The variable to print.

ssl

Example

we're using
<gtext><!--#echo var="server software"--></
gtext>

Results in

we're using

Roxen Challenger/1.3.11

<!--#exec-->

<!--#exec--> is defined in the Main RXML parser
module.

Executes a CGI script or shell command. This com-
mand has security implications and therefore, might
not be available on all web sites.

cgi=URL

Path to the CGI script URL encoded. That is, a char-
acter can be quoted by % followed by its hex value.
The CGI script is given the PATH_INFO and
QUERY_STRING of the original request from the cli-
ent. The variables available in <!--#echo> will be
available to the script in addition to the standard CGI
environment. If the script returns a Location header,
then this will be translated into an HTML anchor.

cmd=path

The server will execute the command using /bin/sh.
The variables available in <! --#echo> will be avail-
able to the script.

<!--#flastmod-->

<!--#flastmod--> is defined in the Main RXML pars-
er module.

Prints the last modification date of the specified file.

file=path
Path to the file.

virtual=URL
Path to the file URL encoded. That is, a character can
be quoted by % followed by its hex value.

44

challengerl.3 - user

<!--#fsize-->
<!--#fsize--> is defined in the Main RXML parser
module.

Prints the size of the specified file, subject to the
sizefmt format specification.

file=path
Path to the file.

virtual=URL
Path to the file URL encoded. That is, a character can
be quoted by % followed by its hex value.

<!--#include-->
<!--#include--> is defined in the Main RXML parser
module.

Insert a text from another file into the page.

file=path

The file as a path relative to the directory containing
the current page. It cannot contain . ./, nor can it be
an absolute path.

virtual=URL

The path to the file URL encoded. That is, a character
can be quoted by % followed by its hex value. The
path may contain . ./ and may be absolute, ie starting
with a /

ssl

45

challengerl.3 - user

HTACCESS

htaccess is a system for handling access control to
your pages. It works by placing an .htaccess file in a
directory, which contains the access control lists for
that directory. It is possible to get fine grained securi-
ty and to configure exactly who can view which pag-
es. The .htaccess support module must be enabled for
htaccess to work.

It is possible to distinguish users either by the IP ad-
dress or domain name of their computer or by letting
them authentificate with a user name and password.
The user name and password is by default compared
via an Authentification module. That usually means

that users are authentificated by the operating systems
authentification system.

If you want to have password protected pages usable
by users that are not handled by the current Authen-
tification module you can create your own database
of users by creating .htpasswd and .htgroup files.

htaccess is a standard supported by many web servers.
The access control you have built with htaccess
should therefore be portable to other web servers.

.Jhtaccess

A .htaccess file consists of lines containing direc-
tives. Apart from the Limit; directive, all directives
have the form

directiveargument(s)

where argument(s) is one or more arguments. The di-
rectives supported are:

AuthUserFile
Use this user and password file to authentificate users.
Typically, the AuthUserFile is called .htpasswd

AuthGroupFile

Use this group file, which contains a database of
which groups users are member of. Typically, the Au-
thGroupFile is called .htgroup, if used.

AuthName

Set the authentication realm, which can be any name
you choose. The name will be used to tell browsers
how to label user authentications within a session, so
that the browsers can automatically repeat passwords
the user has already entered when accessing new pag-
es with the same access requirements.

htaccess

Redirect
Redirect all accesses for pages in the directory to this

URL.

ErrorFile

Show this page in case the requested page could not
be found, maybe because the user did not have per-
mission to view it.

Then there is the <Limit> container tag. The at-
tributes are the HTTP method(s) that access should
be limited to, GET, PUT, POST or HEAD. The con-
tents of the tag are access control directives, one di-
rective on each line. Possible directives are:

allow from address

deny from address

Allow or deny access to users from a DNS domain or
IP number. www. roxen. com means the computer while
.roxen. com means all computers on the domain rox-
en.com. The same way 194.52.202. 3 means the com-
puter while 194.52. means the net starting with

194.52

require user user(s)
require group group(s)
Allow access only for the named user(s) or group(s).

require valid-user
Allow access to any user present in the AuthUserFile
or Authentification module.

satisfy all

satisfy any

Decide what happens if both require and allow rules
are present; all indicates that the user must satisfy
both kinds of requirements, while any means that it is
enough that the user satisfies either kind.

order deny,allow

order allow,deny

order mutual-failure

The order rules decides how to prioritize deny and al-
low rules. If the order is set to deny,allow, deny rules
will be processed before allow rules. With allow,de-
ny, allows will be processed before denies, and with
mutual-failure, hosts allowed by any allow rule will
be allowed, and other hosts denied. Deny,allow is the
default.

The rule evaluation does not stop until all rules have
been processed, so the earlier a rule is processed, the
lower priority is has in determining access. This only
matters when different rules contradict each other,

46

challengerl.3 - user

for instance when a wide-ranging deny rule forbids
access to a certain domain, and an allow grants access
to a smaller part of the domain.

Example
A typical .htaccess file would look something like
this:
AuthUserFile /home/frotz/.htpasswd
AuthGroupFile /home/frotz/.htgroup

AuthName MyTestDomain
AuthType Basic

<Limit PUT HOST HEAD>
require user frotz
</Limit>

<Limit GET>

allow from all

</Limit>
The .htaccess file above would allow everyone to
GET documents in the directory, but all other kinds
of access would be restricted to the user frotz, and ex-
pect this user to login with the password listed for
that user in the . htpasswd file in the user frotz's home
directory.

.htpasswd

The format of the password file is straightforward,
one line per user, with the line containing the user
name, followed by a colon, followed by the user's
password encrypted with the standard Unix password
encryption. The <crypt> tag can be used to encrypt
such a password.

In other words, an .htpasswd can look like this:

frotz:taewr6tbTzKo6
gnusto: jJKXVNZH6eXR7

with one line for each user.

.htgroup

The format of the group file is straightforward, one
line per group, with the line containing the group
name, followed by a colon, followed by the users in
the group. Users are separated by commas.

In other words, an .htgroup file can look like this:

all:frotz,gnusto
admins:frotz

with one line per group.

htaccess

47

