

Current State of Technology: Theory vs. Practice*

- Small islands of theoretical results, separated by an ocean of unknowns
- Industry is mired in many separate swamps of proprietary technology separated by tall opaque walls topped by barbed-wire fences of IPR issues
- Occasional forays to acquire research results and drag them behind the walls
- A few rays of hope:
 - Aegis Open Architecture (OA)
 - Weapon Systems Open Architecture (WSOA)

(*)The opinions expressed herein are attributable only to one or more of the authors.

s/tdc

development corporation

THE Open GROUP

Goals of Position Paper and Presentation

- Explain the problem of testing
 - Describe testing physics of an example problem
 - Propose some relevant research problems
- Convey information about requirements for a shipboard weapons system infrastructure
 - Describe an accessible, real-world problem
 - Discuss the desired, long-term solution
 - Describe a possible short-term solution (paper)
- Indirect goals
 - Initiate discussion of difficulties of deploying real-time, dependable applications
 - Foster creation of knowledge, technology and tools to ensure success of future systems

s/tdc	system/lechnology
	development corporation

THE Open GROUP

DMW 020626

DEMO 99 FUNCTIONAL BLOCK DIAGRAM

(From NSWC HiPer-D Project)

SCALABLE PERFORMANCE

(Content from NSWC HiPer-D Project)

System Goals for Shipboard Weapons Systems

Functional goals

- Achieve mission goals
- Scale system performance per requirements
- Dynamically adapt system configuration
 - Maximize mission-specific application-level metrics, such as number of tracks processed
- Maintain Auto-Special Response capability
- Use COTS-based computing infrastructure
- Assurance goals (trustworthiness)
 - Satisfy initial functional goals
 - Satisfy evolving, life-cycle functional goals
 - Achieve certification
 - Convince a third-party (U.S. Navy) that system will satisfy functional requirements

s/tdc systemstechnology development corporation

THE Open GROUP

Some Physics within System Assurance

□ Some systems must be trustworthy

- Trustworthiness is associated with particular QoS parameters such as dependability and timeliness
- "Safety-critical" implies high values for certain application-specific QoS parameters
- Trustworthiness is an emergent property of a component and its dependencies
 - Hardware
 - Software
 - Environmental
- Trustworthiness usually derives from
 - Proof chains, and/or
 - Testing

s/tdc system/technology development corporation

THE Open GROUP

DMW 020626

More Physics within System Assurance

- Testing is part of the scientific process of verifying a hypothesis
- Characterization is not testing
- Testing a particular system configuration can only validate that particular configuration
 - although one can separately assert (and test) theories about "modes" of operation

Thus:

Reducing testing while maintaining assurance is almost always good and is usually very, very cost effective in the real world

s/tdc system/technology development corporation

THE Open GROUP

DMW 020626

The Long Term Vision

- Desire to reason about system behavior to:
 - verify correct operation of current configuration
 - predict future performance changes resulting from resource or load configuration changes
 - convey assurance about a trustworthy system
 - minimize system management by humans
 - effectively accommodate evolving mission requirements, hardware trends, and software upgrades
- Based on dynamic, run-time system models
 - Models used to predict future system behavior

s/tdc

THE Open GROUP

The Long Term Vision (cont'd)

- (Re-)use common manageability mechanisms
 - Information models, such as DMTF's CIM
 - Repositories, such as The Open Group's Pegasus CIM Object Manager (CIMOM)
 - Extensible instrumentation and control frameworks, such as are in S/TDC's QoS Metrics Services (QMS)
- (Re)-use common resource management mechanisms via application-specific policies components based on common, wellunderstood strategies, such as
 - Control theoretic
 - Boyd Cycle (OODA)

s/tdc	system/echnology	THE
	development corporation	

A Functional Architecture for Layered Resource Management

Open GROUP

Dependability Issues

- "Normal" dependability fault sources
 - Computer hardware failure
 - Network component failure
 - Software component failures
 - Environmental insults
- Real-time application-derived sources
 - Timing faults
- □ Battle damage sources
 - Loss of hull compartment
 - Lose all components in compartment
 - EMF attacks
 - Lose many components simultaneously

s/tdc	system/lechnology
	development corporation

THE Open GROUP

DMW 020626

Complications

- Applications are inter-dependent
 - For example, Auto-Special path depends on sensor DSP, track manager, gyro position
- Use of shared resources
 - Comm links between hull compartments are limited to reduce damage impact (a la firewalls)
- Use of multiple FT strategies
 - FT strategies hidden within reused components
 - Different strategies for different fault sources
- Huge number of potential configurations
- Dynamically updated hardware and software

s/tdc system/technology development corporation

THE *Open* group

Implications on Design

- Traditional real-time determinism is not likely to be a characteristic of eventual system
 - Systems too complex
 - Conflicts with goal of component reuse
 - Exception: safety-critical subcomponents
 - Predictability is likely to be crux
- System must characterize itself automatically
 - Perhaps continual self-characterization of interesting configurations during "slack" periods
 - Adapability must be considered normal operating behavior, not just a reaction to abnormal environmental insults

s/tdc	system/technology
	development corporation

THE Open GROUP

DMW 020626

Potential Dependability Research Areas

- Investigate interaction of multiple managed QoS parameters with current strategies
- Consider that multiple FT algorithms might have to operate concurrently
- Investigate application-level QoS parameters
- Identify stable, robust operating regions of common fault-tolerance strategies
- Investigate non-linear application behavior

			systemile
e /	10	~	
-	L L	•••	

development corporation

THE Open GROUP

More Potential Research Areas

- Investigate interaction between multiple FT strategies on an execution path, e.g., transducers.
- Develop methods for dealing with partially specified information, including probability information, e.g. Kalman filters
- Extend causal ordering concepts to resolve race conditions, a la Karnaugh maps
- Industry and research community can work together to ascertain realistic values of FT strategy QoS parameters

s/tdc systemstechnology development corporation

THE Open GROUP

DMW 020626

Conclusions

- Improved capability to reason about system performance would increase system assurance for some real-time systems
 There is a wide gap between surrent research
- There is a wide gap between current research and industry needs—but it can be bridged
- An open shipboard weapons system would provide a rich problem space for research investigations into real-time, fault-tolerant mission-critical applications
- Exhaustive testing is not THE answer, although it will be a part of the answer

s/tdc	system/technology
	development corporation

THE Open GROUP

s/tdc system/technology development corporation

THE Open GROUP