
1

dmw — 5-6 Aug ‘01— 1 —

Fault Management Based
on Quality of Service Criteria

First TAO Conference
6 August 2001

Douglas Wells
The Open Group

d.wells@opengroup.org

dmw — 5-6 Aug ‘01— 2 —

Overview

q Premise
There are many analysis techniques
available from dependability and
system critical disciplines that can be
usefully extended for use in QoS-
based, real-time distributed systems

q Outline
§Description of the problem space
§FFD— an initial experiment
§Relationship to CORBA/TAO
§Extrapolation to a research problem

2

dmw — 5-6 Aug ‘01— 3 —

Distributed, Real-Time Systems

q Real-time— timeliness is part of correctness
§Requires expression of time constraints

q Reason for missing a “deadline” is irrelevant
§Resources overloaded
§Algorithmic overrun
§Component failure

q Design must consider failure of components
q Special real-time computer discipline
§The tighter the time constraints, the more

stringent the design and coding restrictions
q QoS techniques regularly being applied here

dmw — 5-6 Aug ‘01— 4 —

Fault Management

q Concept includes (at least)
§Failure detection
§Failure isolation
§Failure reporting
§Failure recovery/masking
§Including common use of term “fault tolerance”

§Fault prediction
q SEI/IFIP WG10.4 taxonomy/definitions
§Fault: adjudged or hypothetical cause of error
§Failure: behavior different than was intended

3

dmw — 5-6 Aug ‘01— 5 —

HiPer-D: An Example Context

q High-Performance Distributed (HiPer-D)
Project (at NSWC in Dahlgen, VA) is applying
COTS-based, distributed computing
techniques to ship-board weapons systems

q AAW (ship self-defense) is “hard” real-time
§Mandated timing requirements
§Mandated failure recovery requirements
§Program objective for capacity scalability

q Use of group communications in design

dmw — 5-6 Aug ‘01— 6 —

4

dmw — 5-6 Aug ‘01— 7 —

Group Communications

q Reliable multicast technique based on atomic
multicast— each message is reliably delivered
to either (exclusive or)
§— all designated recipients
§— no recipients

q Popularized by Ken Birman at Cornell U.
§Initial research/product was Isis
§Current implementation is Ensemble

dmw — 5-6 Aug ‘01— 8 —

(Simplified) Overview of Group
Communication Operation

q Start with known set of group members
q Message is sent (multicast) to agent on host

node of each recipient
q Receipt acknowledgements are exchanged
q When all nodes have acknowledged, release

message to each application group member
q Otherwise— after a time-out event occurs
§Reform group by ejecting tardy members
§Restart message delivery process with new

group membership set

5

dmw — 5-6 Aug ‘01— 9 —

Observations

q Use of time-out is derived from requirement
that timeliness is more important than tardy
operation at full capacity

q Time-out event transforms timing fault into an
(apparent) component failure

q Individual message delivery time-outs
typically must operate an order of magnitude
faster than overall system time constraint

q Example
§End-to-end 1 second deadline might require

0.1 second time-out at each stage of group
communications

dmw — 5-6 Aug ‘01— 10 —

Node 1 Node 2 Node 3 Node 4

Potential Group
Communication
Interfaces

6

dmw — 5-6 Aug ‘01— 11 —

Problems in Utilizing Real-Time
Group Communications

q Time constraints in RT systems must be met
even in extreme conditions, not just in speed-
of-light micro-benchmarks

q Group communication time-out periods are
often of same order of magnitude as
scheduling jitter in non-RT OS’s

q False positives (tardy nodes declared dead),
while handled correctly, are expensive
§Node is forced “down,” then allowed to rejoin
§Requires reacquisition of application state

q COTS components (Isis, Ensemble) not
designed using real-time techniques

dmw — 5-6 Aug ‘01— 12 —

More Problems in Real-Time
Group Communications

q Different interfaces have different timing
constraints. A node may be declared down in
one context, but must remain “up” in another.
§Notional interface time-out periods
§HiPer-D AAW path: 0.5 second
§Instrumentation: 3 seconds
§Resource Management 10 seconds

§Timing constraints (and time-outs) are usually
associated with an interface to an external
component— not an entire application
§Note: this problem is not limited to group

communication interfacess

7

dmw — 5-6 Aug ‘01— 13 —

Fast Failure Detector (FFD)
Objectives

q General Goal of FFD:
§Provide faster, more reliable detection of host

node failure than other components
q Specific Goal of FFD Integration Effort:
§Detect and report host failure within 250 msec
§This should allow an application to recover

from a host node failure within 1 second, even
with a substantial state reacquisition cost

dmw — 5-6 Aug ‘01— 14 —

FFD Design Considerations (i)

q FFD (and Ensemble) utilize heartbeat (watch-
dog/dead-man timer) pattern
§Generation and monitoring of heartbeat

messages (via time-outs) is a common
method of detecting node crash failures
§Reducing timeouts on missing heartbeat

messages allows faster identification of failed
nodes and thus supports shorter deadlines
§Heavy loads cause queuing delays (jitter),

which cause heartbeat messages to be tardy,
which cause time-outs, which cause nodes to
be erroneously declared down, which cause
expensive, unnecessary reconfigurations

8

dmw — 5-6 Aug ‘01— 15 —

FFD Design Considerations (ii)

q Assertions on Host Failure Detection
§Providing dedicated resources for heartbeat

generation and monitoring functions can
reduce jitter, thus allowing use of shorter
timeouts, thus improving real-time properties
§Dedicated resources can best be provided in a

separate host failure detector component that
has been specifically designed to support real-
time properties

dmw — 5-6 Aug ‘01— 16 —

Group Membership Protocol Stack

Panning

IP

Membership
Protocol

Heartbeat Sequencer

Census
Taker

API

Original
Stack

Failure
Detector

RM

Heartbeat

Census
Taker

Fast
Failure

Detector

Linux/RK

9

dmw — 5-6 Aug ‘01— 17 —

FFD Message Latency (Jitter)
Characterization

Message Jitter (seconds)

dmw — 5-6 Aug ‘01— 18 —

Note on Resource Consumption

q Test-bed: 5 nodes, 10 Mbps Ethernet® LAN
q FFD parameters
§Time-out period: 0.5 second
§Replication factor: 5 (i.e., 100 msec heartbeat)

q FFD uses <1% of 100 Hz, 32 MB PC
§Note: value is imprecise due to use of pseudo-

Monte Carlo measuring technique in UNIX®

and Linux®

q FFD uses <5% of network bandwidth
§Note: value is minimum value reported on hub

10

dmw — 5-6 Aug ‘01— 19 —

Some Simplifying Assumptions
for First-Order Fault Analysis

q A component failure is due to either internal
fault, environmental fault, or failure in other
(“depends upon”) component

q Internal component failure rate is proportional
to number of errors (bugs) in it

q HW component bug count is proportional to
transistor count

q SW component bug count is proportional to
lines of code (LoC)

dmw — 5-6 Aug ‘01— 20 —

(Simplified) Fault Dependency Graph
of Node Failure Detection Function

Network HW
(Comm links)

Ensemble

Network
Stack

OS/Run-time

FFD

Application

Node HW

Platform

(1 MLoC+)

Caution: LoC
estimates are notional!

(1 KLoC)

(20 KLoC)

(100 KLoC)

11

dmw — 5-6 Aug ‘01— 21 —

First-Order Fault Analysis

q Examine projected failure rates of fielded
components based on bug rates (br)

q Example failure rates (fr) w/o FFD
§fr(Ensemble) ≈ br(20K) + fr(platform) + fr(net)
§fr(application) ≈ br(1M) + fr(Ensemble)

q Example failure rates w/ FFD
§fr(FFD) ≈ br(2K) + fr(platform)+fr(net HW)
§fr(Ensemble´) ≈ fr(Ensemble) + fr(FFD)

q Therefore
§FFD should be more reliable than Ensemble

or application

dmw — 5-6 Aug ‘01— 22 —

Failure Detection Types and
Failure Correlation

q True negative: normal operation
q True positive: correctly detected failure
q False positive: erroneously asserted failure
§Will wastefully perform system reconfiguration

q False negative: overlooked a failure condition
§Unable to mask failure
§May lead to overall system failure

q False positives can be tolerated as long as
there aren’t “too many” of them

q False negatives can potentially lead directly
to system failure

12

dmw — 5-6 Aug ‘01— 23 —

Reexamination of False Negatives

q Multiple failures leading to false negatives in
FFD are likely to be either highly correlated or
highly non-correlated, not in between

q Highly non-correlated case (ordinary failures):
§Timing constraint violation is likely to be “made

up” by other portions of application chain
§Result: no system failure

q Highly correlated case (e.g., battle damage):
§All failures are likely to occur simultaneously
§Failure recoveries will occur simultaneously
§Result: similar to highly non-correlated case

dmw — 5-6 Aug ‘01— 24 —

Relationship to CORBA/TAO

q Why objects?
§Objects are likely to exist at edges of failure

domains, but are not likely to straddle them
§Objects contain complex, interrelated state
§Objects can utilize thin-wire communication

q Why CORBA?
§CORBA objects have names (e.g., IOR); so,

the dependency structure can be modelled
§CORBA specifications are open and available
§Several CORBA specifications are relevant

q Why TAO?
§TAO is open and available

13

dmw — 5-6 Aug ‘01— 25 —

Extrapolation to a Research
Program

q There must be some method to this madness
q More data are available than can be analyzed

with existing techniques
q Need to extend QoS throughput techniques

to fault management
§Identify metrics that can be correlated
§For example, reliability and availability

§Develop FM resource management policies
§Identify and develop more, reusable,

adaptable components, similar to FFD
§Develop and adapt techniques for failure

correlation patterns in “ordinary” applications

