
0.1. OpenRISC 1000 Instruction Set

Draft, Do not distribute

1

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

l.illegal Illegal instruction l.illegal

31 0
opcode 0x0

32 bits

Format:

l.illegal

Description:

The result of this instruction is always an illegal instruction exception.

Operation:

PC <- address of illegal instruction exception handler

Notes:

Class 1:
Architecture Level Execution Mode Implementation

Core CPU User and SupervisorMandatory always

2

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

l.j Jump l.j

31 26 25 0
opcode 0x0 X

6 bits 26 bits

Format:

l.j X

Description:

The immediate is shifted left two bits, sign-extended to 32 bits and then added
to the address of the delay slot. The result is effective address of the jump.
The program unconditionally jumps to EA with a delay of one 32 bit or two 16
bit instructions.

Operation:

PC <- (Immediate || 00) + DelayInsnAddr
LR <- DelayInsnAddr + 4

Notes:

Class 1:
Architecture Level Execution Mode Implementation

Core CPU User and SupervisorMandatory always

3

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

l.jal Jump and Link l.jal

31 26 25 0
opcode 0x1 X

6 bits 26 bits

Format:

l.jal X

Description:

The immediate is shifted left two bits, sign-extended to 32 bits and then added
to the address of the delay slot. The result is effective address of the jump.
The program unconditionally jumps to EA with a delay of one 32 bit or two 16
bit instructions. The address of the instruction after the delay slot is placed
in the link register.

Operation:

PC <- (Immediate || 00) + DelayInsnAddr
LR <- DelayInsnAddr + 4

Notes:

Class 1:
Architecture Level Execution Mode Implementation

Core CPU User and SupervisorMandatory always

4

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

l.bnf Branch if No Flag l.bnf

31 26 25 0
opcode 0x2 X

6 bits 26 bits

Format:

l.bnf X

Description:

The immediate is shifted left two bits, sign-extended to 32 bits and then added
to the address of the delay slot. The result is effective address of the branch.
If the compare flag is cleared, then the program branches to EA with a delay
of one 32 bit or two 16 bit instructions.

Operation:

EA <- (Immediate || 00) + DelayInsnAddr
PC <- EA if flag cleared

Notes:

Class 1:
Architecture Level Execution Mode Implementation

Core CPU User and SupervisorMandatory always

5

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

l.bf Branch if Flag l.bf

31 26 25 0
opcode 0x3 X

6 bits 26 bits

Format:

l.bf X

Description:

The immediate is shifted left two bits, sign-extended to 32 bits and then added
to the address of the delay slot. The result is effective address of the branch.
If the compare flag is set, then the program branches to EA with a delay of
one 32 bit or two 16 bit instructions.

Operation:

EA <- (Immediate || 00) + DelayInsnAddr
PC <- EA if flag set

Notes:

Class 1:
Architecture Level Execution Mode Implementation

Core CPU User and SupervisorMandatory always

6

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

l.load32u Load Word and Extend with Zero l.load32u

31 25 24 23 20 19 16 15 0
opcode 0x8 J A B J

7 bits 1 bits 4 bits 4 bits 16 bits

Format:

l.load32u rA,J(rB)

Description:

Offset is sign-extended and added to the contents of general register rB. Sum
represents effective address. The word in memory addressed by EA is loaded
into general register rA.

Operation:

EA <- exts(Immediate) + rB
rA <- (EA)[31:0]

Notes:

Class 1:
Architecture Level Execution Mode Implementation

Core CPU User and SupervisorMandatory always

7

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

l.load16u Load Half Word and Extend with Zero l.load16u

31 25 24 23 20 19 16 15 0
opcode 0x9 J A B J

7 bits 1 bits 4 bits 4 bits 16 bits

Format:

l.load16u rA,J(rB)

Description:

Offset is sign-extended and added to the contents of general register rB. Sum
represents effective address. The half word in memory addressed by EA is loaded
into the low-order 16 bits of general register rA. High-order 16 bits of general
register rA are replaced with zero.

Operation:

EA <- exts(Immediate) + rB
rA[15:0] <- (EA)[15:0]
rA[31:16] <- 0

Notes:

Class 1:
Architecture Level Execution Mode Implementation

Core CPU User and SupervisorMandatory always

8

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

l.load16s Load Half Word and Extend with Sign l.load16s

31 25 24 23 20 19 16 15 0
opcode 0xa J A B J

7 bits 1 bits 4 bits 4 bits 16 bits

Format:

l.load16s rA,J(rB)

Description:

Offset is sign-extended and added to the contents of general register rB. Sum
represents effective address. The half word in memory addressed by EA is loaded
into the low-order 16 bits of general register rA. High-order 16 bits of general
register rA are replaced with bit 15 of the loaded value.

Operation:

EA <- exts(Immediate) + rB
rA[15:0] <- (EA)[15:0]
rA[31:16] <- rA[15]

Notes:

Class 1:
Architecture Level Execution Mode Implementation

Core CPU User and SupervisorMandatory always

9

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

l.load8u Load Byte and Extend with Zero l.load8u

31 25 24 23 20 19 16 15 0
opcode 0xb J A B J

7 bits 1 bits 4 bits 4 bits 16 bits

Format:

l.load8u rA,J(rB)

Description:

Offset is sign-extended and added to the contents of general register rB. Sum
represents effective address. The byte in memory addressed by EA is loaded
into the low-order eight bits of general register rA. High-order 24 bits of
general register rA are replaced with zero.

Operation:

EA <- exts(Immediate) + rB
rA[7:0] <- (EA)[7:0]
rA[31:8] <- 0

Notes:

Class 1:
Architecture Level Execution Mode Implementation

Core CPU User and SupervisorMandatory always

10

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

l.load8s Load Byte and Extend with Sign l.load8s

31 25 24 23 20 19 16 15 0
opcode 0xc J A B J

7 bits 1 bits 4 bits 4 bits 16 bits

Format:

l.load8s rA,J(rB)

Description:

Offset is sign-extended and added to the contents of general register rB. Sum
represents effective address. The byte in memory addressed by EA is loaded
into the low-order eight bits of general register rA. High-order 24 bits of
general register rA are replaced with bit 7 of the loaded value.

Operation:

EA <- exts(Immediate) + rB
rA[7:0] <- (EA)[7:0]
rA[31:8] <- rA[8]

Notes:

Class 1:
Architecture Level Execution Mode Implementation

Core CPU User and SupervisorMandatory always

11

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

l.stor32 Store Word l.stor32

31 25 24 23 20 19 16 15 0
opcode 0xd J A B J

7 bits 1 bits 4 bits 4 bits 16 bits

Format:

l.stor32 J(rA),rB

Description:

Offset is sign-extended and added to the contents of general register rA. Sum
represents effective address. The word in general register rB is stored to
memory addressed by EA.

Operation:

EA <- exts(Immediate) + rA
(EA)[31:0] <- rB

Notes:

Class 1:
Architecture Level Execution Mode Implementation

Core CPU User and SupervisorMandatory always

12

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

l.stor16 Store Half Word l.stor16

31 25 24 23 20 19 16 15 0
opcode 0xe J A B J

7 bits 1 bits 4 bits 4 bits 16 bits

Format:

l.stor16 J(rA),rB

Description:

Offset is sign-extended and added to the contents of general register rA. Sum
represents effective address. The low-order 16 bits of general register rB
are stored to memory addressed by EA.

Operation:

EA <- exts(Immediate) + rA
(EA)[15:0] <- rB[15:0]

Notes:

Class 1:
Architecture Level Execution Mode Implementation

Core CPU User and SupervisorMandatory always

13

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

l.stor8 Store Byte l.stor8

31 25 24 23 20 19 16 15 0
opcode 0xf J A B J

7 bits 1 bits 4 bits 4 bits 16 bits

Format:

l.stor8 J(rA),rB

Description:

Offset is sign-extended and added to the contents of general register rA. Sum
represents effective address. The low-order 8 bits of general register rB
are stored to memory addressed by EA.

Operation:

EA <- exts(Immediate) + rA
(EA)[7:0] <- rB[7:0]

Notes:

Class 1:
Architecture Level Execution Mode Implementation

Core CPU User and SupervisorMandatory always

14

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

l.addi32s Add Immediate Signed l.addi32s

31 26 25 24 23 20 19 16 15 0
opcode 0x8 I A B I

6 bits 2 bits 4 bits 4 bits 16 bits

Format:

l.addi32s rA,rB,I

Description:

Immediate is signed-extended and added to the contents of general register
rB to form the result. The result is placed into general register rA.

Operation:

rA <- rB + exts(Immediate)

Notes:

Class 1:
Architecture Level Execution Mode Implementation

Core CPU User and SupervisorMandatory always

15

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

l.subi32s Subtract Immediate Signed l.subi32s

31 26 25 24 23 20 19 16 15 0
opcode 0x9 I A B I

6 bits 2 bits 4 bits 4 bits 16 bits

Format:

l.subi32s rA,rB,I

Description:

Immediate is signed-extended and subtracted from the contents of general register
rB to form the result. The result is placed into general register rA.

Operation:

rA <- rB - exts(Immediate)

Notes:

Class 1:
Architecture Level Execution Mode Implementation

Core CPU User and SupervisorMandatory always

16

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

l.muli32s Multiply Immediate Signed l.muli32s

31 24 23 20 19 16 15 0
opcode 0x28 A B I

8 bits 4 bits 4 bits 16 bits

Format:

l.muli32s rA,rB,I

Description:

Immediate and the contents of general register rB are multiplied and the result
is truncated to 32 bits and placed into general register rA.

Operation:

rA <- rB * Immediate

Notes:

Class 2:
Architecture Level Execution Mode Implementation

Core CPU User and Supervisor Recommended

17

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

l.xori16 Exclusive Or Immediate Half Word l.xori16

31 24 23 20 19 16 15 0
opcode 0x29 A B I

8 bits 4 bits 4 bits 16 bits

Format:

l.xori16 rA,rB,I

Description:

Immediate is zero-extended and combined with the contents of general register
rB in a bit-wise logical XOR operation. The result is placed into general
register rA.

Operation:

rA <- rB XOR exts(Immediate)

Notes:

Class 3:
Architecture Level Execution Mode Implementation

Core CPU User and Supervisor Optional

18

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

l.immlo16u Immediate Low-Order Half Word Unsigned l.immlo16u

31 24 23 20 19 16 15 0
opcode 0x2a A reserved I

8 bits 4 bits 4 bits 16 bits

Format:

l.immlo16u rA,I

Description:

16 bit immediate is placed into low-order 16 bits of general register rA.

Operation:

rA[15:0] <- Immediate

Notes:

Class 1:
Architecture Level Execution Mode Implementation

Core CPU User and SupervisorMandatory always

19

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

l.immhi16u Immediate High-Order Half Word Unsigned l.immhi16u

31 24 23 20 19 16 15 0
opcode 0x2b A reserved I

8 bits 4 bits 4 bits 16 bits

Format:

l.immhi16u rA,I

Description:

16 bit immediate is placed into high-order 16 bits of general register rA.

Operation:

rA[31:16] <- Immediate

Notes:

Class 1:
Architecture Level Execution Mode Implementation

Core CPU User and SupervisorMandatory always

20

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

l.sub32s Subtract Signed l.sub32s

31 24 23 20 19 16 15 12 11 8 7 0
opcode 0x2c A B C opcode 0x0 reserved

8 bits 4 bits 4 bits 4 bits 4 bits 8 bits

Format:

l.sub32s rA,rB,rC

Description:

The contents of general register rC is subtracted from the contents of general
register rB to form the result. The result is placed into general register
rA.

Operation:

rA <- rB - rC

Notes:

Class 1:
Architecture Level Execution Mode Implementation

Core CPU User and SupervisorMandatory always

21

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

l.shla32 Shift Left Arithmetic l.shla32

31 24 23 20 19 16 15 12 11 8 7 3 2 0
opcode 0x2c A B C opcode 0x1 L reserved

8 bits 4 bits 4 bits 4 bits 4 bits 5 bits 3 bits

Format:

l.shla32 rA,rB,rC,L

Description:

Immediate is combined with low-order 5 bits of general register rC in a bit-wise
logical OR operation. The result specifies the number of bit positions the
contents of general register rB are shifted left, inserting zeros into the
low-order bits.

Operation:

b <- Immediate | rC
rA[31:b] <- rB[31-b:0]
rA[b:0] <- 0

Notes:

Class 1:
Architecture Level Execution Mode Implementation

Core CPU User and SupervisorMandatory always

22

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

l.shra32 Shift Right Arithmetic l.shra32

31 24 23 20 19 16 15 12 11 8 7 3 2 0
opcode 0x2c A B C opcode 0x2 L reserved

8 bits 4 bits 4 bits 4 bits 4 bits 5 bits 3 bits

Format:

l.shra32 rA,rB,rC,L

Description:

Immediate is combined with low-order 5 bits of general register rC in a bit-wise
logical OR operation. The result specifies the number of bit positions the
contents of general register rB are shifted right, sign-extending the high-order
bits.

Operation:

b <- Immediate | rC
rA[31-b:0] <- rB[31:b]
rA[31-b:31] <- rB[31]

Notes:

Class 1:
Architecture Level Execution Mode Implementation

Core CPU User and SupervisorMandatory always

23

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

l.shrl32 Shift Right Logical l.shrl32

31 24 23 20 19 16 15 12 11 8 7 3 2 0
opcode 0x2c A B C opcode 0x3 L reserved

8 bits 4 bits 4 bits 4 bits 4 bits 5 bits 3 bits

Format:

l.shrl32 rA,rB,rC,L

Description:

Immediate is combined with low-order 5 bits of general register rC in a bit-wise
logical OR operation. The result specifies the number of bit positions the
contents of general register rB are shifted right, inserting zeros into the
high-order bits.

Operation:

b <- Immediate | rC
rA[31-b:0] <- rB[31:b]
rA[31-b:31] <- 0

Notes:

Class 1:
Architecture Level Execution Mode Implementation

Core CPU User and SupervisorMandatory always

24

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

l.and32 And l.and32

31 24 23 20 19 16 15 12 11 8 7 0
opcode 0x2c A B C opcode 0x4 reserved

8 bits 4 bits 4 bits 4 bits 4 bits 8 bits

Format:

l.and32 rA,rB,rC

Description:

The contents of general register rB are combined with the contents of general
register rC in a bit-wise logical AND operation. The result is placed into
general register rA.

Operation:

rA <- rB AND rC

Notes:

Class 1:
Architecture Level Execution Mode Implementation

Core CPU User and SupervisorMandatory always

25

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

l.or32 Or l.or32

31 24 23 20 19 16 15 12 11 8 7 0
opcode 0x2c A B C opcode 0x5 reserved

8 bits 4 bits 4 bits 4 bits 4 bits 8 bits

Format:

l.or32 rA,rB,rC

Description:

The contents of general register rB are combined with the contents of general
register rC in a bit-wise logical OR operation. The result is placed into
general register rA.

Operation:

rA <- rB OR rC

Notes:

Class 1:
Architecture Level Execution Mode Implementation

Core CPU User and SupervisorMandatory always

26

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

l.xor32 Exclusive Or l.xor32

31 24 23 20 19 16 15 12 11 8 7 0
opcode 0x2c A B C opcode 0x6 reserved

8 bits 4 bits 4 bits 4 bits 4 bits 8 bits

Format:

l.xor32 rA,rB,rC

Description:

The contents of general register rB are combined with the contents of general
register rC in a bit-wise logical XOR operation. The result is placed into
general register rA.

Operation:

rA <- rB XOR rC

Notes:

Class 1:
Architecture Level Execution Mode Implementation

Core CPU User and SupervisorMandatory always

27

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

l.mul32s Multiply Signed l.mul32s

31 24 23 20 19 16 15 12 11 8 7 0
opcode 0x2c A B C opcode 0x7 reserved

8 bits 4 bits 4 bits 4 bits 4 bits 8 bits

Format:

l.mul32s rA,rB,rC

Description:

The contents of general register rB and the contents of general register rC
are multiplied and the result is truncated to 32 bits and placed into general
register rA. Both operands are treated as unsigned integers.

Operation:

rA <- rB * rC

Notes:

Class 2:
Architecture Level Execution Mode Implementation

Core CPU User and Supervisor Recommended

28

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

l.mul32u Multiply Unsigned l.mul32u

31 24 23 20 19 16 15 12 11 8 7 0
opcode 0x2c A B C opcode 0x8 reserved

8 bits 4 bits 4 bits 4 bits 4 bits 8 bits

Format:

l.mul32u rA,rB,rC

Description:

The contents of general register rB and the contents of general register rC
are multiplied and the result is truncated to 32 bits and placed into general
register rA. Both operands are treated as unsigned integers.

Operation:

rA <- rB * rC

Notes:

Class 2:
Architecture Level Execution Mode Implementation

Core CPU User and Supervisor Recommended

29

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

l.div32s Divide Signed l.div32s

31 24 23 20 19 16 15 12 11 8 7 0
opcode 0x2c A B C opcode 0x9 reserved

8 bits 4 bits 4 bits 4 bits 4 bits 8 bits

Format:

l.div32s rA,rB,rC

Description:

The contents of general register rB are divided by the contents of general
register rC and the result is placed into general register rA. Both operands
are treated as signed integers. A divisor flag is set when the divisor is
zero.

Operation:

rA <- rB / rC

Notes:

Class 3:
Architecture Level Execution Mode Implementation

Core CPU User and Supervisor Optional

30

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

l.div32u Divide Unsigned l.div32u

31 24 23 20 19 16 15 12 11 8 7 0
opcode 0x2c A B C opcode 0xa reserved

8 bits 4 bits 4 bits 4 bits 4 bits 8 bits

Format:

l.div32u rA,rB,rC

Description:

The contents of general register rB are divided by the contents of general
register rC and the result is placed into general register rA. Both operands
are treated as unsigned integers. A divisor flag is set when the divisor is
zero.

Operation:

rA <- rB / rC

Notes:

Class 3:
Architecture Level Execution Mode Implementation

Core CPU User and Supervisor Optional

31

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

l.dcbf Data Cache Block Flush l.dcbf

31 24 23 20 19 12 11 8 7 0
opcode 0x30 A J opcode 0x0 J

8 bits 4 bits 8 bits 4 bits 8 bits

Format:

l.dcbf J(rA)

Description:

TBD

Operation:

Notes:

Class 5:
Architecture Level Execution Mode Implementation
Cache ManagementSupervisor only Mandatory if cache supported

32

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

l.dcbt Data Cache Block Touch l.dcbt

31 24 23 20 19 12 11 8 7 0
opcode 0x30 A J opcode 0x1 J

8 bits 4 bits 8 bits 4 bits 8 bits

Format:

l.dcbt J(rA)

Description:

TBD

Operation:

Notes:

Class 5:
Architecture Level Execution Mode Implementation
Cache ManagementSupervisor only Mandatory if cache supported

33

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

l.dcbi Data Cache Block Invalidate l.dcbi

31 24 23 20 19 12 11 8 7 0
opcode 0x30 A J opcode 0x2 J

8 bits 4 bits 8 bits 4 bits 8 bits

Format:

l.dcbi J(rA)

Description:

TBD

Operation:

Notes:

Class 5:
Architecture Level Execution Mode Implementation
Cache ManagementSupervisor only Mandatory if cache supported

34

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

l.dcia Data Cache Invalidate All l.dcia

31 24 23 20 19 12 11 8 7 0
opcode 0x30 A reserved opcode 0x3 reserved

8 bits 4 bits 8 bits 4 bits 8 bits

Format:

l.dcia

Description:

TBD

Operation:

Notes:

Class 5:
Architecture Level Execution Mode Implementation
Cache ManagementSupervisor only Mandatory if cache supported

35

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

l.dcfa Data Cache Flush All l.dcfa

31 24 23 20 19 12 11 8 7 0
opcode 0x30 A reserved opcode 0x4 reserved

8 bits 4 bits 8 bits 4 bits 8 bits

Format:

l.dcfa

Description:

TBD

Operation:

Notes:

Class 5:
Architecture Level Execution Mode Implementation
Cache ManagementSupervisor only Mandatory if cache supported

36

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

l.tlbia TLB Invalidate All l.tlbia

31 24 23 20 19 12 11 8 7 0
opcode 0x30 A reserved opcode 0x5 reserved

8 bits 4 bits 8 bits 4 bits 8 bits

Format:

l.tlbia

Description:

TBD

Operation:

Notes:

Class 6:
Architecture Level Execution Mode Implementation
Virtual Memory Supervisor only Mandatory if MMU supported

37

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

l.mtsr Move To Special Register l.mtsr

31 24 23 20 19 12 11 8 7 0
opcode 0x30 A S opcode 0x6 S

8 bits 4 bits 8 bits 4 bits 8 bits

Format:

l.mtsr rS,rA

Description:

The contents of general register rA are moved into special register rS.

Operation:

rS <- rA

Notes:

Class 4:
Architecture Level Execution Mode Implementation

System ManagementSupervisor only Mandatory always

38

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

l.mfsr Move From Special Register l.mfsr

31 24 23 20 19 12 11 8 7 0
opcode 0x30 A S opcode 0x7 S

8 bits 4 bits 8 bits 4 bits 8 bits

Format:

l.mfsr rA,rS

Description:

The contents of special register rS are moved into general register rA.

Operation:

rA <- rS

Notes:

Class 4:
Architecture Level Execution Mode Implementation

System ManagementSupervisor only Mandatory always

39

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

h.sfeq32 Set Flag if Equal h.sfeq32

15 8 7 4 3 0
opcode 0x40 A B

8 bits 4 bits 4 bits

Format:

h.sfeq32 rA,rB

Description:

The contents of general register rA and the contents of general register rB
are compared. If the two registers are equal, then the compare flag is set;
otherwise the compare flag is cleared.

Operation:

flag <- rA == rB

Notes:

Class 1:
Architecture Level Execution Mode Implementation

Core CPU User and SupervisorMandatory always

40

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

h.sfne32 Set Flag if Not Equal h.sfne32

15 8 7 4 3 0
opcode 0x41 A B

8 bits 4 bits 4 bits

Format:

h.sfne32 rA,rB

Description:

The contents of general register rA and the contents of general register rB
are compared. If the two registers are not equal, then the compare flag is
set; otherwise the compare flag is cleared.

Operation:

flag <- rA != rB

Notes:

Class 1:
Architecture Level Execution Mode Implementation

Core CPU User and SupervisorMandatory always

41

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

h.sfgt32s Set Flag if Greater Than Signed h.sfgt32s

15 8 7 4 3 0
opcode 0x42 A B

8 bits 4 bits 4 bits

Format:

h.sfgt32s rA,rB

Description:

The contents of general register rA and the contents of general register rB
are compared as signed integers. If the contents of the first register are
greater than the contents of the second register, then the compare flag is
set; otherwise the compare flag is cleared.

Operation:

flag <- rA > rB

Notes:

Class 1:
Architecture Level Execution Mode Implementation

Core CPU User and SupervisorMandatory always

42

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

h.sfge32s Set Flag if Greater or Equal Than Signed h.sfge32s

15 8 7 4 3 0
opcode 0x43 A B

8 bits 4 bits 4 bits

Format:

h.sfge32s rA,rB

Description:

The contents of general register rA and the contents of general register rB
are compared as signed integers. If the contents of the first register are
greater or equal than the contents of the second register, then the compare
flag is set; otherwise the compare flag is cleared.

Operation:

flag <- rA >= rB

Notes:

Class 1:
Architecture Level Execution Mode Implementation

Core CPU User and SupervisorMandatory always

43

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

h.sflt32s Set Flag if Less Than Signed h.sflt32s

15 8 7 4 3 0
opcode 0x44 A B

8 bits 4 bits 4 bits

Format:

h.sflt32s rA,rB

Description:

The contents of general register rA and the contents of general register rB
are compared as signed integers. If the contents of the first register are
less than the contents of the second register, then the compare flag is set;
otherwise the compare flag is cleared.

Operation:

flag <- rA < rB

Notes:

Class 1:
Architecture Level Execution Mode Implementation

Core CPU User and SupervisorMandatory always

44

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

h.sfle32s Set Flag if Less or Equal Than Signed h.sfle32s

15 8 7 4 3 0
opcode 0x45 A B

8 bits 4 bits 4 bits

Format:

h.sfle32s rA,rB

Description:

The contents of general register rA and the contents of general register rB
are compared as signed integers. If the contents of the first register are
less or equal than the contents of the second register, then the compare flag
is set; otherwise the compare flag is cleared.

Operation:

flag <- rA <= rB

Notes:

Class 1:
Architecture Level Execution Mode Implementation

Core CPU User and SupervisorMandatory always

45

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

h.sfgt32u Set Flag if Greater Than Unsigned h.sfgt32u

15 8 7 4 3 0
opcode 0x46 A B

8 bits 4 bits 4 bits

Format:

h.sfgt32u rA,rB

Description:

The contents of general register rA and the contents of general register rB
are compared as unsigned integers. If the contents of the first register are
greater than the contents of the second register, then the compare flag is
set; otherwise the compare flag is cleared.

Operation:

flag <- rA > rB

Notes:

Class 1:
Architecture Level Execution Mode Implementation

Core CPU User and SupervisorMandatory always

46

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

h.sfge32u Set Flag if Greater or Equal Than Unsigned h.sfge32u

15 8 7 4 3 0
opcode 0x47 A B

8 bits 4 bits 4 bits

Format:

h.sfge32u rA,rB

Description:

The contents of general register rA and the contents of general register rB
are compared as unsigned integers. If the contents of the first register are
greater or equal than the contents of the second register, then the compare
flag is set; otherwise the compare flag is cleared.

Operation:

flag <- rA >= rB

Notes:

Class 1:
Architecture Level Execution Mode Implementation

Core CPU User and SupervisorMandatory always

47

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

h.sflt32u Set Flag if Less Than Unsigned h.sflt32u

15 8 7 4 3 0
opcode 0x48 A B

8 bits 4 bits 4 bits

Format:

h.sflt32u rA,rB

Description:

The contents of general register rA and the contents of general register rB
are compared as unsigned integers. If the contents of the first register are
less than the contents of the second register, then the compare flag is set;
otherwise the compare flag is cleared.

Operation:

flag <- rA < rB

Notes:

Class 1:
Architecture Level Execution Mode Implementation

Core CPU User and SupervisorMandatory always

48

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

h.sfle32u Set Flag if Less or Equal Than Unsigned h.sfle32u

15 8 7 4 3 0
opcode 0x49 A B

8 bits 4 bits 4 bits

Format:

h.sfle32u rA,rB

Description:

The contents of general register rA and the contents of general register rB
are compared as unsigned integers. If the contents of the first register are
less or equal than the contents of the second register, then the compare flag
is set; otherwise the compare flag is cleared.

Operation:

flag <- rA <= rB

Notes:

Class 1:
Architecture Level Execution Mode Implementation

Core CPU User and SupervisorMandatory always

49

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

h.mov32 Move h.mov32

15 8 7 4 3 0
opcode 0x4a A B

8 bits 4 bits 4 bits

Format:

h.mov32 rA,rB

Description:

The contents of general register rB are moved into general register rA.

Operation:

rA <- rB

Notes:

Class 2:
Architecture Level Execution Mode Implementation

Core CPU User and Supervisor Recommended

50

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

h.ext16s Extend Half Word with Sign h.ext16s

15 8 7 4 3 2 0
opcode 0x4b A reserved opcode 0x0

8 bits 4 bits 1 bits 3 bits

Format:

h.ext16s rA

Description:

Bit 15 of general register rA is placed in high-order 16 bits of general register
rA. The low-order 16 bits of general register rA are left unchanged.

Operation:

rA[31:16] <- rA[15]

Notes:

Class 2:
Architecture Level Execution Mode Implementation

Core CPU User and Supervisor Recommended

51

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

h.ext16z Extend Half Word with Zero h.ext16z

15 8 7 4 3 2 0
opcode 0x4b A reserved opcode 0x1

8 bits 4 bits 1 bits 3 bits

Format:

h.ext16z rA

Description:

Zero is placed in high-order 16 bits of general register rA. The low-order
16 bits of general register rA are left unchanged.

Operation:

rA[31:16] <- 0

Notes:

Class 2:
Architecture Level Execution Mode Implementation

Core CPU User and Supervisor Recommended

52

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

h.ext8s Extend Byte with Sign h.ext8s

15 8 7 4 3 2 0
opcode 0x4b A reserved opcode 0x2

8 bits 4 bits 1 bits 3 bits

Format:

h.ext8s rA

Description:

Bit 7 of general register rA is placed in high-order 24 bits of general register
rA. The low-order eight bits of general register rA are left unchanged.

Operation:

rA[31:8] <- rA[7]

Notes:

Class 2:
Architecture Level Execution Mode Implementation

Core CPU User and Supervisor Recommended

53

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

h.ext8z Extend Byte with Zero h.ext8z

15 8 7 4 3 2 0
opcode 0x4b A reserved opcode 0x3

8 bits 4 bits 1 bits 3 bits

Format:

h.ext8z rA

Description:

Zero is placed in high-order 24 bits of general register rA. The low-order
eight bits of general register rA are left unchanged.

Operation:

rA[31:8] <- 0

Notes:

Class 2:
Architecture Level Execution Mode Implementation

Core CPU User and Supervisor Recommended

54

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

h.nop No Operation h.nop

15 8 7 3 2 0
opcode 0x4b reserved opcode 0x4

8 bits 5 bits 3 bits

Format:

h.nop

Description:

This instruction does not do anything except it takes at least one clock cycle
to complete. It is usually used to fill gaps between 16 bit and 32 bit instructions.

Operation:

Notes:

Class 1:
Architecture Level Execution Mode Implementation

Core CPU User and SupervisorMandatory always

55

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

h.jalr Jump and Link Register h.jalr

15 8 7 4 3 2 0
opcode 0x4b A reserved opcode 0x5

8 bits 4 bits 1 bits 3 bits

Format:

h.jalr rA

Description:

The contents of general register rA is effective address of the jump. The
program unconditionally jumps to EA with a delay of one 32 bit or two 16 bit
instructions. The address of the instruction after the delay slot is placed
in the link register.

Operation:

PC <- rA
LR <- DelayInsnAddr + 4

Notes:

Class 1:
Architecture Level Execution Mode Implementation

Core CPU User and SupervisorMandatory always

56

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

h.load32u Load Word and Extend with Zero h.load32u

15 12 11 8 7 4 3 0
opcode 0x5 N A B

4 bits 4 bits 4 bits 4 bits

Format:

h.load32u rA,N(rB)

Description:

Offset is sign-extended and added to the contents of general register rB. Sum
represents effective address. The word in memory addressed by EA is loaded
into general register rA.

Operation:

EA <- exts(Immediate) + rB
rA <- (EA)[31:0]

Notes:

Class 2:
Architecture Level Execution Mode Implementation

Core CPU User and Supervisor Recommended

57

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

h.stor32 Store Word h.stor32

15 12 11 8 7 4 3 0
opcode 0x6 N A B

4 bits 4 bits 4 bits 4 bits

Format:

h.stor32 N(rA),rB

Description:

Offset is sign-extended and added to the contents of general register rA. Sum
represents effective address. The word in general register rB is stored to
memory addressed by EA.

Operation:

EA <- exts(Immediate) + rA
(EA)[31:0] <- rB

Notes:

Class 2:
Architecture Level Execution Mode Implementation

Core CPU User and Supervisor Recommended

58

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

h.add32s Add Signed h.add32s

15 12 11 8 7 4 3 0
opcode 0x7 D A B

4 bits 4 bits 4 bits 4 bits

Format:

h.add32s rA,rB,rD

Description:

The contents of general register rC is added to the contents of general register
rB to form the result. The result is placed into general register rA.

Operation:

rA <- rB + rC

Notes:

Class 1:
Architecture Level Execution Mode Implementation

Core CPU User and SupervisorMandatory always

59

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

h.immch32s Immediate Byte Signed h.immch32s

15 12 11 8 7 4 3 0
opcode 0x8 M A M

4 bits 4 bits 4 bits 4 bits

Format:

h.immch32s rA,M

Description:

8 bit immediate is sign-extended to 32 bits and placed into general register
rA.

Operation:

rA <- exts(Immediate)

Notes:

Class 2:
Architecture Level Execution Mode Implementation

Core CPU User and Supervisor Recommended

60

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

h.jal Jump and Link h.jal

15 12 11 0
opcode 0x9 X

4 bits 12 bits

Format:

h.jal X

Description:

The immediate is shifted left two bits, sign-extended to 32 bits and then added
to the address of the delay slot. The result is effective address of the jump.
The program unconditionally jumps to EA with a delay of one 32 bit or two 16
bit instructions. The address of the instruction after the delay slot is placed
in the link register.

Operation:

PC <- (Immediate || 00) + DelayInsnAddr
LR <- DelayInsnAddr + 4

Notes:

Class 2:
Architecture Level Execution Mode Implementation

Core CPU User and Supervisor Recommended

61

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

h.jal Jump and Link h.jal

15 12 11 0
opcode 0xa X

4 bits 12 bits

Format:

h.jal X

Description:

The immediate is shifted left two bits, sign-extended to 32 bits and then added
to the address of the delay slot. The result is effective address of the jump.
The program unconditionally jumps to EA with a delay of one 32 bit or two 16
bit instructions. The address of the instruction after the delay slot is placed
in the link register.

Operation:

PC <- (Immediate || 00) + DelayInsnAddr
LR <- DelayInsnAddr + 4

Notes:

Class 2:
Architecture Level Execution Mode Implementation

Core CPU User and Supervisor Recommended

62

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

h.bnf Branch if No Flag h.bnf

15 12 11 0
opcode 0xb X

4 bits 12 bits

Format:

h.bnf X

Description:

The immediate is shifted left two bits, sign-extended to 32 bits and then added
to the address of the delay slot. The result is effective address of the branch.
If the compare flag is cleared, then the program branches to EA with a delay
of one 32 bit or two 16 bit instructions.

Operation:

EA <- (Immediate || 00) + DelayInsnAddr
PC <- EA if flag cleared

Notes:

Class 2:
Architecture Level Execution Mode Implementation

Core CPU User and Supervisor Recommended

63

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

h.bf Branch if Flag h.bf

15 12 11 0
opcode 0xc X

4 bits 12 bits

Format:

h.bf X

Description:

The immediate is shifted left two bits, sign-extended to 32 bits and then added
to the address of the delay slot. The result is effective address of the branch.
If the compare flag is set, then the program branches to EA with a delay of
one 32 bit or two 16 bit instructions.

Operation:

EA <- (Immediate || 00) + DelayInsnAddr
PC <- EA if flag set

Notes:

Class 2:
Architecture Level Execution Mode Implementation

Core CPU User and Supervisor Recommended

64

0.1. OPENRISC 1000 INSTRUCTION SET

Left Middle Middle Middle Middle Middle Middle Middle Middle Right

h.sched Schedule h.sched

15 12 11 0
opcode 0xf Z

4 bits 12 bits

Format:

h.sched Z

Description:

Immediate carries static scheduling information about instruction scheduling.
This information is generated by an optimizing compiler.

Operation:

Notes:

Class 3:
Architecture Level Execution Mode Implementation

Core CPU User and Supervisor Optional

65

