
1

SYNTHESIZABLE SYNCHRONOUS-DRAM CONTROLLER

CORE

Jeung Joon Lee
www.OpenCores.org

1.0 SYSTEM FEATURES

• Core supports 100MHz operation, PC100 compliant
• Flexible byte, word (16bit) and long word (32bit) accessing

through the use of mp_size[1:0]
• Interfaces readily, without further modifications, to 2M x 32

SDRAMs such as:
 Samsung KM432S2030CT
 Fujitsu MB81F643242B
 and other compatibles.

• Flexible refresh-cycle generation, including “burst” refresh and
normal refresh, and everything in between.

• The core performs the SDRAM initialization sequence
transparently to the host, including Mode Register programming.

• During normal operation, the Mode Register can be updated by
the host through the use of sdram_mode_set_l

• Built-in comprehensive synthesizable SDRAM tester.

 2.0 GENERAL OVERVIEW

 The synthesizable Synchronous DRAM controller IP is a complete
design solution which allows virtually any type of microprocessor,
microcontroller and DSP to interface to large capacity SDRAMs
effortlessly.

 All of the low-level SDRAM functions such as address demultiplexing,
refresh generation and busy generation are handled by the IP
transparently to the host. The non-trivial initialization sequence
required by most SDRAMs is also performed transparently to the host
upon powerup or system reset.

 As with most DRAM controllers, this SDRAM controller provides to
the host an SRAM-like bus interface. Figure 1 illustrates the typical
connection block diagram. By embedding the SDRAM controller IP
along with processor cores, a highly integrated System-on-Chip
(SoC) designs are possible.

 The host’s write and read bus operation is completely asynchronous
in relation to the SDRAM controller, much like the access to a SRAM.
The SDRAM controller generates a busy output which the host can
use as handshake control. This avoids the need of fixed wait states.

 If a write or read request is made by the host while the SDRAM is
being accessed, the host is placed in busy state until the pending
access is completed. Similarly, if a request is made while a refresh
operation is in progress, the host is busied until its completion.

 Essentially, a write to the SDRAM controller represents a write to the
SDRAM, while the read from the SDRAM controller represents a read
from the SDRAM.

 To write, the host drives the bus with a typical SRAM-like write
operation. The SDRAM controller then generates the appropriate
signals to transfer the host’s data to the specified address of the
SDRAM.

 Figure 2 illustrates a typical host write to the SDRAM controller.
Although a negative edge triggered host is illustrated, identical
sequence of events would occur for a positive edge triggered host.

 The handshaking for a typical write is as follows:

 clock 1:
 The host asserts -CS along with valid address,
and size.

 clock 2:
 The host asserts -WR along with valid data

 clock 3:
 The host samples “busy” as low, and holds
(extends) the bus

 clock 4:
 The host samples “busy” as high, so prepares to
terminate the bus

 clock 5:
 The host deasserts -WR

 clock 6:
 The host deasserts -CS and terminates the bus
cycle

Note that it is not necessary to have -CS and -WR be asserted and
deasserted with any amount of delay. That is, Ta and Tb in figure 2
can be 0. However, Tah must be non-zero.

 Similarly, to read, the host drives the bus with a typical read operation.
The SDRAM controller keeps the host in busy state until data is
retrieved from the SDRAM and made available to the host.

SDRAM
2M x 32

HOST CORE
(Microprocessor,
Microcontroller,

DSP,
etc)

SDRAM
Controller

Core

SD_DATA[31:0]

sd_addx[10:0]

 addx[22:0]

-READY

-WR

-RD

-CS

clk

a[10:0]

SD_BA[1:0]

SD_DMQ[3:0]

sd_cs_l

sd_we_l

sd_cas_l

sd_ras_l

BA[1:0]

DATA[31:0]

DQM[3:0]

~CS

~WE

~CAS

~RAS

CLK CLKE

VCC

size[1:0]

MODE_SET_L

data_in[31:0]

data_out[31:0]

FPGA / CPLD

Figure 1 Typical interface block diagram

stable address

stable data

host_clock

host_cs_l

host_wr_l

host_addx

host_data

sdram_busy_l

Ths Thh

Ta Tb

Tds

1 2 3 4 5 6

Ta
Tb
Tds
Ths
Thh

-WR to -CS setup time. Can be zero
-WR to -CS hold time. Can be zero
-WR to valid data setup time
hold setup time
hold hold time

Tah

Tah -WR to address hold time MUST be Non-zero

Figure 2 This timing diagram illustrates the interaction of the host and SDRAM
controller during a write cycle. This plot shows a negative edge triggered host,

but the sequence is identical for a positive edge triggered host.

2

 Figure 3 illustrates a typical host read from the SDRAM controller.
Although a negative edge triggered host is illustrated, identical
sequence of events would occur for a positive edge triggered host.

 The handshaking for a typical read is as follows::

 clock 1:
 The host asserts -CS, along with valid address

 clock 2:
 The host asserts -RD

 clock 3:
 The host samples “busy” as low, and holds
(extends) the bus

 clock 4:
 The host samples “busy” as high and prepares
the terminate the bus. The host can read the
data at this cycle.

 clock 5:
• The host deasserts -RD, and reads the

data if it has not at previous cycle.
• The SDRAM controller acknowledges the

deassertion of -RD by releasing the data
bus.

 clock 6:
 The host deasserts -CS and terminates the bus
cycle

As with writes, it is not necessary to have -CS and -WR be
asserted and deasserted with any amount of delay. That is, Ta and
Tb in figure 3 can be 0. However, Tah must be non-zero.

Figure 3 also shows two data buses. The top bus illustrates the case
when the data bus is bi-directional. The bottom bus is the case when
the bus is unidirectional. The bi-directional data bus is expected
when the SDRAM core is to be part of a external data bus. The
unidirectional data bus is expected when the SDRAM controller is to
be embedded along with other cores in a SoC type of design. Note
that most FPGA/CPLD do not support internal tri-state buses, and
thus bi-directional buses needs to be converted into unidirectional
buses.

 2.1 IP Signal Conventions

 The signaling conventions used in the core are detailed below:

• Any active low signal is appended with “_l”. For example, the

active low system reset is denoted as sys_rst_l
• Any signals connecting to the host is preceded with “mp_”. For

example, the data bus connecting the controller to the host is
denoted as mp_data[15:0].

• Any signals connecting to the SDRAM is preceded with “sd_”.
For example, the data bus connecting the controller to the
SDRAM is denoted as sd_data[15:0].

2.2 IP Pinout

The pinout for the default IP (target the typical 2Mx32 SDRAM)
consists of 2 system signals, 42 host side signals and 36 SDRAM
side signals. The tables below describes the functions of the pins.

System Level
Signals

Directi
on

Description

sys_rst_l input System level active low reset. Brings all
state machines into the intial state. The
reset is asynchronous.

Sys_clk input This is the main clock used to clock the
state machine. An optional clock divider
can be used internally.

Host Side Signals Directi
on

Description

mp_data[31:0] bidi Bidirectional data bus connected to the
host (micro, DSP, etc).

mp_addx[22:0] input Linear address bus connected to the
host. Upto 8Mbytes can be addressed
with the default core.

mp_cs_l input Active low chip-select input from the host.
This signal must go low on all reads or
writes meant to the SDRAM. This is an
asynchronous signal.

mp_rd_l input Active low signal which the host uses to
indicate to the controller that the current
bus transaction is a read from the
SDRAM. This is an asynchronous signal.

mp_wr_l input Active low signal which the host uses to
indicates to the controller that the current
bus transaction is a write to the SDRAM

sdram_busy_l output This signal is used as a bus handshake
control. After the host asserts -WR or -
RD, it needs to sample this signal.
Whenever it is low, the host needs to
place the bus in a holds state, until it
becomes high. If the bus cycle was a
read, the host can read the data bus
when the sdram_busy_l ha been
sampled high.

sdram_mode_set input A write to the controller with this signal
low will update the SDRAM’s mode
register.

mp_size[1:0] input Specifies the size of the data bus.
00 = 32 bit
01 = 8 bit
10 = 16 bit

SDRAM Side
Signals

Directi
on

Description

sd_data[31:0] bidi This is the bidirectional data bus
conneting the controller and the SDRAM.

sd_addx[10:0] output This is the multiplexed address bus
connected to the SDRAM.

stable address

host_clock

host_cs_l

host_rd_l

host_addx

sdram_busy_l

Ths Thh

Ta Tb

Tds

1 2 3 4 5 6

Ta
Tb
Tds

Ths
Thh

-RD to -CS setup time. Can be zero
-RD to -CS hold time. Can be zero
-RD to valid data setup time

hold setup time
hold hold time

valid data
host_data*

valid data
Tdh

Tdh -RD to valid data hold time

* see text

host can
read data
here

Tah

Tah -RD to addx hold time. Must not be zero

Figure 3 This plot illustrates a typical read bus event from the SDRAM
controller

3

sd_wr_l output This is the active low write signal.
sd_cs_l output This is the active low SDRAM chip select

signal.
sd_ras_l output This is the active low row address select

signal.
sd_cas_l output This is the active low colum address

select signal.
sd_dqm[3:0] output This is the active high byte mask signal.

When high, no data can be read to
written to the SDRAM byte.

sd_ba[1:0] output This is the bank select. It is also known
as ADDX[13:12].

sd_clk output This is the clock driving the SDRAM.

2.3 SDRAM Controller IP Files

The SDRAM controller IP is composed of the following files:

SDRAM.V
HOSTCONT.V
SDRAMCNT.V
MICRO.V
INC.H
TST_INC.H

SDRAM.V is the top hierarchy module. It serves as a wrapper and
instantiates the lower sub modules, HOSTCONT.V , SDRAMCNT.V
and MICRO.V. Additionally, as an option, it contains a system clock
divider.

SDRAMCNT.V is the main state machine which generates all of the
control signals to the SDRAM. It also generates signals to control the
HOSTCONT.V module. This module is responsible for essentially
governing the SDRAM.

HOSTCNT.V contains the logic in the datapath connecting the host
bus and the SDRAM bus. Most of the datapath logic receives the
control signals from SDRAMCNT.V

MICRO.V is the optionally synthesizable tester. It essentially acts as
a host to the SDRAM controller core. Based on the selected test, it
will instruct the SDRAM controller to do a series of repeating
write/read tests to the SDRAM.

INC.H contains a set of globals which determine the interval of
refresh and the number of refreshes per interval. The user specifies
the SDRAM clock speed in this file. The synthesizable test core also
gets to be enabled here. Finally, the state machine’s in
SDRAMCNT.V is defined here.

TST_INC.H defines the type of test to perform when the test core is
enabled.

2.4 Built-In Synthesizable SDRAM Tester

The SDRAM IP contains a set of synthesizable test cores which can
aid the testing and development of embedded SDRAM controllers
greatly. The test core is useful primarily on FPGA/CPLD platforms.

The test cores emulates a typical microprocesors’ write and read bus
cycles. When enabled, the tester becomes a host to the SDRAM
controller. The tester/controller pair can then be used to test the
performance and feature of a particular SDRAM chip quickly. This
can be of particular use when the simulation model of the SDRAM is
unavailable or if the simulation is not possible.

The test core is enabled at compile time through the use of `define
statement. The header file tst_inc.h contains a set of define
statements which when uncommented enables the test core. At the
time of the writing of this documentation, three test cores are
available:

(I) do_single_burst_write_read_test
 This test core writes a specified amount of words to the SDRAM

controller. It then delays for a specified amount of clocks, and
proceeeds to read from the just written addresses of the
SDRAM. This delay and read cycles indefinetely.

(II) do_burst_write_read_test
 This test core writes a specified amount of words to the SDRAM

controller. It then delays for a specified amount of clocks, and
then proceeds to read from the just written addresses of the
SDRAM. The write-delay-read cycles indefinetely.

(III) do_read_write_test

This test core performs a single write, then delays for a
specified clock ticks, then performs a single read from the just
written address. The write-delay-read cycles indefinitely.

3.0 OVERVIEW OF BASIC SDRAM OPERATION

This section is not intended to discuss all of the detailed operation of
a SDRAM, but does cover the essentials of a typical read, write and
refresh operations. The reader should consult the specification
manual for the particular memory for further details.

The majority of SDRAM employs a simple set of signal combinations
called commands to carry out the basic IO. Most of these commands
are one clock cycle in duration, and are clocked by the SDRAM on
the rising edge. A proper setup and hold times must be observed. A
sequence of these commands comprises the primitive operation of
read, write and refresh. Figure 4 illustrates a typical set of command
used by most SDRAMs.

The 1M x 16 SDRAM (IP default) is organized as 512K x 16 x 2
banks. The bank selection is done by a pin called BA (bank address)
or sometimes also called A11. This IP refers to as BA, and from this
point forward, A11 and BA will be used interchangeably.

The address organization of these SDRAMs are 11 rows by 8
columns. During the row address strobing, A[10:0] provides the row
to select and during the column strobing A[7:0] provides the column
to select (A[10:8] should be set to logic low).

• Mode register set command
 This command is used to program the SDRAM’s mode register. The
mode register controls the operation of the SDRAM, including the
CAS latency, burst type, burst length, test mode and other vendor
specific options. Most SDRAMs do not initialize the mode register
upon power up, thus it is critical this register be initialized prior to the
normal use. The SDRAM controller initializes the mode register
following every system reset with a default value. During the mode
register programming, the SDRAM receives the data from A[10:0]
and BA, rather than from the data bus.

• Row address strobe and bank active command
 This command is used to select the bank and the row where the data
access is to take place. The BA input selects the bank, while A[10:0]
provides the row address.

• Precharge
 The precharge command is used to begin the precharge operation to
the selected bank(s). When A[10] is high, both banks are activated,
while when A[10] is low, the bank selected by BA is activated.

• Column address and write command
 This command is used to select the column of the selected bank
where the write is to take place. It is important that the bank selected
at the row address strobe be selected again. The address bus A[7:0]
selects the column. A[10:8] should be logic low.

4

• Column address and read command
 This command is used to select the column of the selected bank
where the read is to take place. The address bus A[7:0] selects the
column. A[10:8] should be logic low.

• Auto refresh command
This command is used to start the internal refresh cycle. An internal
row counter is adjusted to point to the next row.

3.1 Basic Operations

In order to take full advantage of the capabilities of the SDRAM, the
specific application has to be known. This IP is meant to be as
generic as possible, and thus the SDRAM controller IP only support
the basic types of READ, WRITE and refresh operations. Some of
the more advanced features such as, burst write and burst reads are
not presently supported.

The following sections describes the basic operations of single word
write, single word read and refresh.

3.1.1 Basic READ Operation

The basic read operation consists of reading a long word from the
SDRAM. The read operation consists of the following command
sequences:

1. row address strobe and bank active command,
2. wait to meet Trcd (1 NOP cycle),
3. column address and read command
4. wait to meet CAS latency
5. Precharge all bank command
6. wait to meet Trp
7. wait to meet Trc before a new row activate command

Trcd is row-col-delay parameter. It specifies the minimum time the
SDRAM can recognize the column set command from the last row
set command. For most PC100 SDRAM this is 20nS, therefore 1
Tclk must be inserted between the row and column set commands.

Once the SDRAM receives the column address strobe command, it
makes the data available on its bus CAS latency cycles later. The
CAS latency is programmed through the mode register. In theory this
value can be programmed from 2 to 7 cycles, but most SDRAM
vendors limit the choices to 2 or 3 cycles.

After the data has been read, the SDRAM controller issues a
precharge-all command to ready for the next data access.

sd_clk

sd_cs_l

sd_ras_l

sd_cas_l

sd_wr_l

sd_addx[11] /
sd_ba

sd_addx[10]

sd_addx[9:0]

sd_clk

sd_cs_l

sd_ras_l

sd_cas_l

sd_wr_l

sd_addx[11] /
sd_ba

sd_addx[10]

sd_addx[9:0]

sd_clk

sd_cs_l

sd_ras_l

sd_cas_l

sd_wr_l

sd_addx[11] /
sd_ba

sd_addx[10]

sd_addx[9:0]

(a) mode
register set cmd

(b) row addx strobe
and bank active cmd

(c) precharge
cmd

(d) column addx
and write cmd

(e) column addx
and read cmd

(f) autorefresh
cmd

valid bank

row

row

bank

select

bank

col

valid

valid

bank

col

Figure 4 (a) - (f) This figure illustrates the basic commands
most SDRAMs recognize. The proper combination of these
command comprises the read, write and refresh operations.

5

3.1.2 Basic WRITE Operation

The basic write operation consists of writing a byte/word or longword
into the SDRAM. The write operation consists of the following
command sequences:

1. row address strobe and bank active command
2. delay to meet Trcd (1 NOP cycle)
3. column address and write command
4. delay to meet Tras
5. precharge-all bank command
6. delay to meet Trp
7. delay to meet RC before another command

Similar to the case of single word read, the NOP operation is required
between the row and the column strobing to meet the Trcd
requirement. Recall that most 100MHz SDRAM has this parameter
as 20nS minimum.
The write operation inherently takes less cycles than the write
because there are not CAS latencies involved. The SDRAM latched
in the data on the rising edge of column strobe command. Figure 6
illustrates this concept.

data

row colnop nop

data

pall

Trcd

Tras

nop

Trp

Trc

row

row colnop nop pall

Trcd

Tras

nop

Trp

Trc

row

nop

nop

ref nop nop nop

Trc

rownopnop nop

Trdl

Basic 1 LW read with CAS LATENCY = 2

Basic 1 LW write

Basic autorefresh cycle

clk

cmd
(ras,cas,wr)

clk

cmd
(ras,cas,wr)

clk

cmd
(ras,cas,wr)

Figure 5 The basic read, write and refresh operations

3.1.3 Refresh Operation

The refresh operation consists of initiating the internal auto-refresh
cycle of the SDRAM, and consists of the following command
sequence:

1. N number of autorefresh commands
2. delay to meet Trc before issuing another command

N represents the number of rows to be refreshed. Following the
autorefresh command, the SDRAM can not accept any new
commands until Trc later. This parameter varies by SDRAM vendor,

and thus must be referenced by case basis, but typically ranges from
60 to 90nS for a 100MHz rated SDRAM.

The number of autorefresh cycles, N, to be issued depends on the
type of refresh desired. As previously mentioned, in a typical 2M x 32
SDRAM (IP default), there are 2048 rows per bank. And the typical
refresh interval is 32mS. For an evenly distributed refresh type, this
represents 1 refresh operation every 15.6uS. Alternatively, a “burst”
type of refresh can perform all 2048 refresh operations every 32mS.
The latter approach is highly advantageous for very slow hosts. Thus
N can take a value from 1 to 2048.

The refresh interval is set by defining the refresh frequency in inc.h

// Refresh Frequency in Hz.
// For burst refresh use 33Hz (30mS)
// For normal refresh use 66666Hz (15uS)

6

`define Frefresh 66666

The number of refreshes performed is defined by the parameter
below in inc.h

// The number of refreshes done during normal refresh
cycle.

// Set this to be 2048 for "burst" refreshes, and
// set this to be 1 for "regular" refreshes
`define auto_ref_cntr_limit 1

3.2 SDRAM Mode Register and Initialization Sequence

Upon powerup, the SDRAM’s mode register must be initialized for
proper operation. This is due to the fact that most SDRAMs do not
initialize the mode register following a reset. However, before the
register can be initialized, the SDRAM must be subjected to an
initialization sequence.

Notice that following power up (or reset), a repeated number of
autorefresh command is necessary. The particulars of the powerup
sequencing is also highly dependent on the SDRAM maker, so
consult the specification. In general, however, the sequence consists
of the following:

1. After a stable power (Vcc) has been reached, the
SDRAM should see a stable clock for about 200uS.
During this time, no valid command should be issued.

2. Both banks must be precharged (precharge
command)

3. one or more auto-refresh commands must be issued.
4. The mode register can now be initialized.

Steps 3 and 4 can be in any order. The parameter which sets the
number of auto-refreshes in the step 3 above is in inc.h file as:

// The number of refreshses done at power up.
// This varies by vendors. Be sure to referer your DRAM
// vendor spec. It is set to 3 by default
`define power_up_ref_cntr_limit 3

As previously mentioned, during the mode-register programming, the
SDRAM receives the initialization data through the address bus and
not through the data bus. Following the powerup, the SDRAM
controller IP initializes the mode register with a default value of
12íh020, which corresponds to:

// DEFAULT MODE-REGISTER values
// The below is programmed to the mode regsiter at
// powerup
`define default_mode_reg_BURST_LENGHT 3'b000
`define defulat_mode_reg_BURST_TYPE 1'b0
`define default_mode_reg_CAS_LATENCY 3'b010

And the above data is written to the Mode Register during the step 4
outlined above.

Refer to figure 6 for the meaning of the mode register bit fields. Most
SDRAMs follows the bit field definition illustrated, but make sure to
consult the specific SDRAM vendor specs as they might contain
subtle differences.

4.0 CUSTOMIZING THE CORE TO WORK FOR YOU

The SDRAM controller core has been designed so it can be as
customizable as possible. As the core matures, it’s customizing
capability will also grow.

Most of the user adjustable parameters and features are found in the
include file called inc.h, and are heavily commented.

Enabling the built-in tester
As previously mentioned, the SDRAM controller core contains a
synthesizable tester, which acts as a host to the SDRAM controller
and issues a series of write/read operations to the SDRAM. This is a
handy feature if you want to verify that the SDRAM controller core
works with the SDRAM.

// Uncomment below to use the microprocessor bus simulator
// This will allow the synthesis of a small tester, which
sends
// a series of data sequences to the SDRAM controller,
then reads
// back and verifies that the data is correct.
// Once you enable this option, choose the test mode in
// the file "tst_inc.h"
// ====================
//`define simulate_mp

Defining the type of host data bus
The data bus to/from the host can be a single 32 bit bidirectional bus
or it can be 2 separate 32 bit unidirectional bus. The former case is
best used when the SDRAM controller core is to be embedded alone
in a FPGA/CPLD and talks to an external host. This obviously saves
a lot of valuable pins.
The latter case is to be used when the host (micro, DSP, etc) is to be
embedded along with the SDRAM controller on the same
FPGA/CPLD. Most FPGA/CPLD’s do not support internal
bidirectional buses, and may cause fitter problems.

// Comment the below for bidirectional bus, and UNcomment
for unidirectional
`define databus_is_unidirectional

Enabling Data Bus Aligner
When the data bus aligner is enabled, all data which are not long
words (32bit) will be aligned to the low order bus. For example, when
the host writes a word (16bit) to the SDRAM, it needs to present the
data to the SDRAM controller on the low order 16 bits of the data bus.
Similarly, when the host request a word of data from the SDRAM
controller,. It will receive the data aligned to the lower 16 bits of the
data bus. The data aligner is handy, if an 8 bit host is being
interfaced to the 2Mx32 SDRAM, and all of the data space want to be
addressed. Enabling the data aligned may however, slow down the
system performance due to mux delays.

When the aligner is disabled, the data read/written will be expected to
be in the correct byte order location. For example, when the host
writes a byte of data to the SDRAM at address ending in 0x2, the
SDRAM controller will transfer whatever data at data[23:16] to the
SDRAM. Similarly, when the host request a byte of data at address
location ending in 0x3, it will get the data at bit location [31:24].

//`define align_data_bus

7

burst lengthBTCAS latencyTMWBLrsv

A0A1A2A3A4A5A6A7A8A9A10
A11
(BA)

0 1 1

1 2 2

2 4 4

3 8 8

4 rsv rsv

5 rsv rsv

6 rsv rsv

7 page rsv

A[2:0] BT=0 BT=1

Burst Type

Burst Length

A4 Type
0 sequential

1 interleave

0
1

3

4 rsv

5 rsv

6 rsv

7

A[6:4] BT=0

CAS Latency

rsv

rsv

rsv

3

Test Mode

A[8:7] Type
0 mode register set

1
2

3 rsv

rsv

rsv

2 2

Write Burst Length

A9 Length

0 burst

1 single bit

rsv = reserved

MODE REGISTER PROGRAMMING

Figure 6 This plot illustrates the mode register definition for Samsung
KM416S1120 SDRAM. Other SDRAMs are similar. The highlighted

values is what the SDRAM controller initializes at powerup.

8

POWERUP

PRECHARGE CMD

AUTOREFRESH CMD

AUTOREFRESH
DELAY

IDLE

SET RAS CMD

RAS DELAY

SET CAS CMD
(in RD)

CAS LATENCY1

READ

POWERUP

MODEREG SET CMD

SET CAS CMD
(in WR)

COOL_OFF

PWRUP = 1

(delay_cntr == RD_CNT) &&
(refresh_cntr != cntr_limit)

(delay_cntr != RD_CNT)

(PWRUP == 1) &&
(refresh_cntr != `powerup_ref_cntr_limit)

(do_write == 1) | (do_read == 1)

(do_write == 1) (do_read == 1)

(PWRUP == 0) &&
(delay_cntr == RD_CNT) &&
(refresh_cntr != cntr_limit) &&
(do_write | do_read)

CAS LATENCY2

modereg_cas_latency == 2

modereg_cas_latency == 3

burst_length_cntr !=
modereg_burst_count

Figure 7 This is the state flow of the SDRAM controller state machine

9

