Package 'redistmetrics'

December 15, 2025

```
Version 1.0.11
Date 2025-12-15
Description Reliable and flexible tools for scoring redistricting plans using
      common measures and metrics. These functions provide key direct access to
      tools useful for non-simulation analyses of redistricting plans, such as for
      measuring compactness or partisan fairness. Tools are designed to work with
      the 'redist' package seamlessly.
Depends R (>= 4.1.0)
Imports sf, Rcpp, vctrs, cli, foreach, doParallel, magrittr, dplyr,
      rlang, geos, wk, libgeos
Suggests rmarkdown, knitr, testthat (>= 3.0.0), ggplot2
LinkingTo Rcpp, RcppArmadillo, RcppThread, libgeos
License MIT + file LICENSE
Encoding UTF-8
LazyData true
SystemRequirements C++17
RoxygenNote 7.3.3
URL https://alarm-redist.org/redistmetrics/,
      https://github.com/alarm-redist/redistmetrics
BugReports https://github.com/alarm-redist/redistmetrics/issues
VignetteBuilder knitr
Config/testthat/edition 3
NeedsCompilation yes
Author Christopher T. Kenny [aut, cre] (ORCID:
       <a href="https://orcid.org/0000-0002-9386-6860">https://orcid.org/0000-0002-9386-6860">https://orcid.org/0000-0002-9386-6860</a>),
      Cory McCartan [aut],
      Ben Fifield [aut],
      Kosuke Imai [aut]
```

Title Redistricting Metrics

2 Contents

Maintainer Christopher T. Kenny <ctkenny@proton.me>
Repository CRAN

Date/Publication 2025-12-15 16:30:02 UTC

Contents

oy_pian	. 3
compet_talisman	
comp_bbox_reock	
comp_bc	. 5
comp_box_reock	. 6
comp_ch	. 7
comp_edges_rem	. 8
comp_fh	. 9
comp_frac_kept	. 10
comp_log_st	
comp_lw	
comp_polsby	
comp_reock	
comp_schwartz	. 15
comp_skew	. 16
comp_x_sym	. 17
comp_y_sym	
list_euc	
list_ham	
list_info	. 20
list_man	. 21
nc_pairs	
ist_fn	. 22
ıh	
ıh_m	
nh_map	
ıh_plans	. 27
part_bias	. 28
part_decl	
part_decl_simple	
part_dil_asym	
part_dislocation	. 32
part_dseats	
part_dvs	
part_egap	. 34
part_egap_ep	. 35
part_lop_wins	. 36
part_mean_median	
part_resp	. 38
part_rmd	. 39
part_sscd	. 40

by_plan 3

	part_tau_gap	41
	prep_perims	42
	seg_dissim	42
	splits_admin	43
	splits_count	44
	splits_district_fuzzy	45
	splits_multi	46
	splits_sub_admin	46
	splits_sub_count	47
	splits_sub_total	48
	splits_total	49
	tally	49
Index		5 1

by_plan

Shorten District by Plan vector

Description

If x is repeated for each district, it returns a plan level value. Otherwise it returns x.

Usage

```
by_plan(x, ndists)
```

Arguments

x summary statistic at the district level

ndists numeric. Number of districts. Estimated as the gcd of the unique run length

encodings if missing.

Value

x or plan level subset of x

```
by_plan(letters)
by_plan(rep(letters, each = 2))
```

4 compet_talisman

4-1:	C T-1: D - 1:-4-:-4	C 4'4' M.4'
compet_talisman	Compute Talismanic Redistricti	ng Competitiveness Metric

Description

Compute Talismanic Redistricting Competitiveness Metric

Usage

```
compet_talisman(plans, shp, rvote, dvote, alpha = 1, beta = 1)
```

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame containing other columns.
rvote	Unqouted name of column in shp with group population.
dvote	Unqouted name of column in shp with total population.
alpha	Numeric scaling value
beta	Numeric scaling value

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Wendy K. Tam Cho and Yan Y. Liu Toward a Talismanic Redistricting Tool. Election Law Journal. 15, 4. Pp. 351-366.

```
data(nh)
data(nh_m)
# For a single plan:
compet_talisman(plans = nh$r_2020, shp = nh, rvote = nrv, dvote = ndv)
# Or many plans:
compet_talisman(plans = nh_m[, 3:5], shp = nh, rvote = nrv, dvote = ndv)
```

comp_bbox_reock 5

comp_bbox_reock	Calculate Bounding Box Reock Compactness	

Description

Box reock is the ratio of the area of the district by the area of the minimum bounding box (of fixed rotation). Scores are bounded between 0 and 1, where 1 is most compact.

Usage

```
comp_bbox_reock(plans, shp, epsg = 3857, ncores = 1)
```

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame with an sf geometry column.
epsg	Numeric EPSG code to use to project the shapefile, if needed. Default is 3857.
ncores	Integer number of cores to use. Default is 1.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

Examples

```
#' data(nh)
data(nh_m)
# For a single plan:
comp_bbox_reock(plans = nh$r_2020, shp = nh)
# Or many plans:
comp_bbox_reock(plans = nh_m[, 1:5], shp = nh)
```

comp_bc

Calculate Boyce Clark Ratio

Description

Calculate Boyce Clark Ratio

Usage

```
comp_bc(plans, shp, epsg = 3857, ncores = 1)
```

6 comp_box_reock

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district
	assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame with an sf geometry column.
epsg	Numeric EPSG code to use to project the shapefile, if needed. Default is 3857.
ncores	Integer number of cores to use. Default is 1.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Boyce, R., & Clark, W. 1964. The Concept of Shape in Geography. Geographical Review, 54(4), 561-572.

Examples

```
data(nh)
data(nh_m)
# For a single plan:
comp_bc(plans = nh$r_2020, shp = nh)
# Or many plans:
# slower, beware!
comp_bc(plans = nh_m[, 3:5], shp = nh)
```

comp_box_reock

Calculate Box Reock Compactness

Description

Box reock is the ratio of the area of the district by the area of the minimum bounding box (of any rotation). Scores are bounded between 0 and 1, where 1 is most compact.

Usage

```
comp_box_reock(plans, shp, epsg = 3857, ncores = 1)
```

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame with an sf geometry column.
epsg	Numeric EPSG code to use to project the shapefile, if needed. Default is 3857.
ncores	Integer number of cores to use. Default is 1.

comp_ch 7

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

Examples

```
#' data(nh)
data(nh_m)
# For a single plan:
comp_box_reock(plans = nh$r_2020, shp = nh)
# Or many plans:
# slower, beware!
comp_box_reock(plans = nh_m[, 3:5], shp = nh)
```

comp_ch

Calculate Convex Hull Compactness

Description

Calculate Convex Hull Compactness

Usage

```
comp_ch(plans, shp, epsg = 3857, ncores = 1)
```

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district
	assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame with an sf geometry column.
epsg	Numeric EPSG code to use to project the shapefile, if needed. Default is 3857.
ncores	Integer number of cores to use. Default is 1.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

```
data(nh)
data(nh_m)
# For a single plan:
comp_ch(plans = nh$r_2020, shp = nh)
# Or many plans:
comp_ch(plans = nh_m[, 3:5], shp = nh)
```

8 comp_edges_rem

COMD	edges	rem

Calculate Edges Removed Compactness

Description

Calculate Edges Removed Compactness

Usage

```
comp_edges_rem(plans, shp, adj)
```

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame with an sf geometry column.
adj	Zero-indexed adjacency list. Not required if a redist_map is supplied for shp.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Matthew P. Dube and Jesse Tyler Clark. 2016. Beyond the circle: Measuring district compactness using graph theory. In Annual Meeting of the Northeastern Political Science Association

```
data(nh)
data(nh_m)
# For a single plan:
comp_edges_rem(plans = nh$r_2020, shp = nh, nh$adj)
# Or many plans:
comp_edges_rem(plans = nh_m[, 3:5], shp = nh, nh$adj)
```

comp_fh

|--|

Description

Calculate Fryer Holden Compactness

Usage

```
comp_fh(plans, shp, total_pop, epsg = 3857, ncores = 1)
```

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame with an sf geometry column.
total_pop	A numeric vector with the population for every observation.
epsg	Numeric EPSG code to use to project the shapefile, if needed. Default is 3857.

ncores TRUE

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Fryer R, Holden R. 2011. Measuring the Compactness of Political Districting Plans. Journal of Law and Economics.

```
data(nh)
data(nh_m)
# For a single plan:
comp_fh(plans = nh$r_2020, shp = nh, total_pop = pop)
# Or many plans:
comp_fh(plans = nh_m[, 3:5], shp = nh, pop)
```

10 comp_frac_kept

comp_frac_kept Calculate Fraction Kept Compactnes	comp_frac_kept	Calculate Fraction Kept Compactness
---	----------------	-------------------------------------

Description

Calculate Fraction Kept Compactness

Usage

```
comp_frac_kept(plans, shp, adj)
```

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame with an sf geometry column.
adj	Zero-indexed adjacency list. Not required if a redist_map is supplied for shp.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Matthew P. Dube and Jesse Tyler Clark. 2016. Beyond the circle: Measuring district compactness using graph theory. In Annual Meeting of the Northeastern Political Science Association

```
data(nh)
data(nh_m)
# For a single plan:
comp_frac_kept(plans = nh$r_2020, shp = nh, nh$adj)
# Or many plans:
comp_frac_kept(plans = nh_m[, 3:5], shp = nh, nh$adj)
```

comp_log_st 11

comp_log_st	Calculate Log Spanning Tree Compactness

Description

Calculate Log Spanning Tree Compactness

Usage

```
comp_log_st(plans, shp, counties = NULL, adj)
```

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame with an sf geometry column.
counties	column name in shp containing counties
adj	Zero-indexed adjacency list. Not required if a redist_map is supplied for shp.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Cory McCartan and Kosuke Imai. 2020. Sequential Monte Carlo for Sampling Balanced and Compact Redistricting Plans.

```
data(nh)
data(nh_m)
# For a single plan:
comp_log_st(plans = nh$r_2020, shp = nh, counties = county, adj = nh$adj)
# Or many plans:
comp_log_st(plans = nh_m[, 3:5], shp = nh, counties = county, adj = nh$adj)
```

12 comp_lw

com	n	1w
COIII	ν_	T 44

Calculate Length Width Compactness

Description

Calculate Length Width Compactness

Usage

```
comp_lw(plans, shp, epsg = 3857, ncores = 1)
```

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame with an sf geometry column.
epsg	Numeric EPSG code to use to project the shapefile, if needed. Default is 3857.
ncores	Integer number of cores to use. Default is 1.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Harris, Curtis C. 1964. "A scientific method of districting". Behavioral Science 3(9), 219–225.

```
data(nh)
data(nh_m)
# For a single plan:
comp_lw(plans = nh$r_2020, shp = nh)
# Or many plans:
# slower, beware!
comp_lw(plans = nh_m[, 3:5], shp = nh)
```

comp_polsby 13

comp_polsby	Calculate Polsby Popper Compactness	

Description

Calculate Polsby Popper Compactness

Usage

```
comp_polsby(
  plans,
  shp,
  use_Rcpp,
  perim_path,
  perim_df,
  epsg = 3857,
  ncores = 1
)
```

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame with an sf geometry column.
use_Rcpp	If TRUE (the default for more than 8 plans), precompute boundaries shared by each pair of units and use them to quickly compute the compactness score.
perim_path	Path to perimeter tibble saved by prep_perims()
perim_df	Tibble of perimeters from prep_perims()
epsg	Numeric EPSG code to use to project the shapefile, if needed. Default is 3857.
ncores	Integer number of cores to use. Default is 1.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Cox, E. 1927. A Method of Assigning Numerical and Percentage Values to the Degree of Roundness of Sand Grains. Journal of Paleontology, 1(3), 179-183.

Polsby, Daniel D., and Robert D. Popper. 1991. "The Third Criterion: Compactness as a procedural safeguard against partisan gerrymandering." Yale Law & Policy Review 9 (2): 301–353.

14 comp_reock

Examples

```
data(nh)
data(nh_m)
# For a single plan:
comp_polsby(plans = nh$r_2020, shp = nh)
# Or many plans:
comp_polsby(plans = nh_m[, 3:5], shp = nh)
```

comp_reock

Calculate Reock Compactness

Description

Calculate Reock Compactness

Usage

```
comp_reock(plans, shp, epsg = 3857, ncores = 1)
```

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame with an sf geometry column.
epsg	Numeric EPSG code to use to project the shapefile, if needed. Default is 3857.
ncores	Integer number of cores to use. Default is 1.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Reock, E. 1961. A Note: Measuring Compactness as a Requirement of Legislative Apportionment. Midwest Journal of Political Science, 5(1), 70-74.

```
data(nh)
data(nh_m)
# For a single plan:
comp_reock(plans = nh$r_2020, shp = nh)
# Or many plans:
comp_reock(plans = nh_m[, 3:5], shp = nh)
```

comp_schwartz 15

comp_	schwartz	Calculate Schwartzberg Compactness	

Description

Calculate Schwartzberg Compactness

Usage

```
comp_schwartz(
  plans,
  shp,
  use_Rcpp,
  perim_path,
  perim_df,
  epsg = 3857,
  ncores = 1
)
```

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame with an sf geometry column.
use_Rcpp	Logical. Use Rcpp?
perim_path	path to perimeter tibble saved by prep_perims()
perim_df	tibble of perimeters from prep_perims()
epsg	Numeric EPSG code to use to project the shapefile, if needed. Default is 3857.
ncores	Integer number of cores to use. Default is 1.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Schwartzberg, Joseph E. 1966. Reapportionment, Gerrymanders, and the Notion of Compactness. Minnesota Law Review. 1701.

```
data(nh)
data(nh_m)
# For a single plan:
comp_schwartz(plans = nh$r_2020, shp = nh)
```

16 comp_skew

```
# Or many plans:
comp_schwartz(plans = nh_m[, 3:5], shp = nh)
```

comp_skew

Calculate Skew Compactness

Description

Skew is defined as the ratio of the radii of the largest inscribed circle with the smallest bounding circle. Scores are bounded between 0 and 1, where 1 is most compact.

Usage

```
comp_skew(plans, shp, epsg = 3857, ncores = 1)
```

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame with an sf geometry column.
epsg	Numeric EPSG code to use to project the shapefile, if needed. Default is 3857.
ncores	Integer number of cores to use. Default is 1.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

S.N. Schumm. 1963. Sinuosity of alluvial rivers on the Great Plains. Bulletin of the Geological Society of America, 74. 1089-1100.

```
data(nh)
data(nh_m)
# For a single plan:
comp_skew(plans = nh$r_2020, shp = nh)
# Or many plans:
# slower, beware!
comp_skew(plans = nh_m[, 3:5], shp = nh)
```

comp_x_sym 17

comp_x_sym	Calculate X Symmetry Compactness	

Description

X symmetry is the overlapping area of a shape and its projection over the x-axis.

Usage

```
comp_x_sym(plans, shp, epsg = 3857, ncores = 1)
```

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame with an sf geometry column.
epsg	Numeric EPSG code to use to project the shapefile, if needed. Default is 3857.
ncores	Integer number of cores to use. Default is 1.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Aaron Kaufman, Gary King, and Mayya Komisarchik. 2021. How to Measure Legislative District Compactness If You Only Know it When You See It. American Journal of Political Science. 65, 3. Pp. 533-550.

```
#' data(nh)
data(nh_m)
# For a single plan:
comp_x_sym(plans = nh$r_2020, shp = nh)
# Or many plans:
# slower, beware!
comp_x_sym(plans = nh_m[, 3:5], shp = nh)
```

18 comp_y_sym

comp_y_sym	Calculate Y Symmetry Compactness	
------------	----------------------------------	--

Description

Y symmetry is the overlapping area of a shape and its projection over the y-axis.

Usage

```
comp_y_sym(plans, shp, epsg = 3857, ncores = 1)
```

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame with an sf geometry column.
epsg	Numeric EPSG code to use to project the shapefile, if needed. Default is 3857.
ncores	Integer number of cores to use. Default is 1.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Aaron Kaufman, Gary King, and Mayya Komisarchik. 2021. How to Measure Legislative District Compactness If You Only Know it When You See It. American Journal of Political Science. 65, 3. Pp. 533-550.

```
#' data(nh)
data(nh_m)
# For a single plan:
comp_y_sym(plans = nh$r_2020, shp = nh)
# Or many plans:
# slower, beware!
comp_y_sym(plans = nh_m[, 3:5], shp = nh)
```

dist_euc 19

dist_euc

Calculate Euclidean Distances

Description

Calculate Euclidean Distances

Usage

```
dist_euc(plans, ncores = 1)
```

Arguments

plans A redist_plans object or plans_matrix where each row indicates a district

assignment and each column is a plan.

ncores Integer number of cores to use. Default is 1.

Value

matrix of plan distances

Examples

```
data(nh)
data(nh_m)
# For a single plan (distance is trivial, 0):
dist_euc(plans = nh$r_2020)
# Or many plans:
dist_euc(plans = nh_m[, 3:5])
```

dist_ham

Calculate Hamming Distances

Description

Calculate Hamming Distances

Usage

```
dist_ham(plans, ncores = 1)
```

Arguments

plans A redist_plans object or plans_matrix where each row indicates a district

assignment and each column is a plan.

ncores Integer number of cores to use. Default is 1.

20 dist_info

Value

matrix of plan distances

Examples

```
data(nh)
data(nh_m)
# For a single plan (distance is trivial, 0):
dist_ham(plans = nh$r_2020)
# Or many plans:
dist_ham(plans = nh_m[, 3:5])
```

dist_info

Calculate Variation of Information Distances

Description

Calculate Variation of Information Distances

Usage

```
dist_info(plans, shp, total_pop, ncores = 1)
```

Arguments

plans A redist_plans object or plans_matrix where each row indicates a district

assignment and each column is a plan.

shp A redist_map object, tibble, or data frame containing other columns.

total_pop Unqouted name of column in shp with total population.

ncores Integer number of cores to use. Default is 1.

Value

matrix of plan distances

```
data(nh)
data(nh_m)
# For a single plan (distance is trivial, 0):
dist_info(plans = nh$r_2020, shp = nh, total_pop = pop)
# Or many plans:
dist_info(plans = nh_m[, 3:5], shp = nh, total_pop = pop)
```

dist_man 21

 $dist_man$

Calculate Manhattan Distances

Description

Calculate Manhattan Distances

Usage

```
dist_man(plans, ncores = 1)
```

Arguments

plans A redist_plans object or plans_matrix where each row indicates a district

assignment and each column is a plan.

ncores Integer number of cores to use. Default is 1.

Value

matrix of plan distances

Examples

```
data(nh)
data(nh_m)
# For a single plan (distance is trivial, 0):
dist_man(plans = nh$r_2020)
# Or many plans:
dist_man(plans = nh_m[, 3:5])
```

inc_pairs

Count Incumbent Pairings

Description

Count the number of incumbents paired with at least one other incumbent.

Usage

```
inc_pairs(plans, shp, inc)
```

list_fn

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame containing other columns.
inc	Unquited name of logical column in shp indicating where incumbents live.

Value

vector of number of incumbents paired

Examples

```
data(nh)
data(nh_m)
# Use incumbent data:
fake_inc <- rep(FALSE, nrow(nh))
fake_inc[3:4] <- TRUE

# For a single plan:
inc_pairs(plans = nh$r_2020, shp = nh, inc = fake_inc)
# Or many plans:
inc_pairs(plans = nh_m[, 3:5], shp = nh, inc = fake_inc)</pre>
```

 $list_fn$

Return Functions Matching a Prefix

Description

This package uses prefixes for each function that correspond to the type of measure. This function returns the functions

Usage

```
list_fn(prefix)
```

Arguments

prefix character prefix of functions to return

Value

character vector of functions

```
list_fn('part_')
```

nh 23

nh

New Hampshire Election and Demographic Data

Description

This data set contains demographic, election, and geographic information for the 326 voting tabulation districts in New Hampshire in 2020.

Usage

```
data("nh")
```

Format

A tibble with 326 rows and 45 columns

GEOID20: 2020 VTD GEOID

• state: state name

· county: county name

• vtd: VTD portion of GEOID

• pop: total population

• pop_hisp: Hispanic population

• pop_white: White, not Hispanic population

• pop_black: Black, not Hispanic population

• pop_aian: American Indian and Alaska Native, not Hispanic population

• pop_asian: Asian, not Hispanic population

• pop_nhpi: Native Hawaiian and Pacific Islander, not Hispanic population

• pop_other: other race, not Hispanic population

• pop_two: multi-race, not Hispanic population

• vap: total voting-age population

• vap_hisp: Hispanic voting-age population

• vap_white: White, not Hispanic voting-age population

• vap_black: Black, not Hispanic voting-age population

• vap_aian: American Indian and Alaska Native, not Hispanic voting-age population

• vap_asian: Asian, not Hispanic voting-age population

• vap_nhpi: Native Hawaiian and Pacific Islander, not Hispanic voting-age population

• vap_other: other race, not Hispanic voting-age population

• vap_two: multi-race, not Hispanic voting-age population

• pre_16_rep_tru: Votes for Republican president 2016

• pre_16_dem_cli: Votes for Democratic president 2016

24 nh

- uss_16_rep_ayo: Votes for Republican senate 2016
- uss_16_dem_has: Votes for Democratic senate 2016
- gov_16_rep_sun: Votes for Republican governor 2016
- gov_16_dem_van: Votes for Democratic governor 2016
- gov_18_rep_sun: Votes for Republican governor 2018
- gov_18_dem_kel: Votes for Democratic governor 2018
- pre_20_dem_bid: Votes for Democratic president 2020
- pre_20_rep_tru: Votes for Republican president 2020
- uss_20_dem_sha: Votes for Democratic senate 2020
- uss_20_rep_mes: Votes for Republican senate 2020
- gov_20_dem_fel: Votes for Democratic governor 2020
- gov_20_rep_sun: Votes for Republican governor 2020
- arv_16: Average Republican vote 2016
- adv_16: Average Democratic vote 2016
- arv_18: Average Republican vote 2018
- adv_18: Average Democratic vote 2018
- arv_20: Average Republican vote 2020
- adv_20: Average Democratic vote 2020
- nrv: Normal Republican vote
- ndv: Normal Democratic vote
- geometry: sf geometry, simplified for size using rmapshaper
- r_2020: Republican proposed plan for 2020 Congressional districts
- d_2020: Democratic proposed plan for 2020 Congressional districts
- · adj: zero-indexed adjacency graph

References

Voting and Election Science Team, 2020, "2020 Precinct-Level Election Results", https://doi.org/10.7910/DVN/K7760H, Harvard Dataverse, V23

Voting and Election Science Team, 2018, "2016 Precinct-Level Election Results", https://doi.org/10.7910/DVN/NH5S2I, Harvard Dataverse, V71

Voting and Election Science Team, 2019, "2018 Precinct-Level Election Results", https://doi.org/10.7910/DVN/UBKYRU, Harvard Dataverse, V48

Kenny & McCartan (2021, Aug. 10). ALARM Project: 2020 Redistricting Data Files. Retrieved from https://github.com/alarm-redist/census-2020/

Examples

data(nh)

nh_m 25

nh_m

Redistricting Plans for New Hampshire as matrix

Description

This data set contains two reference plans (d_2020 and r_2020) and 50 simulated plans for New Hampshire, based on 2020 demographics, simulated at a population tolerance of 0.05%.

Usage

```
data("nh_m")
```

Format

A matrix with 52 columns and 326 rows where each column is a plan

Examples

```
data(nh_m)
```

nh_map

New Hampshire Election and Demographic Data as a redist_map

Description

This data set contains demographic, election, and geographic information for the 326 voting tabulation districts in New Hampshire in 2020.

Usage

```
data("nh_map")
```

Format

A redist_map with 326 rows and 45 columns

• GEOID20: 2020 VTD GEOID

• state: state name

· county: county name

• vtd: VTD portion of GEOID

• pop: total population

• pop_hisp: Hispanic population

• pop_white: White, not Hispanic population

• pop_black: Black, not Hispanic population

26 nh_map

- pop_aian: American Indian and Alaska Native, not Hispanic population
- pop_asian: Asian, not Hispanic population
- pop_nhpi: Native Hawaiian and Pacific Islander, not Hispanic population
- pop_other: other race, not Hispanic population
- pop_two: multi-race, not Hispanic population
- vap: total voting-age population
- vap_hisp: Hispanic voting-age population
- vap_white: White, not Hispanic voting-age population
- vap_black: Black, not Hispanic voting-age population
- vap_aian: American Indian and Alaska Native, not Hispanic voting-age population
- vap_asian: Asian, not Hispanic voting-age population
- vap nhpi: Native Hawaiian and Pacific Islander, not Hispanic voting-age population
- vap_other: other race, not Hispanic voting-age population
- vap_two: multi-race, not Hispanic voting-age population
- pre_16_rep_tru: Votes for Republican president 2016
- pre_16_dem_cli: Votes for Democratic president 2016
- uss_16_rep_ayo: Votes for Republican senate 2016
- uss 16 dem has: Votes for Democratic senate 2016
- gov_16_rep_sun: Votes for Republican governor 2016
- gov_16_dem_van: Votes for Democratic governor 2016
- gov_18_rep_sun: Votes for Republican governor 2018
- gov_18_dem_kel: Votes for Democratic governor 2018
- pre_20_dem_bid: Votes for Democratic president 2020
- pre_20_rep_tru: Votes for Republican president 2020
- uss_20_dem_sha: Votes for Democratic senate 2020
- uss_20_rep_mes: Votes for Republican senate 2020
- gov_20_dem_fel: Votes for Democratic governor 2020
- gov_20_rep_sun: Votes for Republican governor 2020
- arv_16: Average Republican vote 2016
- adv 16: Average Democratic vote 2016
- arv_18: Average Republican vote 2018
- adv_18: Average Democratic vote 2018
- arv 20: Average Republican vote 2020
- adv_20: Average Democratic vote 2020
- nrv: Normal Republican vote
- ndv: Normal Democratic vote
- r_2020: Republican proposed plan for 2020 Congressional districts
- d_2020: Democratic proposed plan for 2020 Congressional districts
- adj: zero-indexed adjacency graph
- geometry: sf geometry, simplified for size using rmapshaper

nh_plans 27

References

Voting and Election Science Team, 2020, "2020 Precinct-Level Election Results", https://doi.org/10.7910/DVN/K7760H, Harvard Dataverse, V23

Voting and Election Science Team, 2018, "2016 Precinct-Level Election Results", https://doi.org/10.7910/DVN/NH5S2I, Harvard Dataverse, V71

Voting and Election Science Team, 2019, "2018 Precinct-Level Election Results", https://doi.org/10.7910/DVN/UBKYRU, Harvard Dataverse, V48

Kenny & McCartan (2021, Aug. 10). ALARM Project: 2020 Redistricting Data Files. Retrieved from https://github.com/alarm-redist/census-2020/

Examples

```
data(nh_map)
```

nh_plans

Redistricting Plans for New Hampshire as redist_plans

Description

This data set contains two reference plans (d_2020 and r_2020) and 50 simulated plans for New Hampshire, based on 2020 demographics, simulated at a population tolerance of 0.05%.

Usage

```
data("nh_plans")
```

Format

A redist_plans with 104 rows and 3 columns

- draw: factor identifying the reference plans (d_2020 and r_2020) and 50 simulted plans
- district: district number (1 or 2)
- total_pop: total population in the district

```
data(nh_plans)
```

28 part_bias

part_bias	Calculate Partisan Bias	

Description

Calculate Partisan Bias

Usage

```
part_bias(plans, shp, dvote, rvote, v = 0.5)
```

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame containing other columns.
dvote	Unqouted name of column in shp with total population.
rvote	Unqouted name of column in shp with group population.
V	vote share to calculate bias at. Numeric. Default is 0.5.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Jonathan N. Katz, Gary King, and Elizabeth Rosenblatt. 2020. Theoretical Foundations and Empirical Evaluations of Partisan Fairness in District-Based Democracies. American Political Science Review, 114, 1, Pp. 164-178.

```
data(nh)
data(nh_m)
# For a single plan:
part_bias(plans = nh$r_2020, shp = nh, rvote = nrv, dvote = ndv)
# Or many plans:
part_bias(plans = nh_m[, 3:5], shp = nh, rvote = nrv, dvote = ndv)
```

part_decl 29

part_decl	Calculate Declination	

Description

Calculate Declination

Usage

```
part_decl(plans, shp, dvote, rvote, normalize = TRUE, adjust = TRUE)
```

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame containing other columns.
dvote	Unqouted name of column in shp with total population.
rvote	Unqouted name of column in shp with group population.
normalize	Default is TRUE Translate score to an angle?
adjust	Default is TRUE. Applies a correction to increase cross-size comparison.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Gregory S. Warrington. 2018. "Quantifying Gerrymandering Using the Vote Distribution." Election Law Journal: Rules, Politics, and Policy. Pp. 39-57.http://doi.org/10.1089/elj.2017.0447

```
data(nh)
data(nh_m)
# For a single plan:
part_decl(plans = nh$r_2020, shp = nh, rvote = nrv, dvote = ndv)
# Or many plans:
part_decl(plans = nh_m[, 3:5], shp = nh, rvote = nrv, dvote = ndv)
```

30 part_decl_simple

part_decl_simple C	alculate Simplified Declination
----------------------	---------------------------------

Description

Calculate Simplified Declination

Usage

```
part_decl_simple(plans, shp, dvote, rvote)
```

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame containing other columns.
dvote	Unqouted name of column in shp with total population.
rvote	Unquited name of column in shp with group population.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Jonathan N. Katz, Gary King, and Elizabeth Rosenblatt. 2020. Theoretical Foundations and Empirical Evaluations of Partisan Fairness in District-Based Democracies. American Political Science Review, 114, 1, Pp. 164-178.

```
data(nh)
data(nh_m)
# For a single plan:
part_decl_simple(plans = nh$r_2020, shp = nh, rvote = nrv, dvote = ndv)
# Or many plans:
part_decl_simple(plans = nh_m[, 3:5], shp = nh, rvote = nrv, dvote = ndv)
```

part_dil_asym 31

part_dil_asym	Calculate Dilution Asymmetry	

Description

Calculate Dilution Asymmetry

Usage

```
part_dil_asym(plans, shp, dvote, rvote)
```

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame containing other columns.
dvote	Unqouted name of column in shp with total population.
rvote	Unquoted name of column in shp with group population.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Sanford C. Gordon and Sidak Yntiso. 2024. Base Rate Neglect and the Diagnosis of Partisan Gerrymanders. Election Law Journal: Rules, Politics, and Policy. doi:10.1089/elj.2023.0005.

```
data(nh)
data(nh_m)
# For a single plan:
part_dil_asym(plans = nh$r_2020, shp = nh, rvote = nrv, dvote = ndv)
# Or many plans:
part_dil_asym(plans = nh_m[, 3:5], shp = nh, rvote = nrv, dvote = ndv)
```

part_dislocation

part_dislocation

Calculate Partisan Dislocation

Description

Calculate Partisan Dislocation

Usage

```
part_dislocation(
  plans,
  shp,
  dvote,
  rvote,
  total_pop = dvote + rvote,
  epsg = 3857,
  by_precinct = FALSE,
  signed = TRUE
)
```

Arguments

plans	A redist_plans	object or plans	_matrix where eacl	h row indicates a	district
-------	----------------	-----------------	--------------------	-------------------	----------

assignment and each column is a plan.

shp A redist_map object, tibble, or data frame with an sf geometry column.

dvote Unqouted name of column in shp with total population.

rvote Unqouted name of column in shp with group population.

total_pop Unqouted name of column in shp with total population.

epsg Numeric EPSG code to use to project the shapefile, if needed. Default is 3857.

by_precinct Defaults to FALSE, returning district-level values.

signed Defaults to TRUE. Should the output for district-level values be signed? Setting

to TRUE returns precinct-level values.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

DeFord, D. R., Eubank, N., & Rodden, J. (2022). Partisan dislocation: A precinct-level measure of representation and gerrymandering. Political Analysis, 30(3), 403-425.

part_dseats 33

Examples

```
data(nh)
data(nh_m)
# For a single plan:
part_dislocation(plans = nh$r_2020, shp = nh, rvote = nrv, dvote = ndv)
# Or many plans:
part_dislocation(plans = nh_m[, 3:5], shp = nh, rvote = nrv, dvote = ndv)
```

part_dseats

Calculate Democratic Seats

Description

Calculate Democratic Seats

Usage

```
part_dseats(plans, shp, dvote, rvote)
```

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame containing other columns.
dvote	Unqouted name of column in shp with total population.
rvote	Unqouted name of column in shp with group population.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

```
data(nh)
data(nh_m)
# For a single plan:
part_dseats(plans = nh$r_2020, shp = nh, rvote = nrv, dvote = ndv)
# Or many plans:
part_dseats(plans = nh_m[, 3:5], shp = nh, rvote = nrv, dvote = ndv)
```

part_egap

pa	rt	dvs	3

Calculate Democratic Vote Share

Description

Calculate Democratic Vote Share

Usage

```
part_dvs(plans, shp, dvote, rvote)
```

Arguments

plans A redist_plans object or plans_matrix where each row indicates a district

assignment and each column is a plan.

shp A redist_map object, tibble, or data frame containing other columns.

dvote Unqouted name of column in shp with total population.

rvote Unqouted name of column in shp with group population.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

Examples

```
data(nh)
data(nh_m)
# For a single plan:
part_dvs(plans = nh$r_2020, shp = nh, rvote = nrv, dvote = ndv)
# Or many plans:
part_dvs(plans = nh_m[, 3:5], shp = nh, rvote = nrv, dvote = ndv)
```

part_egap

Calculate Efficiency Gap

Description

Calculate Efficiency Gap

Usage

```
part_egap(plans, shp, dvote, rvote)
```

part_egap_ep 35

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame containing other columns.
dvote	Unqouted name of column in shp with total population.
rvote	Unqouted name of column in shp with group population.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Nicholas O. Stephanopoulos. 2015. Partisan Gerrymandering and the Efficiency Gap. The University of Chicago Law Review, 82, Pp. 831-900.

Examples

```
data(nh)
data(nh_m)
# For a single plan:
part_egap(plans = nh$r_2020, shp = nh, rvote = nrv, dvote = ndv)
# Or many plans:
part_egap(plans = nh_m[, 3:5], shp = nh, rvote = nrv, dvote = ndv)
```

part_egap_ep Calculate Efficiency Gap (Equal Population Assumption)

Description

Calculate Efficiency Gap (Equal Population Assumption)

Usage

```
part_egap_ep(plans, shp, dvote, rvote)
```

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame containing other columns.
dvote	Unqouted name of column in shp with total population.
rvote	Unqouted name of column in shp with group population.

36 part_lop_wins

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Nicholas O. Stephanopoulos. 2015. Partisan Gerrymandering and the Efficiency Gap. The University of Chicago Law Review, 82, Pp. 831-900.

Examples

```
data(nh)
data(nh_m)
# For a single plan:
part_egap_ep(plans = nh$r_2020, shp = nh, rvote = nrv, dvote = ndv)
# Or many plans:
part_egap_ep(plans = nh_m[, 3:5], shp = nh, rvote = nrv, dvote = ndv)
```

part_lop_wins

Calculate Lopsided Wins

Description

Calculate Lopsided Wins

Usage

```
part_lop_wins(plans, shp, dvote, rvote)
```

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame containing other columns.
dvote	Unqouted name of column in shp with total population.
rvote	Unqouted name of column in shp with group population.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Samuel S.-H. Wang. 2016. "Three Tests for Practical Evaluation of Partisan Gerrymandering." Stanford Law Review, 68, Pp. 1263 - 1321.

part_mean_median 37

Examples

```
data(nh)
data(nh_m)
# For a single plan:
part_lop_wins(plans = nh$r_2020, shp = nh, rvote = nrv, dvote = ndv)
# Or many plans:
part_lop_wins(plans = nh_m[, 3:5], shp = nh, rvote = nrv, dvote = ndv)
```

part_mean_median

Calculate Mean Median Score

Description

Calculate Mean Median Score

Usage

```
part_mean_median(plans, shp, dvote, rvote)
```

Arguments

plans A redist_plans object or plans_matrix where each row indicates a district

assignment and each column is a plan.

shp A redist_map object, tibble, or data frame containing other columns.

dvote Unqouted name of column in shp with total population.

rvote Unqouted name of column in shp with group population.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Michael D. McDonald and Robin E. Best. 2015. Unfair Partisan Gerrymanders in Politics and Law: A Diagnostic Applied to Six Cases. Election Law Journal: Rules, Politics, and Policy. 14. 4. Pp. 312-330.

```
data(nh)
data(nh_m)
# zero for the two district case:
# For a single plan:
part_mean_median(plans = nh$r_2020, shp = nh, rvote = nrv, dvote = ndv)
# Or many plans:
```

38 part_resp

```
part_mean_median(plans = nh_m[, 3:5], shp = nh, rvote = nrv, dvote = ndv)
```

part_resp	Calculate Responsiveness	
-----------	--------------------------	--

Description

Calculate Responsiveness

Usage

```
part_resp(plans, shp, dvote, rvote, v = 0.5, bandwidth = 0.01)
```

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame containing other columns.
dvote	Unqouted name of column in shp with total population.
rvote	Unqouted name of column in shp with group population.
V	vote share to calculate bias at. Numeric. Default is 0.5.
bandwidth	Defaults to 0.01. A value between 0 and 1 for the step size to estimate the slope.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Jonathan N. Katz, Gary King, and Elizabeth Rosenblatt. 2020. Theoretical Foundations and Empirical Evaluations of Partisan Fairness in District-Based Democracies. American Political Science Review, 114, 1, Pp. 164-178.

```
data(nh)
data(nh_m)
# For a single plan:
part_resp(plans = nh$r_2020, shp = nh, rvote = nrv, dvote = ndv)
# Or many plans:
part_resp(plans = nh_m[, 3:5], shp = nh, rvote = nrv, dvote = ndv)
```

part_rmd 39

part_rmd	Calculate Ranked Marginal Deviation	

Description

Calculate Ranked Marginal Deviation

Usage

```
part_rmd(plans, shp, dvote, rvote)
```

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame containing other columns.
dvote	Unqouted name of column in shp with total population.
rvote	Unqouted name of column in shp with group population.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Gregory Herschlag, Han Sung Kang, Justin Luo, Christy Vaughn Graves, Sachet Bangia, Robert Ravier & Jonathan C. Mattingly (2020) Quantifying Gerrymandering in North Carolina, Statistics and Public Policy, 7:1, 30-38, DOI: 10.1080/2330443X.2020.1796400

```
data(nh)
data(nh_m)
# For a single plan:
part_rmd(plans = nh$r_2020, shp = nh, rvote = nrv, dvote = ndv)
# Or many plans:
part_rmd(plans = nh_m[, 3:5], shp = nh, rvote = nrv, dvote = ndv)
```

40 part_sscd

part_sscd	Calculate Smoothed Seat Count Deviation

Description

Calculate Smoothed Seat Count Deviation

Usage

```
part_sscd(plans, shp, dvote, rvote)
```

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame containing other columns.
dvote	Unqouted name of column in shp with total population.
rvote	Unquoted name of column in shp with group population.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Gregory Herschlag, Han Sung Kang, Justin Luo, Christy Vaughn Graves, Sachet Bangia, Robert Ravier & Jonathan C. Mattingly (2020) Quantifying Gerrymandering in North Carolina, Statistics and Public Policy, 7:1, 30-38, DOI: 10.1080/2330443X.2020.1796400

```
data(nh)
data(nh_m)
# For a single plan:
part_sscd(plans = nh$r_2020, shp = nh, rvote = nrv, dvote = ndv)
# Or many plans:
part_sscd(plans = nh_m[, 3:5], shp = nh, rvote = nrv, dvote = ndv)
```

part_tau_gap 41

Calculate Iau Gap	u_gap Calculate Tau Gap
-------------------	-------------------------

Description

Calculate Tau Gap

Usage

```
part_tau_gap(plans, shp, dvote, rvote, tau = 1)
```

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame containing other columns.
dvote	Unqouted name of column in shp with total population.
rvote	Unqouted name of column in shp with group population.
tau	A non-negative numeric for calculating Tau Gap. Defaults to 1.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Gregory S. Warrington. 2018. "Quantifying Gerrymandering Using the Vote Distribution." Election Law Journal: Rules, Politics, and Policy. Pp. 39-57.http://doi.org/10.1089/elj.2017.0447

```
data(nh)
data(nh_m)
# For a single plan:
part_tau_gap(plans = nh$r_2020, shp = nh, rvote = nrv, dvote = ndv)
# Or many plans:
part_tau_gap(plans = nh_m[, 3:5], shp = nh, rvote = nrv, dvote = ndv)
```

42 seg_dissim

nren	_perims	
hi ch-	-hei Tillo	

Prep Polsby Popper Perimeter Tibble

Description

Replaces redist.prep.polsbypopper

Usage

```
prep_perims(shp, epsg = 3857, perim_path, ncores = 1)
```

Arguments

shp A redist_map object, tibble, or data frame with an sf geometry column.

epsg Numeric EPSG code to use to project the shapefile, if needed. Default is 3857.

perim_path A path to save an rds

ncores Integer number of cores to use. Default is 1.

Value

tibble of perimeters and lengths

Examples

```
data(nh)
prep_perims(nh)
```

seg_dissim

Compute Dissimilarity Index

Description

Compute Dissimilarity Index

Usage

```
seg_dissim(plans, shp, group_pop, total_pop)
```

Arguments

plans A redist_plans object or plans_matrix where each row indicates a district

assignment and each column is a plan.

shp A redist_map object, tibble, or data frame containing other columns.

group_pop Unqouted name of column in shp with group population.

total_pop Unqouted name of column in shp with total population.

splits_admin 43

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

References

Douglas Massey and Nancy Denton. 1987. The Dimensions of Social Segregation. Social Forces.

Examples

```
data(nh)
data(nh_m)
# For a single plan:
seg_dissim(plans = nh$r_2020, shp = nh, group_pop = vap_hisp, total_pop = vap)
# Or many plans:
seg_dissim(plans = nh_m[, 3:5], shp = nh, group_pop = vap_hisp, total_pop = vap)
```

splits_admin

Compute Number of Administrative Units Split

Description

Compute Number of Administrative Units Split

Usage

```
splits_admin(plans, shp, admin)
```

Arguments

plans	A redist_plans	object or plans	_matrix where	each row indicates a	district
-------	----------------	-----------------	---------------	----------------------	----------

assignment and each column is a plan.

shp A redist_map object, tibble, or data frame containing other columns.

admin Unqouted name of column in shp with numeric identifiers for administrative

units.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

splits_count

Examples

```
data(nh)
data(nh_m)
# For a single plan:
splits_admin(plans = nh$r_2020, shp = nh, admin = county)
# Or many plans:
splits_admin(plans = nh_m[, 3:5], shp = nh, admin = county)
```

splits_count

Count the Number of Splits in Each Administrative Unit

Description

Tallies the number of unique administrative unit-districts. An unsplit administrative unit will return an entry of 1, while each additional administrative unit-district adds 1.

Usage

```
splits_count(plans, shp, admin)
```

Arguments

plans A redist_plans object or plans_matrix where each row indicates a district

assignment and each column is a plan.

shp A redist_map object, tibble, or data frame containing other columns.

admin Unqouted name of column in shp with numeric identifiers for administrative

units.

Value

numeric matrix

```
data(nh)
data(nh_m)
# For a single plan:
splits_count(plans = nh$r_2020, shp = nh, admin = county)
# Or many plans:
splits_count(plans = nh_m[, 3:5], shp = nh, admin = county)
```

splits_district_fuzzy 45

```
splits_district_fuzzy Fuzzy Splits by District (Experimental)
```

Description

Not all relevant geographies nest neatly into Census blocks, including communities of interest or neighborhood. For these cases, this provides a tabulation by district of the number of splits. As some geographies can be split multiple times, the sum of these splits may not reflect the total number of splits.

Usage

```
splits_district_fuzzy(plans, shp, nbr, thresh = 0.01, epsg)
```

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame with an sf geometry column.
nbr	Geographic neighborhood, community, or other unit to check splits for.
thresh	Percent as decimal of an area to trim away. Default is .01, which is 1%.
epsg	Numeric EPSG code to use to project the shapefile, if needed. Default is 3857.

Details

Beware, this requires a nbr shape input and will be slower than checking splits in cases where administrative unit nests cleanly into the geographies represented by shp.

Value

numeric matrix

```
data(nh)
data(nh_m)

# toy example,
# suppose we care about the splits of the counties and they don't nest
nh_cty <- nh %>% dplyr::group_by(county) %>% dplyr::summarize()

# For a single plan:
splits_district_fuzzy(plans = nh$r_2020, shp = nh, nbr = nh_cty)

# Or many plans:
splits_district_fuzzy(plans = nh_m[, 3:5], shp = nh, nbr = nh_cty)
```

splits_sub_admin

splits	multi	
SDIILS	IIIUTLT	

Compute Number of Administrative Units Split More than Once

Description

Compute Number of Administrative Units Split More than Once

Usage

```
splits_multi(plans, shp, admin)
```

Arguments

plans A redist_plans object or plans_matrix where each row indicates a district

assignment and each column is a plan.

shp A redist_map object, tibble, or data frame containing other columns.

admin Unquited name of column in shp with numeric identifiers for administrative

units.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

Examples

```
data(nh)
data(nh_m)
# For a single plan:
splits_multi(plans = nh$r_2020, shp = nh, admin = county)
# Or many plans:
splits_multi(plans = nh_m[, 3:5], shp = nh, admin = county)
```

splits_sub_admin

Compute Number of Sub-Administrative Units Split

Description

Compute Number of Sub-Administrative Units Split

Usage

```
splits_sub_admin(plans, shp, sub_admin)
```

splits_sub_count 47

Arguments

plans A redist_plans object or plans_matrix where each row indicates a district

assignment and each column is a plan.

shp A redist_map object, tibble, or data frame containing other columns.

sub_admin Unquited name of column in shp with numeric identifiers for subsidiary admin-

istrative units.

Value

A numeric vector. Can be shaped into a district-by-plan matrix.

Examples

```
data(nh)
data(nh_m)
# For a single plan:
splits_sub_admin(plans = nh$r_2020, shp = nh, sub_admin = county)
# Or many plans:
splits_sub_admin(plans = nh_m[, 3:5], shp = nh, sub_admin = county)
```

splits_sub_count

Count the Number of Splits in Each Sub-Administrative Unit

Description

Tallies the number of unique sub-administrative unit-districts. An unsplit administrative unit will return an entry of 1, while each additional sub-administrative unit-district adds 1.

Usage

```
splits_sub_count(plans, shp, sub_admin)
```

Arguments

plans A redist_plans object or plans_matrix where each row indicates a district

assignment and each column is a plan.

shp A redist_map object, tibble, or data frame containing other columns.

sub_admin Unqouted name of column in shp with numeric identifiers for subsidiary admin-

istrative units.

Value

numeric matrix

48 splits_sub_total

Examples

```
data(nh)
data(nh_m)
# For a single plan:
splits_sub_count(plans = nh$r_2020, shp = nh, sub_admin = county)
# Or many plans:
splits_sub_count(plans = nh_m[, 3:5], shp = nh, sub_admin = county)
```

splits_sub_total

Count the Total Sub-Administrative Unit in Each Plan

Description

Counts the total number of sub-administrative splits.

Usage

```
splits_sub_total(plans, shp, sub_admin)
```

Arguments

plans A redist_plans object or plans_matrix where each row indicates a district

assignment and each column is a plan.

shp A redist_map object, tibble, or data frame containing other columns.

sub_admin Unqouted name of column in shp with numeric identifiers for subsidiary admin-

istrative units.

Value

numeric matrix

```
data(nh)
data(nh_m)
# For a single plan:
splits_sub_total(plans = nh$r_2020, shp = nh, sub_admin = county)
# Or many plans:
splits_sub_total(plans = nh_m[, 3:5], shp = nh, sub_admin = county)
```

splits_total 49

splits_total	Count the Total Splits in Each Plan	

Description

Counts the total number of administrative splits.

Usage

```
splits_total(plans, shp, admin)
```

Arguments

plans A redist_plans object or plans_matrix where each row indicates a district

assignment and each column is a plan.

shp A redist_map object, tibble, or data frame containing other columns.

admin Unquited name of column in shp with numeric identifiers for administrative

units.

Value

numeric matrix

Examples

```
data(nh)
data(nh_m)
# For a single plan:
splits_total(plans = nh$r_2020, shp = nh, admin = county)
# Or many plans:
splits_total(plans = nh_m[, 3:5], shp = nh, admin = county)
```

tally

Tally a Column by District

Description

Helper function to aggregate a vector by district. Can be used to calculate total population, group percentages, and more.

Usage

```
tally(plans, shp, x)
```

50 tally

Arguments

plans	A redist_plans object or plans_matrix where each row indicates a district assignment and each column is a plan.
shp	A redist_map object, tibble, or data frame containing other columns.
X	The numeric vector to tally.

Value

A numeric vector with the tallies. Can be shaped into a district-by-plan matrix.

```
data(nh)
data(nh_m)

tally(nh_m, nh, pop) # total population
tally(nh_m, nh, vap_hisp) / tally(nh_m, nh, vap) # HVAP
```

Index

* compactness	part_egap, 34	
comp_bbox_reock, 5	part_egap_ep, 35	
comp_bc, 5	part_lop_wins, 36	
comp_box_reock, 6	part_mean_median,37	
comp_ch, 7	part_resp, 38	
comp_edges_rem, 8	part_rmd, 39	
comp_fh, 9	part_sscd, 40	
comp_frac_kept, 10	part_tau_gap, 41	
comp_log_st, 11	* segregation	
comp_lw, 12	seg_dissim, 42	
comp_polsby, 13	* splits	
comp_reock, 14	splits_admin,43	
comp_schwartz, 15	splits_count,44	
comp_skew, 16	splits_district_fuzzy,45	
comp_x_sym, 17	splits_multi,46	
comp_y_sym, 18	splits_sub_admin,46	
prep_perims, 42	splits_sub_count,47	
* competitiveness	splits_sub_total,48	
compet_talisman, 4	splits_total, 49	
* data		
nh, 23	by_plan, 3	
nh_m, 25	bless and 6	
nh_map, 25	comp_bbox_reock, 5	
nh_plans, 27	comp_bc, 5	
* distances	comp_box_reock, 6	
dist_euc, 19	comp_ch, 7	
dist_ham, 19	<pre>comp_edges_rem, 8 comp_fh, 9</pre>	
dist_info, 20	comp_frac_kept, 10	
dist_man, 21	comp_log_st, 11	
* incumbent	comp_lw, 12	
inc_pairs, 21	comp_polsby, 13	
* partisan	comp_reock, 14	
part_bias, 28	comp_schwartz, 15	
part_decl, 29	comp_skew, 16	
part_decl_simple, 30	comp_x_sym, 17	
part_dil_asym, 31	comp_y_sym, 18	
part_dislocation, 32	compet_talisman, 4	
part_dseats, 33	, - /	
part_dvs, 34	dist_euc, 19	

52 INDEX

```
dist_ham, 19
dist_info, 20
dist_man, 21
inc_pairs, 21
list_fn, 22
nh, 23
nh_m, 25
nh_map, 25
nh_plans, 27
part_bias, 28
part_decl, 29
part_decl_simple, 30
part_dil_asym, 31
part_dislocation, 32
part\_dseats, \textcolor{red}{33}
part_dvs, 34
part_egap, 34
part_egap_ep, 35
part_lop_wins, 36
part_mean_median, 37
part_resp, 38
part_rmd, 39
part_sscd, 40
part_tau_gap, 41
prep_perims, 42
seg_dissim, 42
splits\_admin, 43
splits_count, 44
splits\_district\_fuzzy, 45
splits_multi, 46
splits_sub_admin, 46
splits_sub_count, 47
splits_sub_total, 48
splits_total, 49
tally, 49
```