
Package ‘registr’
February 17, 2026

Title Curve Registration for Exponential Family Functional Data

Version 2.2.1

Description A method for performing joint registration and functional principal
component analysis for curves (functional data) that are generated from exponential family dis-
tributions. This
mainly implements the algorithms described in 'Wro-
bel et al. (2019)' <doi:10.1111/biom.12963> and further adapts them to potentially
incomplete curves where (some) curves are not observed from the beginning and/or un-
til the end of the common domain. Curve registration
can be used to better understand patterns in functional data by separat-
ing curves into phase and amplitude variability.
This software handles both binary and continuous functional data, and is
especially applicable in accelerometry and wearable technology.

Depends R (>= 3.2)

Imports tidyr, magrittr, dplyr, pbs, Rcpp, parallel, MASS, utils,
gamm4, lme4, mgcv, purrr, Matrix

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.3.3

LinkingTo Rcpp, RcppArmadillo

Suggests testthat, knitr, rmarkdown, cowplot, ggplot2, pbapply,
fastglm

SystemRequirements GNU make

VignetteBuilder knitr

NeedsCompilation yes

Author Julia Wrobel [aut, cre] (ORCID:
<https://orcid.org/0000-0001-6783-1421>),

Alexander Bauer [aut],
Erin McDonnell [aut],
Fabian Scheipl [ctb],
Jeff Goldsmith [aut]

1

https://doi.org/10.1111/biom.12963
https://orcid.org/0000-0001-6783-1421

2 Contents

Maintainer Julia Wrobel <julia.wrobel@emory.edu>

Repository CRAN

Date/Publication 2026-02-17 09:50:02 UTC

Contents
amp_curve . 3
bfpca . 3
bfpca_argPreparation . 6
bfpca_optimization . 7
bs_deriv . 8
coarsen_index . 9
constraints . 10
cov_hall . 10
crossprods_irregular . 12
crossprods_regular . 12
data_clean . 13
deriv.inv.logit . 13
determine_npc . 14
ensure_proper_beta . 14
expectedScores . 15
expectedXi . 16
fpca_gauss . 16
fpca_gauss_argPreparation . 19
fpca_gauss_optimization . 20
gfpca_twoStep . 21
grid_subj_create . 24
growth_incomplete . 24
initial_params . 25
lambdaF . 26
loss_h . 26
loss_h_gradient . 28
mean_curve . 29
mean_sim . 30
nhanes . 30
piecewise_linear2_hinv . 31
plot.fpca . 31
psi1_sim . 33
psi2_sim . 33
register_fpca . 33
registr . 38
registr_oneCurve . 42
simulate_functional_data . 44
simulate_unregistered_curves . 45
squareTheta . 46

Index 47

amp_curve 3

amp_curve Simulate amplitude variance

Description

This function generates amplitudes for simulated accelerometer data.

Usage

amp_curve(grid, period = 2 * pi, spline_based = FALSE)

Arguments

grid Grid of x values over which to evaluate the function.

period Controls the period of the mean curve

spline_based If FALSE curve is constructed using sine and cosine functions, if TRUE, curve
is constructed using B-spline basis.

Value

A numeric vector.

bfpca Binary functional principal components analysis

Description

Function used in the FPCA step for registering binary functional data, called by register_fpca
when family = "binomial". This method uses a variational EM algorithm to estimate scores and
principal components for binary functional data.

The number of functional principal components (FPCs) can either be specified directly (argument
npc) or chosen based on the explained share of variance (npc_varExplained). In the latter case,
the explained share of variance and accordingly the number of FPCs is estimated before the main
estimation step by once running the FPCA with npc = 20 (and correspondingly Kt = 20). Doing so,
we approximate the overall variance in the data Y with the variance represented by the FPC basis
with 20 FPCs.

4 bfpca

Usage

bfpca(
Y,
npc = NULL,
npc_varExplained = NULL,
Kt = 8,
maxiter = 50,
t_min = NULL,
t_max = NULL,
print.iter = FALSE,
row_obj = NULL,
seed = 1988,
periodic = FALSE,
error_thresh = 1e-04,
verbose = 1,
subsample = TRUE,
...

)

Arguments

Y Dataframe. Should have variables id, value, index.
npc, npc_varExplained

The number of functional principal components (FPCs) has to be specified either
directly as npc or based on their explained share of variance. In the latter case,
npc_varExplained has to be set to a share between 0 and 1.

Kt Number of B-spline basis functions used to estimate mean functions and func-
tional principal components. Default is 8. If npc_varExplained is used, Kt is
set to 20.

maxiter Maximum number of iterations to perform for EM algorithm. Default is 50.

t_min Minimum value to be evaluated on the time domain.

t_max Maximum value to be evaluated on the time domain.

print.iter Prints current error and iteration

row_obj If NULL, the function cleans the data and calculates row indices. Keep this
NULL if you are using standalone register function.

seed Set seed for reproducibility. Defaults to 1988.

periodic If TRUE, uses periodic b-spline basis functions. Default is FALSE.

error_thresh Error threshold to end iterations. Defaults to 0.0001.

verbose Can be set to integers between 0 and 4 to control the level of detail of the printed
diagnostic messages. Higher numbers lead to more detailed messages. Defaults
to 1.

subsample if the number of rows of the data is greater than 10 million rows, the ‘id‘ values
are subsampled to get the mean coefficients.

... Additional arguments passed to or from other functions

bfpca 5

Value

An object of class fpca containing:

fpca_type Information that FPCA was performed with the ’variationEM’ approach, in con-
trast to registr::gfpca_twoStep.

t_vec Time vector over which the mean mu and the functional principal components
efunctions were evaluated.

knots Cutpoints for B-spline basis used to rebuild alpha.

efunctions D × npc matrix of estimated FPC basis functions.

evalues Estimated variance of the FPC scores.

evalues_sum Approximation of the overall variance in Y, based on an initial run of the FPCA
with npc = 20. Is NULL if npc_varExplained was not specified.

npc number of FPCs.

scores I × npc matrix of estimated FPC scores.

alpha Estimated population-level mean.

mu Estimated population-level mean. Same value as alpha but included for com-
patibility with refund.shiny package.

subject_coefs B-spline basis coefficients used to construct subject-specific means. For use in
registr() function.

Yhat FPC approximation of subject-specific means, before applying the response
function.

Y The observed data.

family binomial, for compatibility with refund.shiny package.

error vector containing error for each iteration of the algorithm.

Author(s)

Julia Wrobel <julia.wrobel@cuanschutz.edu>, Jeff Goldsmith <ajg2202@cumc.columbia.edu>,
Alexander Bauer <alexander.bauer@stat.uni-muenchen.de>

References

Jaakkola, T. S. and Jordan, M. I. (1997). A variational approach to Bayesian logistic regression
models and their extensions. Proceedings of the Sixth International Workshop on Artificial Intelli-
gence and Statistics.

Tipping, M. E. (1999). Probabilistic Visualisation of High-dimensional binary data. Advances in
neural information processing systems, 592–598.

Examples

Y = simulate_functional_data()$Y

estimate 2 FPCs
bfpca_obj = bfpca(Y, npc = 2, print.iter = TRUE, maxiter = 25)

6 bfpca_argPreparation

plot(bfpca_obj)

estimate npc adaptively, to explain 90% of the overall variation
bfpca_obj2 = bfpca(Y, npc_varExplained = 0.9, print.iter = TRUE, maxiter = 30)
plot(bfpca_obj2)

bfpca_argPreparation Internal main preparation function for bfpca

Description

Internal main preparation function for bfpca

Usage

bfpca_argPreparation(
Y,
Kt,
time,
t_min,
t_max,
periodic,
seed,
subsample,
verbose

)

Arguments

Y, time, t_min, t_max
Internal objects created in bfpca.

Kt Number of B-spline basis functions used to estimate mean functions and func-
tional principal components. Default is 8. If npc_varExplained is used, Kt is
set to 20.

periodic If TRUE, uses periodic b-spline basis functions. Default is FALSE.
seed Set seed for reproducibility. Defaults to 1988.
subsample if the number of rows of the data is greater than 10 million rows, the ‘id‘ values

are subsampled to get the mean coefficients.
verbose Can be set to integers between 0 and 4 to control the level of detail of the printed

diagnostic messages. Higher numbers lead to more detailed messages. Defaults
to 1.

Value

List with elements knots, Theta_phi, xi, alpha_coefs.

bfpca_optimization 7

bfpca_optimization Internal main optimization for bfpca

Description

Main optimization function for bfpca. If npc_varExplained is specified, the function simply re-
turns a list with elements npc (chosen number of FPCs), evalues (estimated variances of the first
’npc’ FPCs) and evalues_sum (sum of the estimated variances of the first 20 FPCs, as approxima-
tion of the overall variance).

Usage

bfpca_optimization(
npc,
npc_varExplained = NULL,
Kt,
maxiter,
print.iter,
seed,
periodic,
error_thresh,
verbose,
Y,
rows,
I,
knots,
Theta_phi,
xi,
alpha_coefs

)

Arguments

npc, npc_varExplained
The number of functional principal components (FPCs) has to be specified either
directly as npc or based on their explained share of variance. In the latter case,
npc_varExplained has to be set to a share between 0 and 1.

Kt Number of B-spline basis functions used to estimate mean functions and func-
tional principal components. Default is 8. If npc_varExplained is used, Kt is
set to 20.

maxiter Maximum number of iterations to perform for EM algorithm. Default is 50.

print.iter Prints current error and iteration

seed Set seed for reproducibility. Defaults to 1988.

periodic If TRUE, uses periodic b-spline basis functions. Default is FALSE.

error_thresh Error threshold to end iterations. Defaults to 0.0001.

8 bs_deriv

verbose Can be set to integers between 0 and 4 to control the level of detail of the printed
diagnostic messages. Higher numbers lead to more detailed messages. Defaults
to 1.

Y, rows, I, knots, Theta_phi, xi, alpha_coefs
Internal objects created in bfpca.

Value

list with elements t_vec, Theta_phi_mean, alpha_coefs, efunctions, evalues, evalues_sum,
scores, subject_coef, fittedVals, error. See documentation of fpca_gauss for details.

bs_deriv Nth derivative of spline basis

Description

This function gets derivative of a spline basis. Adapted from bs() function in splines package.

Usage

bs_deriv(
x,
knots,
degree = 3L,
Boundary.knots = range(x),
derivative = 1,
intercept = TRUE

)

Arguments

x a numeric vector of values at which to evaluate the B-spline functions or deriva-
tives.

knots the internal breakpoints that define the spline.

degree degree of the piecewise polynomial—default is 3 for cubic splines.

Boundary.knots boundary points at which to anchor the B-spline basis. Set to [0,1] if you want
this to be your domain.

derivative a positive integer value that specifies which derivative to take. Defaults to 1 for
1st derivative. Value of 0 returns the original set of b-spline basis functions.

intercept if TRUE, an intercept is included in the basis; default is TRUE

Value

A matrix containing:

basis A B-spline basis that can be used to approximate the derivative of a function.

coarsen_index 9

Author(s)

Julia Wrobel <julia.wrobel@cuanschutz.edu>

coarsen_index Coarsen an index vector to a given resolution

Description

Reduce the resolution of a numeric vector by specifying the number of significant_digits to
which the numbers should be rounded.

Internal function used to coarsen the index vector before estimating the two-step GFPCA with
gfpca_twoStep.

Usage

coarsen_index(index, significant_digits)

Arguments

index Numeric vector of index values.
significant_digits

Positive integer value.

Value

Numeric vector of rounded index values.

Author(s)

Alexander Bauer <alexander.bauer@stat.uni-muenchen.de>

Examples

index_vector = c(0.7892, 0.2984, 0.328)
registr:::coarsen_index(index_vector, 1)
registr:::coarsen_index(index_vector, 3)

index_vector2 = c(2803, -7639, 13)
registr:::coarsen_index(index_vector2, 1)
registr:::coarsen_index(index_vector2, 3)

10 cov_hall

constraints Define constraints for optimization of warping functions

Description

Constraints ensure monotonicity of spline coefficients for warping functions for use with constrOptim()
function.

Usage

constraints(Kh, t_min = 0, t_max = 1, warping = "nonparametric")

Arguments

Kh Number of B-spline basis functions used to estimate warping functions h.

t_min Minimum value to be evaluated on the time domain.

t_max Maximum value to be evaluated on the time domain.

warping If nonparametric (default), inverse warping functions are estimated nonpara-
metrically. If piecewise_linear2 they follow a piecewise linear function with
2 knots.

Value

An list containing:

ui A constraint matrix.

ci A constraint vector.

Author(s)

Julia Wrobel <julia.wrobel@cuanschutz.edu>, Erin McDonnell <eim2117@cumc.columbia.edu>

cov_hall Covariance estimation after Hall et al. (2008)

Description

Internal function for the estimation of the covariance matrix of the latent process using the approach
of Hall et al. (2008). Used in the two-step GFPCA approach implemented in gfpca_twoStep.

This function is an adaptation of the implementation of Jan Gertheiss and Ana-Maria Staicu for
Gertheiss et al. (2017), with focus on higher (RAM) efficiency for large data settings.

cov_hall 11

Usage

cov_hall(
Y,
index_evalGrid,
Kt = 25,
Kc = 10,
family = "gaussian",
diag_epsilon = 0.01,
make_pd = TRUE

)

Arguments

Y Dataframe. Should have values id, value, index.

index_evalGrid Grid for the evaluation of the covariance structure.

Kt Number of P-spline basis functions for the estimation of the marginal mean.
Defaults to 25.

Kc Number of marginal P-spline basis functions for smoothing the covariance sur-
face. Defaults to 10.

family One of c("gaussian","binomial","gamma","poisson"). Poisson data are
rounded before performing the GFPCA to ensure integer data, see Details sec-
tion below. Defaults to "gaussian".

diag_epsilon Small constant to which diagonal elements of the covariance matrix are set if
they are smaller. Defaults to 0.01.

make_pd Indicator if positive (semi-)definiteness of the returned latent covariance should
be ensured via Matrix::near_PD(). Defaults to TRUE.

Details

The implementation deviates from the algorithm described in Hall (2008) in one crucial step – we
compute the crossproducts of centered observations and smooth the surface of these crossproducts
directly instead of computing and smoothing the surface of crossproducts of uncentered observa-
tions and subsequently subtracting the (crossproducts of the) mean function. The former seems to
yield smoother eigenfunctions and fewer non-positive-definite covariance estimates.

If the data Y or the crossproduct matrix contain more than 100,000 rows or elements, the estimation
of the marginal mean or the smoothing step of the covariance matrix are performed by using the
discretization-based estimation algorithm in bam rather than the gam estimation algorithm.

Value

Covariance matrix with dimension time_evalGrid x time_evalGrid.

Author(s)

Alexander Bauer <alexander.bauer@stat.uni-muenchen.de> and Fabian Scheipl, based on work
of Jan Gertheiss and Ana-Maria Staicu

12 crossprods_regular

References

Hall, P., Müller, H. G., & Yao, F. (2008). Modelling sparse generalized longitudinal observa-
tions with latent Gaussian processes. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 70(4), 703–723.

Gertheiss, J., Goldsmith, J., & Staicu, A. M. (2017). A note on modeling sparse exponential-family
functional response curves. Computational statistics & data analysis, 105, 46–52.

Examples

data(growth_incomplete)

index_grid = c(1.25, seq(from = 2, to = 18, by = 1))
cov_matrix = registr:::cov_hall(growth_incomplete, index_evalGrid = index_grid)

crossprods_irregular Crossproduct computation for highly irregular grids

Description

Compute the crossproduct in a fast way for highly irregular grids (index values are mostly unique).
Only used internally in cov_hall().

Usage

crossprods_irregular(Y)

Arguments

Y Dataframe with the centered observations. Should have values id, centered, in-
dex.

crossprods_regular Crossproduct computation for mostly regular grids

Description

Compute the crossproduct in a fast way for mostly regular grids (index values are mostly *not*
unique). Only used internally in cov_hall().

Usage

crossprods_regular(Y)

Arguments

Y Dataframe with the centered observations. Should have values id, centered, in-
dex.

data_clean 13

data_clean Convert data to a refund object

Description

Function used for data cleaning.

Usage

data_clean(data)

Arguments

data Dataframe. Should have values id, value, index.

Value

An list containing:

Y The original data sorted by id and index.

Y_rows A dataframe containing the first and last row for each subject.

deriv.inv.logit Estimate the derivative of the logit function

Description

Compute the derivative of the logit function for a given point x.

Usage

S3 method for class 'inv.logit'
deriv(x)

Arguments

x Value at which the derivative is computed

Author(s)

Alexander Bauer <alexander.bauer@stat.uni-muenchen.de>

14 ensure_proper_beta

determine_npc Determine the number of FPCs based on the share of explained vari-
ance

Description

This internal function is called in gfpca_twoStep, fpca_gauss and bfpca to determine the number
of functional principal components based on their share of explained variance.

Usage

determine_npc(evalues, npc_criterion)

Arguments

evalues Vector of estimated variances of the FPC scores.

npc_criterion Either (i) a share between 0 and 1, or (ii) a vector with two elements for the tar-
geted explained share of variance and a cut-off scree plot criterion, both between
0 and 1. For the latter, e.g., npc_criterion = c(0.9,0.02) tries to choose a
number of FPCs that explains at least 90% of variation, but only includes FPCs
that explain at least 2% of variation (even if this means 90% explained variation
is not reached).

Value

Integer for the number of fucntional principal components

ensure_proper_beta Correct slightly improper parameter vectors

Description

Internal function. In the joint iterations between registration and GFPCA, the optimization with
constrOptim() in the registration step sometimes leads to slightly improper solutions, which cause
the optimization to throw an error in the following optimization step. This function corrects the
parameter vector if one of the following slight inconsistencies occurs that can mess with the opti-
mization of constrOptim():
- two neighboring values of the parameter vector are too similar
- the initial values of the parameter vector are smaller than t_min, the minimum of the underlying
time domain
- the last values of the parameter vector are greater than t_max, the maximum of the underlying
time domain
- one parameter value is slightly greater than its following value, i.e. the parameter vector is not
monotone.

expectedScores 15

Usage

ensure_proper_beta(beta, t_min, t_max)

Arguments

beta Parameter vector.

t_min, t_max Minimum and maximum of the underlying time domain in the registration step.

Value

A slightly changed parameter vector that ensures a proper solution in the optimization of the regis-
tration step.

Author(s)

Alexander Bauer <alexander.bauer@stat.uni-muenchen.de>

Examples

beta_improper = c(0.24, 1.000047, 1.000002)
registr:::ensure_proper_beta(beta_improper, t_min = 0, t_max = 1)

expectedScores Calculate expected score and score variance for the current subject.

Description

Calculations derived using maximum likelihood estimation.

Usage

expectedScores(Y, mu, psi, theta, theta_quad)

Arguments

Y vector of observations for the current subject.

mu vector of spline coefficients for the population mean.

psi matrix of spline coefficients for the principal component basis functions.

theta spline basis functions for the current subject.

theta_quad quadratic form of theta for the current subject.

Value

A list with expected score mean and variance for the current subject.

16 fpca_gauss

expectedXi Estimate variational parameter for the current subject.

Description

Function calculates value of variational parameter using maximum likelihood.

Usage

expectedXi(theta, mu, mi, psi, Ci)

Arguments

theta spline basis functions for the current subject.

mu vector of spline coefficients for the population mean.

mi vector of expected mean scores for the current subject.

psi matrix of spline coefficients for the principal component basis functions.

Ci expected covariance matrix of scores for the current subject.

Value

A vector of variational parameters for the current subject.

fpca_gauss Functional principal components analysis via variational EM

Description

Function used in the FPCA step for registering functional data, called by register_fpca when
family = "gaussian". Parameters estimated based on probabilistic PCA framework originally in-
troduced by Tipping and Bishop in 1999.

The number of functional principal components (FPCs) can either be specified directly (argument
npc) or chosen based on the explained share of variance (npc_varExplained). In the latter case,
the explained share of variance and accordingly the number of FPCs is estimated before the main
estimation step by once running the FPCA with npc = 20 (and correspondingly Kt = 20). Doing so,
we approximate the overall variance in the data Y with the variance represented by the FPC basis
with 20 FPCs.

fpca_gauss 17

Usage

fpca_gauss(
Y,
npc = NULL,
npc_varExplained = NULL,
Kt = 8,
maxiter = 20,
t_min = NULL,
t_max = NULL,
print.iter = FALSE,
row_obj = NULL,
seed = 1988,
periodic = FALSE,
error_thresh = 1e-04,
subsample = TRUE,
verbose = 1,
...

)

Arguments

Y Dataframe. Should have variables id, value, index.
npc, npc_varExplained

The number of functional principal components (FPCs) has to be specified either
directly as npc or based on their explained share of variance. In the latter case,
npc_varExplained has to be set to a share between 0 and 1.

Kt Number of B-spline basis functions used to estimate mean functions and func-
tional principal components. Default is 8. If npc_varExplained is used, Kt is
set to 20.

maxiter Maximum number of iterations to perform for EM algorithm. Default is 50.

t_min Minimum value to be evaluated on the time domain.

t_max Maximum value to be evaluated on the time domain.

print.iter Prints current error and iteration

row_obj If NULL, the function cleans the data and calculates row indices. Keep this
NULL if you are using standalone register function.

seed Set seed for reproducibility. Defaults to 1988.

periodic If TRUE, uses periodic b-spline basis functions. Default is FALSE.

error_thresh Error threshold to end iterations. Defaults to 0.0001.

subsample if the number of rows of the data is greater than 10 million rows, the ‘id‘ values
are subsampled to get the mean coefficients.

verbose Can be set to integers between 0 and 4 to control the level of detail of the printed
diagnostic messages. Higher numbers lead to more detailed messages. Defaults
to 1.

... Additional arguments passed to or from other functions

18 fpca_gauss

Value

An object of class fpca containing:

fpca_type Information that FPCA was performed with the ’variationEM’ approach, in con-
trast to registr::gfpca_twoStep.

t_vec Time vector over which the mean mu and the functional principal components
efunctions were evaluated.

knots Cutpoints for B-spline basis used to rebuild alpha.

efunctions D × npc matrix of estimated FPC basis functions.

evalues Estimated variance of the FPC scores.

evalues_sum Approximation of the overall variance in Y, based on an initial run of the FPCA
with npc = 20. Is NULL if npc_varExplained was not specified.

npc number of FPCs.

scores I × npc matrix of estimated FPC scores.

alpha Estimated population-level mean.

mu Estimated population-level mean. Same value as alpha but included for com-
patibility with refund.shiny package.

subject_coefs B-spline basis coefficients used to construct subject-specific means. For use in
registr() function.

Yhat FPC approximation of subject-specific means.

Y The observed data.

family gaussian, for compatibility with refund.shiny package.

sigma2 Estimated error variance

Author(s)

Julia Wrobel <julia.wrobel@cuanschutz.edu>, Jeff Goldsmith <ajg2202@cumc.columbia.edu>,
Alexander Bauer <alexander.bauer@stat.uni-muenchen.de>

References

Tipping, M. E. and Bishop, C (1999). Probabilistic Principal Component Analysis. Journal of the
Royal Statistical Society Series B,, 592–598.

Examples

data(growth_incomplete)

estimate 2 FPCs
fpca_obj = fpca_gauss(Y = growth_incomplete, npc = 2)
plot(fpca_obj)

estimate npc adaptively, to explain 90% of the overall variation

fpca_obj2 = fpca_gauss(Y = growth_incomplete, npc_varExplained = 0.9)

fpca_gauss_argPreparation 19

plot(fpca_obj, plot_FPCs = 1:2)

fpca_gauss_argPreparation

Internal main preparation function for fpca_gauss

Description

Internal main preparation function for fpca_gauss

Usage

fpca_gauss_argPreparation(
Y,
Kt,
time,
t_min,
t_max,
periodic,
seed,
subsample,
verbose

)

Arguments

Y, time, t_min, t_max
Internal objects created in fpca_gauss.

Kt Number of B-spline basis functions used to estimate mean functions and func-
tional principal components. Default is 8. If npc_varExplained is used, Kt is
set to 20.

periodic If TRUE, uses periodic b-spline basis functions. Default is FALSE.

seed Set seed for reproducibility. Defaults to 1988.

subsample if the number of rows of the data is greater than 10 million rows, the ‘id‘ values
are subsampled to get the mean coefficients.

verbose Can be set to integers between 0 and 4 to control the level of detail of the printed
diagnostic messages. Higher numbers lead to more detailed messages. Defaults
to 1.

Value

List with elements knots, Theta_phi, alpha_coefs.

20 fpca_gauss_optimization

fpca_gauss_optimization

Internal main optimization for fpca_gauss

Description

Main optimization function for fpca_gauss. If npc_varExplained is specified, the function sim-
ply returns a list with elements npc (chosen number of FPCs), evalues (estimated variances of
the first ’npc’ FPCs) and evalues_sum (sum of the estimated variances of the first 20 FPCs, as
approximation of the overall variance).

Usage

fpca_gauss_optimization(
npc,
npc_varExplained = NULL,
Kt,
maxiter,
print.iter,
seed,
periodic,
error_thresh,
verbose,
Y,
rows,
I,
knots,
Theta_phi,
alpha_coefs

)

Arguments

npc, npc_varExplained
The number of functional principal components (FPCs) has to be specified either
directly as npc or based on their explained share of variance. In the latter case,
npc_varExplained has to be set to a share between 0 and 1.

Kt Number of B-spline basis functions used to estimate mean functions and func-
tional principal components. Default is 8. If npc_varExplained is used, Kt is
set to 20.

maxiter Maximum number of iterations to perform for EM algorithm. Default is 50.

print.iter Prints current error and iteration

seed Set seed for reproducibility. Defaults to 1988.

periodic If TRUE, uses periodic b-spline basis functions. Default is FALSE.

error_thresh Error threshold to end iterations. Defaults to 0.0001.

gfpca_twoStep 21

verbose Can be set to integers between 0 and 4 to control the level of detail of the printed
diagnostic messages. Higher numbers lead to more detailed messages. Defaults
to 1.

Y, rows, I, knots, Theta_phi, alpha_coefs
Internal objects created in fpca_gauss.

Value

list with elements t_vec, Theta_phi_mean, alpha_coefs, efunctions, evalues, evalues_sum,
scores, subject_coef, fittedVals, sigma2. See documentation of fpca_gauss for details.

gfpca_twoStep Generalized functional principal component analysis

Description

Function for applying FPCA to different exponential family distributions. Used in the FPCA step
for registering functional data, called by register_fpca when fpca_type = "two-step".

The method implements the ‘two-step approach‘ of Gertheiss et al. (2017) and is based on the
approach of Hall et al. (2008) to estimate functional principal components.

The number of functional principal components (FPCs) can either be specified directly (argument
npc) or chosen based on the explained share of variance (npc_criterion). Using the latter, we
approximate the overall variance in the data Y with the variance represented by the smoothed covari-
ance surface estimated with cov_hall. Note that the Eigenvalue decomposition of this covariance
surface sometimes leads to a long tail of subordinate FPCs with small eigenvalues. Such subordi-
nate dimensions seem to often represent phase rather than amplitude variation, and can be cut off
by specifying the second element of argument npc_criterion.

This function is an adaptation of the implementation of Jan Gertheiss for Gertheiss et al. (2017),
with focus on higher (RAM) efficiency for large data settings.

Usage

gfpca_twoStep(
Y,
family = "gaussian",
npc = NULL,
npc_criterion = NULL,
Kt = 8,
t_min = NULL,
t_max = NULL,
row_obj = NULL,
index_significantDigits = 4L,
estimation_accuracy = "high",
start_params = NULL,

22 gfpca_twoStep

periodic = FALSE,
verbose = 1,
...

)

Arguments

Y Dataframe. Should have values id, value, index.

family One of c("gaussian","binomial","gamma","poisson"). Poisson data are
rounded before performing the GFPCA to ensure integer data, see Details sec-
tion below. Defaults to "gaussian".

npc, npc_criterion
The number of functional principal components (FPCs) has to be specified either
directly as npc or based on their explained share of variance. In the latter case,
npc_criterion can either be set to (i) a share between 0 and 1, or (ii) a vector
with two elements comprising the targeted explained share of variance and a
cut-off scree plot criterion, both between 0 and 1. As an example for the latter,
npc_criterion = c(0.9,0.02) tries to choose a number of FPCs that explains
at least 90% of variation, but only includes FPCs that explain at least 2% of
variation (even if this means 90% explained variation is not reached).

Kt Number of B-spline basis functions used to estimate mean functions and func-
tional principal components. Default is 8.

t_min Minimum value to be evaluated on the time domain.

t_max Maximum value to be evaluated on the time domain.

row_obj If NULL, the function cleans the data and calculates row indices. Keep this
NULL if you are using standalone register function.

index_significantDigits

Positive integer >= 2, stating the number of significant digits to which the index
grid should be rounded. Coarsening the index grid is necessary since other-
wise the covariance surface matrix explodes in size in the presence of too many
unique index values (which is always the case after some registration step). De-
faults to 4. Set to NULL to prevent rounding.

estimation_accuracy

One of c("high","low"). When set to "low", the mixed model estimation step
in lme4 is performed with lower accuracy, reducing computation time. Defaults
to "high".

start_params Optional start values for gamm4. Not used if npc_criterion is specified.

periodic Only contained for full consistency with fpca_gauss and bfpca. If TRUE, re-
turns the knots vector for periodic b-spline basis functions. Defaults to FALSE.
This parameter does not change the results of the two-step GFPCA.

verbose Can be set to integers between 0 and 4 to control the level of detail of the printed
diagnostic messages. Higher numbers lead to more detailed messages. Defaults
to 1.

... Additional arguments passed to cov_hall.

gfpca_twoStep 23

Details

For family = "poisson" the values in Y are rounded before performing the GFPCA to ensure inte-
ger data. This is done to ensure reasonable computation times. Computation times tend to explode
when estimating the underlying high-dimensional mixed model with continuous Poisson data based
on the gamm4() package.

If negative eigenvalues are present, the respective eigenfunctions are dropped and not considered
further.

Value

An object of class fpca containing:

fpca_type Information that FPCA was performed with the ’two-step’ approach, in contrast
to registr::fpca_gauss or registr::bfpca.

t_vec Time vector over which the mean mu was evaluated. The resolution is can be
specified by setting index_significantDigits.

knots Cutpoints for B-spline basis used to rebuild alpha.

efunctions D × npc matrix of estimated FPC basis functions.

evalues Estimated variance of the FPC scores.

evalues_sum Sum of all (nonnegative) eigenvalues of the smoothed covariance surface esti-
mated with cov_hall. Can be used as an approximation for the total variance
present in Y to compute the shares of explained variance of the FPC scores.

npc number of FPCs.

scores I × npc matrix of estimated FPC scores.

alpha Estimated population-level mean.

mu Estimated population-level mean. Same value as alpha but included for com-
patibility with refund.shiny package.

subject_coefs Always NA but included for full consistency with fpca_gauss and bfpca.

Yhat FPC approximation of subject-specific means, before applying the response
function.

Y The observed data.

family binomial, for compatibility with refund.shiny package.

gamm4_theta Estimated parameters of the mixed model.

Author(s)

Alexander Bauer <alexander.bauer@stat.uni-muenchen.de>, based on work of Jan Gertheiss

References

Gertheiss, J., Goldsmith, J., & Staicu, A. M. (2017). A note on modeling sparse exponential-family
functional response curves. Computational statistics & data analysis, 105, 46–52.

Hall, P., Müller, H. G., & Yao, F. (2008). Modelling sparse generalized longitudinal observa-
tions with latent Gaussian processes. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 70(4), 703–723.

24 growth_incomplete

Examples

data(growth_incomplete)

estimate 2 FPCs
fpca_obj = gfpca_twoStep(Y = growth_incomplete, npc = 2, family = "gaussian")
plot(fpca_obj)

estimate npc adaptively, to explain 90% of the overall variation
fpca_obj2 = gfpca_twoStep(Y = growth_incomplete, npc_criterion = 0.9, family = "gaussian")
plot(fpca_obj2, plot_FPCs = 1:2)

grid_subj_create Generate subject-specific grid (t_star)

Description

This function creates subject-specific time grid

Usage

grid_subj_create(coefs, D)

Arguments

coefs Spline basis coefficients for reconstructing the subject-specific grid.

D Number of grid points per subject.

Value

A numeric vector.

growth_incomplete Berkeley Growth Study data with simulated incompleteness

Description

This dataset from the Berkeley Growth Study comprises the height development of 39 boys and 54
girls between ages 1 and 18. It is based on the dataset fda::growth and focuses not on the observed
heights, but on the first derivatives of the curves. Before taking the first derivative, the curves were
slightly smoothed.

To showcase the functionality of the registr package regarding the analysis of incomplete curves,
the growth curves were artificially made incomplete. For each child, leading incompleteness was
simulated by drawing a random initial age in the first quarter of the domain. Also, trailing incom-
pleteness was simulated by drawing a random cut-off age in the second half of the domain.

initial_params 25

Usage

data(growth_incomplete)

Format

A dataframe made up of

id A unique subject identifier;

index Observed age of the child’s height;

value First derivative of the height development in the given age.

References

Ramsay, J. O., and Silverman, B. W. (2006), Functional Data Analysis, 2nd ed., Springer, New
York.

Tuddenham, R. D., and Snyder, M. M. (1954). Physical growth of California boys and girls from
birth to age 18. University of California Publications in Child Development, 1, 183-364.

initial_params Create initial parameters for (inverse) warping functions

Description

Dependent on the specific type of warping functions, this function creates a vector of initial pa-
rameters. For "nonparametric" warpings that are based on a given spline basis matrix, the initial
parameters are defined s.t. the resulting (inverse) warping function equals a diagonal line. For
"piecewise_linear2" warpings a fixed parameter vector is returned.

Usage

initial_params(warping = "nonparametric", K, t_vec)

Arguments

warping If nonparametric (default), inverse warping functions are estimated nonpara-
metrically. If piecewise_linear2 they follow a piecewise linear function with
2 knots.

K Spline basis matrix defined over the interval c(t_min, t_max).

t_vec Vector of the observed and potentially irregular time grid.

26 loss_h

lambdaF Apply lambda transformation of variational parameter.

Description

Simple function for use within other C++ functions.

Usage

lambdaF(x)

Arguments

x The value to which you apply the function

Value

A numeric value that has been transformed.

loss_h Loss function for registration step optimization

Description

Loss function for registration step optimization

Usage

loss_h(
Y,
Theta_h,
mean_coefs,
knots,
beta.inner,
family,
t_min,
t_max,
t_min_curve,
t_max_curve,
incompleteness = NULL,
lambda_inc = NULL,
periodic = FALSE,
Kt = 8,
warping = "nonparametric",
priors = FALSE,
prior_sd = NULL

)

loss_h 27

Arguments

Y vector of observed points.

Theta_h B-spline basis for inverse warping functions.

mean_coefs spline coefficient vector for mean curve.

knots knot locations for B-spline basis used to estimate mean and FPC basis function.

beta.inner spline coefficient vector to be estimated for warping function h.

family One of c("gaussian","binomial","gamma","poisson"). For internal pur-
poses, can also be set to "gamma-varEM" and "poisson-varEM" if the preceding
FPCA step in register_fpca was performed with fpca_type = "variationalEM"
which uses Gaussian family.

t_min, t_max minimum and maximum value to be evaluated on the time domain.
t_min_curve, t_max_curve

minimum and maximum value of the observed time domain of the (potentially
incomplete) curve.

incompleteness Optional specification of incompleteness structure. One of c("leading","trailing","full"),
specifying that incompleteness is present only in the initial measurements, only
in the trailing measurements, or in both, respectively. For details see the accom-
panying vignette. Defaults to NULL, i.e. no incompleteness structure. Can only
be set when warping = "nonparametric".

lambda_inc Penalization parameter to control the amount of overall dilation of the domain.
The higher this lambda, the more the registered domains are forced to have the
same length as the observed domains. Only used if incompleteness is not
NULL.

periodic If TRUE uses periodic b-spline basis functions. Default is FALSE.

Kt Number of B-spline basis functions used to estimate mean functions. Default is
8.

warping If nonparametric (default), inverse warping functions are estimated nonpara-
metrically. If piecewise_linear2 they follow a piecewise linear function with
2 knots.

priors For warping = "piecewise_linear2" only. Logical indicator of whether to
add Normal priors to pull the knots toward the identity line.

prior_sd For warping = "piecewise_linear2" with priors = TRUE only. User-specified
standard deviation for the Normal priors (single value applied to all 4 knot pri-
ors).

Value

The scalar value taken by the loss function.

Author(s)

Julia Wrobel <julia.wrobel@cuanschutz.edu>, Erin McDonnell <eim2117@cumc.columbia.edu>,
Alexander Bauer <alexander.bauer@stat.uni-muenchen.de>

28 loss_h_gradient

loss_h_gradient Gradient of loss function for registration step

Description

Gradient of loss function for registration step

Usage

loss_h_gradient(
Y,
Theta_h,
mean_coefs,
knots,
beta.inner,
family = "gaussian",
incompleteness = NULL,
lambda_inc = NULL,
t_min,
t_max,
t_min_curve,
t_max_curve,
Kt = 8,
periodic = FALSE,
warping = "nonparametric"

)

Arguments

Y vector of observed points.

Theta_h B-spline basis for inverse warping functions.

mean_coefs spline coefficient vector for mean curve.

knots knot locations for B-spline basis used to estimate mean and FPC basis function.

beta.inner spline coefficient vector to be estimated for warping function h.

family One of c("gaussian","binomial"). Defaults to "gaussian".

incompleteness Optional specification of incompleteness structure. One of c("leading","trailing","full"),
specifying that incompleteness is present only in the initial measurements, only
in the trailing measurements, or in both, respectively. For details see the accom-
panying vignette. Defaults to NULL, i.e. no incompleteness structure. Can only
be set when warping = "nonparametric".

lambda_inc Penalization parameter to control the amount of overall dilation of the domain.
The higher this lambda, the more the registered domains are forced to have the
same length as the observed domains. Only used if incompleteness is not
NULL.

t_min, t_max minimum and maximum value to be evaluated on the time domain.

mean_curve 29

t_min_curve, t_max_curve
minimum and maximum value of the observed time domain of the (potentially
incomplete) curve.

Kt Number of B-spline basis functions used to estimate mean functions. Default is
8.

periodic If TRUE, uses periodic b-spline basis functions. Default is FALSE. loss_h_gradient()
is currently only available for periodic = FALSE.

warping If nonparametric (default), inverse warping functions are estimated nonpara-
metrically. If piecewise_linear2 they follow a piecewise linear function with
2 knots. loss_h_gradient() is currently only available for warping = "nonparametric".

Value

A numeric vector of spline coefficients for the gradient of the loss function.

Author(s)

Julia Wrobel <julia.wrobel@cuanschutz.edu>, Alexander Bauer <alexander.bauer@stat.uni-muenchen.de>

mean_curve Simulate mean curve

Description

This function generates mean for simulated accelerometer data.

Usage

mean_curve(grid, period = 2 * pi, spline_based = FALSE)

Arguments

grid Grid of x values over which to evaluate the function.

period Controls the period of the mean curve

spline_based If FALSE curve is constructed using sine and cosine functions, if TRUE, curve
is constructed using B-spline basis.

Value

A numeric vector.

30 nhanes

mean_sim Simulate mean

Description

This function generates mean for simulated functional data.

Usage

mean_sim(grid)

Arguments

grid Grid of x values over which to evaluate the function.

nhanes NHANES activity data

Description

Subset of 24 hours of activity data for 50 subjects from 2003-2004 National Health and Nutrition
Examination Survey (NHANES). Each subject is observed over 24 hours on a Sunday and wore the
activity collection device for a minimum of 10 hours. Activity is measured each minute over 24
hours.

Usage

data(nhanes)

Format

A dataframe made up of

id A unique subject identifier;

age Age of survey participant;

gender Gender of survey participant;

index Observed time of activity measurement. Integers from 1 to 1440, indicating minutes from
midnight to midnight;

value Binary value of zero or one indicating inactivity or activity;

raw_activity Raw activity count.

piecewise_linear2_hinv 31

piecewise_linear2_hinv

Create two-parameter piecewise linear (inverse) warping functions

Description

This function uses a 2-knot piecewise linear model to calculate inverse warping functions for regis-
tration. The parameters knot1_x and knot1_y control the x and y locations of the first knot, and the
parameters knot1_x and knot1_y control the x and y locations of the second knot. The designation
(inverse) is intended to communicate that these functions take data from the unregistered space to
the registered space, consistent with functional data literature on registration.

Usage

piecewise_linear2_hinv(grid, knot_locations = c(0.25, 0.3, 0.75, 0.9))

Arguments

grid grid of values over which to evaluate the function.

knot_locations controls the x and y locations of the two knots.

Author(s)

Erin McDonnell <eim2117@cumc.columbia.edu>

plot.fpca Plot the results of a functional PCA

Description

S3 plot method for class fpca. Plot FPCA results by visualizing the variation of the individual
FPCs around the global mean. based on an object created with function fpca_gauss, bfpca or
gfpca_twoStep.

The shares of explained variance are included in the plot titles if x contains an element evalues_sum.

Usage

S3 method for class 'fpca'
plot(
x,
plot_FPCs = 1:x$npc,
sd_factor = 2,
response_function = NULL,
add_symbols = TRUE,

32 plot.fpca

subtitle = TRUE,
xlim = NULL,
ylim = NULL,
xlab = "t [registered]",
ylab = "y",
...

)

Arguments

x Object of class "fpca".

plot_FPCs Optional index vector of the FPCs to be plotted. Defaults to all FPCs contained
in x.

sd_factor Numeric factor with which the standard deviations of each FPC’s scores are
multiplied to display its variation in the plots. Defaults to 2.

response_function

Optional response function to be applied before plotting the curves. Defaults to
NULL, i.e. the identity function if x$family is one of c("gaussian","binomial")
or exp() if x$family is one of c("gamma","poisson").

add_symbols Indicator if ’+’ and ’-’ symbols should be added to the plot to highlight the
direction of the displayed FPCs. Defaults to TRUE.

subtitle If TRUE (default) the parameter sd_factor is displayed in the plot subtitle.

xlim, ylim Optional numeric vectors with limits for the x and y axis.

xlab, ylab Optional titles for the x and y axis.

... Additional arguments passed to theme.

Value

@return If multiple FPCs are plotted, returns a grid of ggplot plots, created with cowplot::plot_grid.
If only one FPC is plotted, returns a single ggplot plot.

Author(s)

Alexander Bauer <alexander.bauer@stat.uni-muenchen.de>

Examples

data(growth_incomplete)

fpca_obj = fpca_gauss(Y = growth_incomplete, npc = 2)
if (requireNamespace("ggplot2", quietly = TRUE) &&
requireNamespace("cowplot", quietly = TRUE)) {
library(ggplot2)
plot(fpca_obj)
}

psi1_sim 33

psi1_sim Simulate PC1

Description

This function generates the first principal component for simulated functional data.

Usage

psi1_sim(grid)

Arguments

grid Grid of x values over which to evaluate the function.

psi2_sim Simulate PC2

Description

This function generates the second principal component for simulated functional data.

Usage

psi2_sim(grid)

Arguments

grid Grid of x values over which to evaluate the function.

register_fpca Register curves using constrained optimization and GFPCA

Description

Function combines constrained optimization and GFPCA to estimate warping functions for expo-
nential family curves. See argument family for which families are supported. Warping functions
are calculated by the function registr. The GFPCA step can be performed either using the vari-
ational EM-based GFPCA approaches of Wrobel et al. (2019) (fpca_type = "variationalEM",
default) or the mixed model-based two-step approach of Gertheiss et al. (2017) (fpca_type =
"two-step").

Warping functions by default are forced to start and end on the diagonal to be domain-preserving.
This behavior can be changed by setting incompleteness to some other value than NULL and a

34 register_fpca

reasonable lambda_inc value. For further details see the accompanying vignette.

The number of functional principal components (FPCs) can either be specified directly (argument
npc) or chosen based on the explained share of variance in each iteration (argument npc_criterion).

By specifying cores > 1 the registration call can be parallelized.

Usage

register_fpca(
Y,
Kt = 8,
Kh = 4,
family = "gaussian",
incompleteness = NULL,
lambda_inc = NULL,
Y_template = NULL,
max_iterations = 10,
npc = NULL,
npc_criterion = NULL,
fpca_type = "variationalEM",
fpca_maxiter = 50,
fpca_seed = 1988,
fpca_error_thresh = 1e-04,
fpca_index_significantDigits = 4L,
cores = 1L,
verbose = 1,
...

)

Arguments

Y Dataframe. Should have values id, value, index.

Kt Number of B-spline basis functions used to estimate mean functions and func-
tional principal components. Default is 8. If fpca_type = "variationalEM"
and npc_criterion is used, Kt is set to 20.

Kh Number of B-spline basis functions used to estimate warping functions h. De-
fault is 4.

family One of c("gaussian","binomial","gamma","poisson"). Families "gamma"
and "poisson" are only supported by fpca_type = "two-step". Defaults to
"gaussian".

incompleteness Optional specification of incompleteness structure. One of c("leading","trailing","full"),
specifying that incompleteness is present only in the initial measurements, only
in the trailing measurements, or in both, respectively. For details see the accom-
panying vignette. Defaults to NULL, i.e. no incompleteness structure. Can only
be set when warping = "nonparametric".

lambda_inc Penalization parameter to control the amount of overall dilation of the domain.
The higher this lambda, the more the registered domains are forced to have the

register_fpca 35

same length as the observed domains. Only used if incompleteness is not
NULL.

Y_template Optional dataframe with the same structure as Y. Only used for the initial regis-
tration step. If NULL, curves are registered to the overall mean of all curves in
Y as template function. If specified, the template function is taken as the mean
of all curves in Y_template. Defaults to NULL.

max_iterations Number of iterations for overall algorithm. Defaults to 10.
npc, npc_criterion

The number of functional principal components (FPCs) has to be specified either
directly as npc or based on their explained share of variance. In the latter case,
npc_criterion has to be set to a number between 0 and 1. For fpca_type =
"two-step", it is also possible to cut off potential tails of subordinate FPCs (see
gfpca_twoStep for details).

fpca_type One of c("variationalEM","two-step"). Defaults to "variationalEM".

fpca_maxiter Only used if fpca_type = "variationalEM". Number to pass to the maxiter
argument of ‘bfpca()‘ or ‘fpca_gauss()‘. Defaults to 50.

fpca_seed Only used if fpca_type = "variationalEM". Number to pass to the seed ar-
gument of ‘bfpca()‘ or ‘fpca_gauss()‘. Defaults to 1988.

fpca_error_thresh

Only used if fpca_type = "variationalEM". Number to pass to the error_thresh
argument of ‘bfpca()‘ or ‘fpca_gauss()‘. Defaults to 0.0001.

fpca_index_significantDigits

Only used if fpca_type = "two-step". Positive integer >= 2, stating the num-
ber of significant digits to which the index grid should be rounded in the GFPCA
step. Coarsening the index grid is necessary since otherwise the covariance sur-
face matrix explodes in size in the presence of too many unique index values
(which is the case after some registration step). Defaults to 4. Set to NULL to
prevent rounding.

cores Number of cores to be used. If cores > 1, the registration call is parallelized by
using parallel::mclapply (for Unix-based systems) or parallel::parLapply
(for Windows). Defaults to 1, no parallelized call.

verbose Can be set to integers between 0 and 4 to control the level of detail of the printed
diagnostic messages. Higher numbers lead to more detailed messages. Defaults
to 1.

... Additional arguments passed to registr and to the gfpca functions (if fpca_type
= "variationalEM").

Details

Requires input data Y to be a dataframe in long format with variables id, index, and value to
indicate subject IDs, observation times on the domain, and observations, respectively.

One joint iteration consists of a GFPCA step and a registration step. As preprocessing, one initial
registration step is performed. The template function for this registration step is defined by argu-
ment Y_template. After convergence or max_iterations is reached, one final GFPCA step is
performed.

36 register_fpca

Value

An object of class registration containing:

Y The observed data plus variables t_star and t_hat which are the unregistered
grid and registered grid, respectively.

fpca_obj List of items from FPCA step.

family Used exponential family.

index_warped List of the (warped) index values for each iteration. Has 'convergence$iterations
+ 2' elements since the first two elements contain the original (observed) index
and the warped index values from the preprocessing registration step (see De-
tails), respectively.

hinv_innerKnots

List of inner knots for setting up the spline bases for the inverse warping func-
tions. Only contains NULL values for Kh <= 4.

hinv_beta Matrix of B-spline basis coefficients used to construct the subject-specific in-
verse warping functions. From the last performed registration step. For details
see ?registr.

convergence List with information on the convergence of the joint approach. Containing the
following elements:

converged
Indicator if the joint algorithm converged or if not (i.e., max_iterations was
reached)

iterations
Number of joint iterations that were performed.

delta_index
Vector of mean squared differences between the (warped) index values (scaled
to [0,1] based on the size of the observed domain) in the current and the previous
iteration. Convergence is reached if this measure drops below 0.0001.

registration_loss
Vector of the loss in each iteration of the algorithm. Calculated in the regis-
tration step using the exponential family likelihood with natural parameter from
the FPCA step. Has 'iterations + 1' elements since the first element contains
the loss of the preprocessing registration step (see Details).

Author(s)

Julia Wrobel <julia.wrobel@cuanschutz.edu> Jeff Goldsmith <ajg2202@cumc.columbia.edu>,
Alexander Bauer <alexander.bauer@stat.uni-muenchen.de>

Examples

complete binomial curves
Y = simulate_unregistered_curves(I = 20, D = 200)

register_fpca 37

estimation based on Wrobel et al. (2019)
reg = register_fpca(Y, npc = 2, family = "binomial",

fpca_type = "variationalEM", max_iterations = 5)

if (requireNamespace("ggplot2", quietly = TRUE)) {
library(ggplot2)

ggplot(reg$Y, aes(x = tstar, y = t_hat, group = id)) +
geom_line(alpha = 0.2) + ggtitle("Estimated warping functions")

plot(reg$fpca_obj, response_function = function(x) { 1 / (1 + exp(-x)) })
}

estimation based on Gertheiss et al. (2017)
reg2 = register_fpca(Y, npc = 2, family = "binomial",

fpca_type = "two-step", max_iterations = 5,
fpca_index_significantDigits = 4)

example using accelerometer data from nhanes 2003-2004 study
data(nhanes)
nhanes_short = nhanes[nhanes$id %in% unique(nhanes$id)[1:5],]
reg_nhanes = register_fpca(nhanes_short, npc = 2, family = "binomial", max_iterations = 5)

incomplete Gaussian curves
data(growth_incomplete)

Force the warping functions to start and end on the diagonal
reg2a = register_fpca(growth_incomplete, npc = 2, family = "gaussian",

incompleteness = NULL, max_iterations = 5)
if (requireNamespace("ggplot2", quietly = TRUE)) {

ggplot(reg2a$Y, aes(x = tstar, y = t_hat, group = id)) +
geom_line(alpha = 0.2) +
ggtitle("Estimated warping functions")

ggplot(reg2a$Y, aes(x = t_hat, y = value, group = id)) +
geom_line(alpha = 0.2) +
ggtitle("Registered curves")

}
Allow the warping functions to not start / end on the diagonal.
The higher lambda_inc, the more the starting points and endpoints are forced
towards the diagonal.
reg2b = register_fpca(growth_incomplete, npc = 2, family = "gaussian",

incompleteness = "full", lambda_inc = 0.1,
max_iterations = 5)

if (requireNamespace("ggplot2", quietly = TRUE)) {
ggplot(reg2b$Y, aes(x = tstar, y = t_hat, group = id)) +

geom_line(alpha = 0.2) +
ggtitle("Estimated warping functions")

38 registr

ggplot(reg2b$Y, aes(x = t_hat, y = value, group = id)) +
geom_line(alpha = 0.2) +
ggtitle("Registered curves")

}

complete Gamma curves
Y = simulate_unregistered_curves(I = 20, D = 100)
Y$value = exp(Y$latent_mean)
registr_gamma = register_fpca(Y, npc = 2, family = "gamma", fpca_type = "two-step",

gradient = FALSE, max_iterations = 3)

registr Register (in)complete curves from exponential family

Description

Function used in the registration step of an FPCA-based approach for registering exponential-
family, potentially incomplete functional data, called by register_fpca. This method uses con-
strained optimization to estimate spline coefficients for warping functions, where the objective func-
tion for optimization comes from maximizing the EF likelihood subject to monotonicity constraints
on the warping functions. You have to either specify obj, which is a fpca object from an earlier
step, or Y, a dataframe in long format with variables id, index, and value to indicate subject IDs,
times, and observations, respectively.

Warping functions by default are forced to start and end on the diagonal to be domain-preserving.
This behavior can be changed by setting incompleteness to some other value than NULL and a
reasonable lambda_inc value. For further details see the accompanying vignette.

By specifying cores > 1 the registration call can be parallelized.

Usage

registr(
obj = NULL,
Y = NULL,
Kt = 8,
Kh = 4,
family = "gaussian",
gradient = TRUE,
incompleteness = NULL,
lambda_inc = NULL,
Y_template = NULL,
beta = NULL,
t_min = NULL,
t_max = NULL,
row_obj = NULL,

registr 39

periodic = FALSE,
warping = "nonparametric",
gamma_scales = NULL,
cores = 1L,
subsample = TRUE,
verbose = 1,
...

)

Arguments

obj Current estimate of FPC object. Can be NULL only if Y argument is selected.

Y Dataframe. Should have values id, value, index.

Kt Number of B-spline basis functions used to estimate mean functions. Default is
8.

Kh Number of B-spline basis functions used to estimate warping functions h. De-
fault is 4.

family One of c("gaussian","binomial","gamma","poisson"). Defaults to "gaussian".

gradient If TRUE, uses analytic gradient to calculate derivative. If FALSE, calculates gra-
dient numerically. Not available for families "gamma","poisson".

incompleteness Optional specification of incompleteness structure. One of c("leading","trailing","full"),
specifying that incompleteness is present only in the initial measurements, only
in the trailing measurements, or in both, respectively. For details see the accom-
panying vignette. Defaults to NULL, i.e. no incompleteness structure. Can only
be set when warping = "nonparametric".

lambda_inc Penalization parameter to control the amount of overall dilation of the domain.
The higher this lambda, the more the registered domains are forced to have the
same length as the observed domains. Only used if incompleteness is not
NULL.

Y_template Optional dataframe with the same structure as Y. Only used if obj is NULL. If
Y_template is NULL, curves are registered to the overall mean of all curves
in Y as template function. If Y_template is specified, the template function is
taken as the mean of all curves in Y_template. Default is NULL.

beta Current estimates for beta for each subject. Default is NULL.

t_min Minimum value to be evaluated on the time domain. if ‘NULL‘, taken to be
minimum observed value.

t_max Maximum value to be evaluated on the time domain. if ‘NULL‘, taken to be
maximum observed value.

row_obj If NULL, the function cleans the data and calculates row indices. Keep this
NULL if you are using standalone registr function.

periodic If TRUE, uses periodic b-spline basis functions. Default is FALSE.

warping If nonparametric (default), inverse warping functions are estimated nonpara-
metrically. If piecewise_linear2 they follow a piecewise linear function with
2 knots.

40 registr

gamma_scales Only used for family = "gamma". Vector with one entry for each subject, con-
taining the current estimate for the scale parameter of its gamma distribution.
Default is NULL, which sets the starting value for the scale parameter to 1.5.

cores Number of cores to be used. If cores > 1, the registration call is parallelized by
using parallel::mclapply (for Unix-based systems) or parallel::parLapply
(for Windows). Defaults to 1, no parallelized call.

subsample if the number of rows of the data is greater than 10 million rows, the ‘id‘ values
are subsampled to get the mean coefficients.

verbose Can be set to integers between 0 and 4 to control the level of detail of the printed
diagnostic messages. Higher numbers lead to more detailed messages. Defaults
to 1.

... additional arguments passed to or from other functions

Details

The template function for the registration is defined by argument obj or Y_template, depending on
if obj is NULL or not, respectively.

Value

An list containing:

Y The observed data. The variables index and index_scaled contain the new
estimated time domain.

loss Value of the loss function after registraton.
hinv_innerKnots

List of inner knots for setting up the spline bases for the inverse warping func-
tions. Only contains NULL values for Kh <= 4.

hinv_beta Matrix of B-spline basis coefficients used to construct subject-specific inverse
warping functions. See examples on how to reconstruct a warping function
based on hinv_innerKnots and hinv_beta.

Author(s)

Julia Wrobel <julia.wrobel@cuanschutz.edu>, Erin McDonnell <eim2117@cumc.columbia.edu>,
Alexander Bauer <alexander.bauer@stat.uni-muenchen.de>

Examples

complete binomial curves
Y = simulate_unregistered_curves()
register_step = registr(obj = NULL, Y = Y, Kt = 6, Kh = 4, family = "binomial",

gradient = TRUE)

incomplete Gaussian curves
data(growth_incomplete)

Force the warping functions to start and end on the diagonal to preserve the domain

registr 41

register_step2a = registr(obj = NULL, Y = growth_incomplete, Kt = 6, Kh = 4,
family = "gaussian", gradient = TRUE,
incompleteness = NULL)

if (requireNamespace("ggplot2", quietly = TRUE)) {
library(ggplot2)

ggplot(register_step2a$Y, aes(x = tstar, y = index, group = id)) +
geom_line(alpha = 0.2) +
ggtitle("Estimated warping functions")

ggplot(register_step2a$Y, aes(x = index, y = value, group = id)) +
geom_line(alpha = 0.2) +
ggtitle("Registered curves")

}

Example for how to recreate an estimated inverse warping function given
the output of registr(). Focus on id "boy01".
id = "boy01"
index_obsRange_i = range(growth_incomplete$index[growth_incomplete$id == id])
index = seq(min(index_obsRange_i), max(index_obsRange_i), length.out = 100)
(note that 'index' must contain both the observed min and max in index_obsRange_i)
Theta_h_i = splines::bs(index, knots = register_step2a$hinv_innerKnots[[id]], intercept = TRUE)
index_reg = as.vector(Theta_h_i %*% register_step2a$hinv_beta[,id])
warp_dat_i = data.frame(index_observed = index,

index_registered = index_reg)
if (requireNamespace("ggplot2", quietly = TRUE)) {

ggplot(warp_dat_i, aes(x = index_observed, y = index_registered)) + geom_line() +
ggtitle("Extracted warping function for id 'boy01'")

}

Allow the warping functions to not start / end on the diagonal.
The higher lambda_inc, the more the starting points and endpoints are
forced towards the diagonal.
register_step2b = registr(obj = NULL, Y = growth_incomplete, Kt = 6, Kh = 4,

family = "gaussian", gradient = TRUE,
incompleteness = "full", lambda_inc = 1)

if (requireNamespace("ggplot2", quietly = TRUE)) {
ggplot(register_step2b$Y, aes(x = tstar, y = index, group = id)) +
geom_line(alpha = 0.2) +
ggtitle("Estimated warping functions")

ggplot(register_step2b$Y, aes(x = index, y = value, group = id)) +
geom_line(alpha = 0.2) +
ggtitle("Registered curves")

}

Define the template function only over a subset of the curves
(even though not very reasonable in this example)
template_ids = c("girl12","girl13","girl14")
Y_template = growth_incomplete[growth_incomplete$id %in% template_ids,]
register_step2c = registr(obj = NULL, Y = growth_incomplete, Kt = 6, Kh = 4,

family = "gaussian", gradient = TRUE,
Y_template = Y_template,
incompleteness = "full", lambda_inc = 1)

if (requireNamespace("ggplot2", quietly = TRUE)) {

42 registr_oneCurve

ggplot(register_step2c$Y, aes(x = index, y = value, group = id)) +
geom_line(alpha = 0.2) +
ggtitle("Registered curves")

}

registr_oneCurve Internal function to register one curve

Description

This internal function is only to be used from within registr. It performs the main optimization
step with constrOptim for the registration of one curve.

Usage

registr_oneCurve(
obj = NULL,
Y = NULL,
Kt = 8,
Kh = 4,
family = "gaussian",
gradient = TRUE,
incompleteness = NULL,
lambda_inc = NULL,
beta = NULL,
t_min = NULL,
t_max = NULL,
periodic = FALSE,
warping = "nonparametric",
gamma_scales = NULL,
global_knots = NULL,
mean_coefs = NULL,
...,
verbose = 1,
just_return_list = FALSE

)

Arguments

obj Current estimate of FPC object. Can be NULL only if Y argument is selected.

Y Dataframe. Should have values id, value, index.

Kt Number of B-spline basis functions used to estimate mean functions. Default is
8.

registr_oneCurve 43

Kh Number of B-spline basis functions used to estimate warping functions h. De-
fault is 4.

family One of c("gaussian","binomial","gamma","poisson"). Defaults to "gaussian".
gradient If TRUE, uses analytic gradient to calculate derivative. If FALSE, calculates gra-

dient numerically. Not available for families "gamma","poisson".
incompleteness Optional specification of incompleteness structure. One of c("leading","trailing","full"),

specifying that incompleteness is present only in the initial measurements, only
in the trailing measurements, or in both, respectively. For details see the accom-
panying vignette. Defaults to NULL, i.e. no incompleteness structure. Can only
be set when warping = "nonparametric".

lambda_inc Penalization parameter to control the amount of overall dilation of the domain.
The higher this lambda, the more the registered domains are forced to have the
same length as the observed domains. Only used if incompleteness is not
NULL.

beta Current estimates for beta for each subject. Default is NULL.
t_min Minimum value to be evaluated on the time domain. if ‘NULL‘, taken to be

minimum observed value.
t_max Maximum value to be evaluated on the time domain. if ‘NULL‘, taken to be

maximum observed value.
periodic If TRUE, uses periodic b-spline basis functions. Default is FALSE.
warping If nonparametric (default), inverse warping functions are estimated nonpara-

metrically. If piecewise_linear2 they follow a piecewise linear function with
2 knots.

gamma_scales Only used for family = "gamma". Vector with one entry for each subject, con-
taining the current estimate for the scale parameter of its gamma distribution.
Default is NULL, which sets the starting value for the scale parameter to 1.5.

global_knots knots for the basis/splines, passed to [pbs::pbs()] or [stats::bs()]
mean_coefs Mean coefficients for the mean of all curves or GFPCA based. May extract from

‘obj‘ object
... additional arguments passed to or from other functions
verbose Can be set to integers between 0 and 4 to control the level of detail of the printed

diagnostic messages. Higher numbers lead to more detailed messages. Defaults
to 1.

just_return_list

Do not use. For developers only

Value

An list containing:

hinv_innerKnots

Inner knots for setting up the spline basis for the inverse warping function.
hinv_beta Estimated B-spline basis coefficients used to construct subject-specific inverse

warping functions.
t_hat Vector of registered time domain.
loss Loss of the optimal solution.

44 simulate_functional_data

Author(s)

Julia Wrobel <julia.wrobel@cuanschutz.edu>, Erin McDonnell <eim2117@cumc.columbia.edu>,
Alexander Bauer <alexander.bauer@stat.uni-muenchen.de>

simulate_functional_data

Simulate functional data

Description

This function simulates functional data. The data it outputs is generated from a mean function
and two orthogonal principal component basis functions. The mean and principal components are
based on sine and cosine functions. Subject-specific scores for each PC are drawn from normal
distributions with standard deviation lambda1 and lambda2.

Usage

simulate_functional_data(
lambda1 = 2,
lambda2 = 1,
I = 50,
D = 100,
seed = 1988,
vary_D = FALSE

)

Arguments

lambda1 Standard deviation for PC1 scores.

lambda2 Standard deviation for PC2 scores.

I Number of subjects. Defaults is 50.

D Number of grid points per subject. Default is 100.

seed Seed for reproducibility. Default is 1988.

vary_D Indicates if grid length vary by subject. If FALSE all subjects have grid length
D.

Value

A list containing:

Y Simulated dataframe with variables id, value, index, and latent_mean.

psi1 True values for first principal component.

psi2 True values for second principal component.

alpha True values for population-level mean.

simulate_unregistered_curves 45

A list containing:

Y A dataframe of simulated data.

psi1 The first simulated eigenfunction.

psi2 The second simulated eigenfunction.

alpha The population mean.

Author(s)

Julia Wrobel <julia.wrobel@cuanschutz.edu>

simulate_unregistered_curves

Simulate unregistered curves

Description

This function simulates unregistered curves, providing the time values for both the unregistered
curves (t_star) and the registered curves (t). Curves all have one peak, the location of which is
shifted on the unregistered domain, meant to mimic accelerometer data.

Usage

simulate_unregistered_curves(
I = 50,
D = 100,
lambda = 15,
seed = 1988,
period = 2 * pi,
spline_based = FALSE,
phase_variation = TRUE

)

Arguments

I Number of subjects. Defaults is 50.

D Number of grid points per subject. Default is 100.

lambda Standard deviation for subject-specific amplitudes.

seed Seed for reproducibility. Default is 1988.

period Controls the period of the mean curve

spline_based If FALSE curve is constructed using sine and cosine functions, if TRUE, curve
is constructed using B-spline basis.

phase_variation

If TRUE, creates phase variation (registered curves are observed on uneven
grid). If FALSE, no phase variation.

46 squareTheta

Value

A simulated dataframe with variables id, value, index, latent_mean, and t. Index is the domain on
which curves are unregistered and t is the domain on which curves are registered.

Author(s)

Julia Wrobel <julia.wrobel@cuanschutz.edu>, Jeff Goldsmith <ajg2202@cumc.columbia.edu>

squareTheta Calculate quadratic form of spline basis functions for the current sub-
ject.

Description

Calculations quadratic form of theta with diagonalized variational parameter in the center.

Usage

squareTheta(xi, theta)

Arguments

xi vector of variational parameters for the current subject.

theta spline basis functions for the current subject.

Value

A matrix of the quadratic form of theta for the current subject.

Index

∗ datasets
growth_incomplete, 24
nhanes, 30

amp_curve, 3

bam, 11
bfpca, 3, 31
bfpca_argPreparation, 6
bfpca_optimization, 7
bs_deriv, 8

coarsen_index, 9
constraints, 10
cov_hall, 10, 22, 23
crossprods_irregular, 12
crossprods_regular, 12

data_clean, 13
deriv.inv.logit, 13
determine_npc, 14

ensure_proper_beta, 14
expectedScores, 15
expectedXi, 16

fpca_gauss, 8, 16, 21, 31
fpca_gauss_argPreparation, 19
fpca_gauss_optimization, 20

gam, 11
gamm4(), 23
gfpca_twoStep, 9, 10, 21, 31, 35
grid_subj_create, 24
growth_incomplete, 24

initial_params, 25

lambdaF, 26
loss_h, 26
loss_h_gradient, 28

mean_curve, 29
mean_sim, 30

nhanes, 30

piecewise_linear2_hinv, 31
plot.fpca, 31
psi1_sim, 33
psi2_sim, 33

register_fpca, 3, 16, 21, 33, 38
registr, 33, 38
registr_oneCurve, 42

simulate_functional_data, 44
simulate_unregistered_curves, 45
squareTheta, 46

theme, 32

47

	amp_curve
	bfpca
	bfpca_argPreparation
	bfpca_optimization
	bs_deriv
	coarsen_index
	constraints
	cov_hall
	crossprods_irregular
	crossprods_regular
	data_clean
	deriv.inv.logit
	determine_npc
	ensure_proper_beta
	expectedScores
	expectedXi
	fpca_gauss
	fpca_gauss_argPreparation
	fpca_gauss_optimization
	gfpca_twoStep
	grid_subj_create
	growth_incomplete
	initial_params
	lambdaF
	loss_h
	loss_h_gradient
	mean_curve
	mean_sim
	nhanes
	piecewise_linear2_hinv
	plot.fpca
	psi1_sim
	psi2_sim
	register_fpca
	registr
	registr_oneCurve
	simulate_functional_data
	simulate_unregistered_curves
	squareTheta
	Index

