
Package ‘querychat’
January 12, 2026

Title Filter and Query Data Frames in 'shiny' Using an LLM Chat
Interface

Version 0.2.0

Description Adds an LLM-powered chatbot to your 'shiny' app, that can
turn your users' natural language questions into SQL queries that run
against your data, and return the result as a reactive data frame. Use
it to drive reactive calculations, visualizations, downloads, and
more.

License MIT + file LICENSE

URL https://posit-dev.github.io/querychat/r/,

https://posit-dev.github.io/querychat/,

https://github.com/posit-dev/querychat

BugReports https://github.com/posit-dev/querychat/issues

Depends R (>= 4.1.0)

Imports bslib, cli, DBI, ellmer (>= 0.3.0), htmltools, lifecycle,
promises, R6, rlang (>= 1.1.0), S7, shiny, shinychat (>=
0.3.0), utils, whisker

Suggests bsicons, dbplyr, dplyr, DT, duckdb, knitr, palmerpenguins,
rmarkdown, RSQLite, shinytest2, testthat (>= 3.0.0), withr

VignetteBuilder knitr

Config/testthat/edition 3

Config/testthat/parallel true

Encoding UTF-8

RoxygenNote 7.3.3

NeedsCompilation no

Author Garrick Aden-Buie [aut, cre] (ORCID:
<https://orcid.org/0000-0002-7111-0077>),

Joe Cheng [aut, ccp],
Carson Sievert [aut] (ORCID: <https://orcid.org/0000-0002-4958-2844>),
Posit Software, PBC [cph, fnd]

1

https://posit-dev.github.io/querychat/r/
https://posit-dev.github.io/querychat/
https://github.com/posit-dev/querychat
https://github.com/posit-dev/querychat/issues
https://orcid.org/0000-0002-7111-0077
https://orcid.org/0000-0002-4958-2844

2 DataFrameSource

Maintainer Garrick Aden-Buie <garrick@posit.co>

Repository CRAN

Date/Publication 2026-01-12 19:50:02 UTC

Contents
DataFrameSource . 2
DataSource . 3
DBISource . 5
QueryChat . 8
querychat . 15
TblSqlSource . 18

Index 21

DataFrameSource Data Frame Source

Description

A DataSource implementation that wraps a data frame using DuckDB or SQLite for SQL query
execution.

Details

This class creates an in-memory database connection and registers the provided data frame as a ta-
ble. All SQL queries are executed against this database table. See DBISource for the full description
of available methods.

By default, DataFrameSource uses the first available engine from duckdb (checked first) or RSQLite.
You can explicitly set the engine parameter to choose between "duckdb" or "sqlite", or set the
global option querychat.DataFrameSource.engine to choose the default engine for all DataFrame-
Source instances. At least one of these packages must be installed.

Super classes

querychat::DataSource -> querychat::DBISource -> DataFrameSource

Methods

Public methods:

• DataFrameSource$new()

• DataFrameSource$clone()

Method new(): Create a new DataFrameSource

Usage:

DataSource 3

DataFrameSource$new(
df,
table_name,
engine = getOption("querychat.DataFrameSource.engine", NULL)

)

Arguments:
df A data frame.
table_name Name to use for the table in SQL queries. Must be a valid table name (start with

letter, contain only letters, numbers, and underscores)
engine Database engine to use: "duckdb" or "sqlite". Set the global option querychat.DataFrameSource.engine

to specify the default engine for all instances. If NULL (default), uses the first available en-
gine from duckdb or RSQLite (in that order).

Returns: A new DataFrameSource object

Method clone(): The objects of this class are cloneable with this method.

Usage:
DataFrameSource$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

Create a data frame source (uses first available: duckdb or sqlite)
df_source <- DataFrameSource$new(mtcars, "mtcars")

Get database type
df_source$get_db_type() # Returns "DuckDB" or "SQLite"

Execute a query
result <- df_source$execute_query("SELECT * FROM mtcars WHERE mpg > 25")

Explicitly choose an engine
df_sqlite <- DataFrameSource$new(mtcars, "mtcars", engine = "sqlite")

Clean up when done
df_source$cleanup()
df_sqlite$cleanup()

DataSource Data Source Base Class

Description

An abstract R6 class defining the interface that custom QueryChat data sources must implement.
This class should not be instantiated directly; instead, use one of its concrete implementations like
DataFrameSource or DBISource.

4 DataSource

Public fields

table_name Name of the table to be used in SQL queries

Methods

Public methods:
• DataSource$get_db_type()

• DataSource$get_schema()

• DataSource$execute_query()

• DataSource$test_query()

• DataSource$get_data()

• DataSource$cleanup()

• DataSource$clone()

Method get_db_type(): Get the database type

Usage:
DataSource$get_db_type()

Returns: A string describing the database type (e.g., "DuckDB", "SQLite")

Method get_schema(): Get schema information about the table

Usage:
DataSource$get_schema(categorical_threshold = 20)

Arguments:

categorical_threshold Maximum number of unique values for a text column to be consid-
ered categorical

Returns: A string containing schema information formatted for LLM prompts

Method execute_query(): Execute a SQL query and return results

Usage:
DataSource$execute_query(query)

Arguments:

query SQL query string to execute

Returns: A data frame containing query results

Method test_query(): Test a SQL query by fetching only one row

Usage:
DataSource$test_query(query, require_all_columns = FALSE)

Arguments:

query SQL query string to test
require_all_columns If TRUE, validates that the result includes all original table columns

(default: FALSE)

Returns: A data frame containing one row of results (or empty if no matches)

DBISource 5

Method get_data(): Get the unfiltered data as a data frame

Usage:
DataSource$get_data()

Returns: A data frame containing all data from the table

Method cleanup(): Clean up resources (close connections, etc.)

Usage:
DataSource$cleanup()

Returns: NULL (invisibly)

Method clone(): The objects of this class are cloneable with this method.

Usage:
DataSource$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

MyDataSource <- R6::R6Class(
"MyDataSource",
inherit = DataSource,
public = list(
initialize = function(table_name) {

self$table_name <- table_name
}
Implement abstract methods here...

)
)

DBISource DBI Source

Description

DBI Source

DBI Source

Details

A DataSource implementation for DBI database connections (SQLite, PostgreSQL, MySQL, etc.).
This class wraps a DBI connection and provides SQL query execution against a single table in the
database.

Super class

querychat::DataSource -> DBISource

6 DBISource

Methods

Public methods:
• DBISource$new()

• DBISource$get_db_type()

• DBISource$get_schema()

• DBISource$execute_query()

• DBISource$test_query()

• DBISource$get_data()

• DBISource$cleanup()

• DBISource$clone()

Method new(): Create a new DBISource

Usage:
DBISource$new(conn, table_name)

Arguments:
conn A DBI connection object
table_name Name of the table in the database. Can be a character string or a DBI::Id() object

for tables in catalogs/schemas

Returns: A new DBISource object

Method get_db_type(): Get the database type

Usage:
DBISource$get_db_type()

Returns: A string identifying the database type

Method get_schema(): Get schema information for the database table

Usage:
DBISource$get_schema(categorical_threshold = 20)

Arguments:
categorical_threshold Maximum number of unique values for a text column to be consid-

ered categorical (default: 20)

Returns: A string describing the schema

Method execute_query(): Execute a SQL query

Usage:
DBISource$execute_query(query)

Arguments:
query SQL query string. If NULL or empty, returns all data

Returns: A data frame with query results

Method test_query(): Test a SQL query by fetching only one row

Usage:

DBISource 7

DBISource$test_query(query, require_all_columns = FALSE)

Arguments:

query SQL query string
require_all_columns If TRUE, validates that the result includes all original table columns

(default: FALSE)

Returns: A data frame with one row of results

Method get_data(): Get all data from the table

Usage:
DBISource$get_data()

Returns: A data frame containing all data

Method cleanup(): Disconnect from the database

Usage:
DBISource$cleanup()

Returns: NULL (invisibly)

Method clone(): The objects of this class are cloneable with this method.

Usage:
DBISource$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

Connect to a database
con <- DBI::dbConnect(RSQLite::SQLite(), ":memory:")
DBI::dbWriteTable(con, "mtcars", mtcars)

Create a DBI source
db_source <- DBISource$new(con, "mtcars")

Get database type
db_source$get_db_type() # Returns "SQLite"

Execute a query
result <- db_source$execute_query("SELECT * FROM mtcars WHERE mpg > 25")

Note: cleanup() will disconnect the connection
If you want to keep the connection open, don't call cleanup()
db_source$cleanup()

8 QueryChat

QueryChat QueryChat: Interactive Data Querying with Natural Language

Description

QueryChat is an R6 class built on Shiny, shinychat, and ellmer to enable interactive querying of
data using natural language. It leverages large language models (LLMs) to translate user questions
into SQL queries, execute them against a data source (data frame or database), and various ways of
accessing/displaying the results.

The QueryChat class takes your data (a data frame or database connection) as input and provides
methods to:

• Generate a chat UI for natural language queries (e.g., $app(), $sidebar())
• Initialize server logic that returns session-specific reactive values (via $server())
• Access reactive data, SQL queries, and titles through the returned server values

Usage in Shiny Apps

library(querychat)

Create a QueryChat object
qc <- QueryChat$new(mtcars)

Quick start: run a complete app
qc$app()

Or build a custom Shiny app
ui <- page_sidebar(
qc$sidebar(),
verbatimTextOutput("sql"),
dataTableOutput("data")

)

server <- function(input, output, session) {
qc_vals <- qc$server()

output$sql <- renderText(qc_vals$sql())
output$data <- renderDataTable(qc_vals$df())

}

shinyApp(ui, server)

Public fields

greeting The greeting message displayed to users.
id ID for the QueryChat instance.
tools The allowed tools for the chat client.

QueryChat 9

Active bindings

system_prompt Get the system prompt.

data_source Get the current data source.

Methods

Public methods:

• QueryChat$new()

• QueryChat$client()

• QueryChat$console()

• QueryChat$app()

• QueryChat$app_obj()

• QueryChat$sidebar()

• QueryChat$ui()

• QueryChat$server()

• QueryChat$generate_greeting()

• QueryChat$cleanup()

• QueryChat$clone()

Method new(): Create a new QueryChat object.

Usage:
QueryChat$new(
data_source,
table_name = missing_arg(),
...,
id = NULL,
greeting = NULL,
client = NULL,
tools = c("update", "query"),
data_description = NULL,
categorical_threshold = 20,
extra_instructions = NULL,
prompt_template = NULL,
cleanup = NA

)

Arguments:

data_source Either a data.frame or a database connection (e.g., DBI connection).
table_name A string specifying the table name to use in SQL queries. If data_source is a

data.frame, this is the name to refer to it by in queries (typically the variable name). If
not provided, will be inferred from the variable name for data.frame inputs. For database
connections, this parameter is required.

... Additional arguments (currently unused).
id Optional module ID for the QueryChat instance. If not provided, will be auto-generated

from table_name. The ID is used to namespace the Shiny module.

10 QueryChat

greeting Optional initial message to display to users. Can be a character string (in Markdown
format) or a file path. If not provided, a greeting will be generated at the start of each
conversation using the LLM, which adds latency and cost. Use $generate_greeting() to
create a greeting to save and reuse.

client Optional chat client. Can be:
• An ellmer::Chat object
• A string to pass to ellmer::chat() (e.g., "openai/gpt-4o")
• NULL (default): Uses the querychat.client option, the QUERYCHAT_CLIENT environ-

ment variable, or defaults to ellmer::chat_openai()

tools Which querychat tools to include in the chat client, by default. "update" includes the
tools for updating and resetting the dashboard and "query" includes the tool for executing
SQL queries. Use tools = "update" when you only want the dashboard updating tools, or
when you want to disable the querying tool entirely to prevent the LLM from seeing any of
the data in your dataset.

data_description Optional description of the data in plain text or Markdown. Can be a string
or a file path. This provides context to the LLM about what the data represents.

categorical_threshold For text columns, the maximum number of unique values to consider
as a categorical variable. Default is 20.

extra_instructions Optional additional instructions for the chat model in plain text or Mark-
down. Can be a string or a file path.

prompt_template Optional path to or string of a custom prompt template file. If not provided,
the default querychat template will be used. See the package prompts directory for the
default template format.

cleanup Whether or not to automatically run $cleanup() when the Shiny session/app stops.
By default, cleanup only occurs if QueryChat gets created within a Shiny session. Set to
TRUE to always clean up, or FALSE to never clean up automatically.

Returns: A new QueryChat object.

Method client(): Create a chat client, complete with registered tools, for the current data
source.

Usage:
QueryChat$client(
tools = NA,
update_dashboard = function(query, title) {
},
reset_dashboard = function() {
}

)

Arguments:

tools Which querychat tools to include in the chat client. "update" includes the tools for
updating and resetting the dashboard and "query" includes the tool for executing SQL
queries. By default, when tools = NA, the values provided at initialization are used.

update_dashboard Optional function to call with the query and title generated by the LLM
for the update_dashboard tool.

reset_dashboard Optional function to call when the reset_dashboard tool is called.

QueryChat 11

Method console(): Launch a console-based chat interface with the data source.

Usage:
QueryChat$console(new = FALSE, ..., tools = "query")

Arguments:
new Whether to create a new chat client instance or continue the conversation from the last

console chat session (the default).
... Additional arguments passed to the $client() method.
tools Which querychat tools to include in the chat client. See $client() for details. Ig-

nored when not creating a new chat client. By default, only the "query" tool is included,
regardless of the tools set at initialization.

Method app(): Create and run a Shiny gadget for chatting with data
Runs a Shiny gadget (designed for interactive use) that provides a complete interface for chatting
with your data using natural language. If you’re looking to deploy this app or run it through some
other means, see $app_obj().

library(querychat)

qc <- QueryChat$new(mtcars)
qc$app()

Usage:
QueryChat$app(..., bookmark_store = "url")

Arguments:
... Arguments passed to $app_obj().
bookmark_store The bookmarking storage method. Passed to shiny::enableBookmarking().

If "url" or "server", the chat state (including current query) will be bookmarked. Default
is "url".

Returns: Invisibly returns a list of session-specific values:
• df: The final filtered data frame
• sql: The final SQL query string
• title: The final title
• client: The session-specific chat client instance

Method app_obj(): A streamlined Shiny app for chatting with data
Creates a Shiny app designed for chatting with data, with:

• A sidebar containing the chat interface
• A card displaying the current SQL query
• A card displaying the filtered data table
• A reset button to clear the query

library(querychat)

qc <- QueryChat$new(mtcars)
app <- qc$app_obj()
shiny::runApp(app)

12 QueryChat

Usage:
QueryChat$app_obj(..., bookmark_store = "url")

Arguments:
... Additional arguments (currently unused).
bookmark_store The bookmarking storage method. Passed to shiny::enableBookmarking().

If "url" or "server", the chat state (including current query) will be bookmarked. Default
is "url".

Returns: A Shiny app object that can be run with shiny::runApp().

Method sidebar(): Create a sidebar containing the querychat UI.
This method generates a bslib::sidebar() component containing the chat interface, suitable
for use with bslib::page_sidebar() or similar layouts.

qc <- QueryChat$new(mtcars)

ui <- page_sidebar(
qc$sidebar(),
Main content here

)

Usage:
QueryChat$sidebar(
...,
width = 400,
height = "100%",
fillable = TRUE,
id = NULL

)

Arguments:
... Additional arguments passed to bslib::sidebar().
width Width of the sidebar in pixels. Default is 400.
height Height of the sidebar. Default is "100%".
fillable Whether the sidebar should be fillable. Default is TRUE.
id Optional ID for the QueryChat instance. If not provided, will use the ID provided at initial-

ization. If using $sidebar() in a Shiny module, you’ll need to provide id = ns("your_id")
where ns is the namespacing function from shiny::NS().

Returns: A bslib::sidebar() UI component.

Method ui(): Create the UI for the querychat chat interface.
This method generates the chat UI component. Typically you’ll use $sidebar() instead, which
wraps this in a sidebar layout.

qc <- QueryChat$new(mtcars)

ui <- fluidPage(
qc$ui()

)

QueryChat 13

Usage:
QueryChat$ui(..., id = NULL)

Arguments:

... Additional arguments passed to shinychat::chat_ui().
id Optional ID for the QueryChat instance. If not provided, will use the ID provided at ini-

tialization. If using $ui() in a Shiny module, you’ll need to provide id = ns("your_id")
where ns is the namespacing function from shiny::NS().

Returns: A UI component containing the chat interface.

Method server(): Initialize the querychat server logic.
This method must be called within a Shiny server function. It sets up the reactive logic for the
chat interface and returns session-specific reactive values.

qc <- QueryChat$new(mtcars)

server <- function(input, output, session) {
qc_vals <- qc$server(enable_bookmarking = TRUE)

output$data <- renderDataTable(qc_vals$df())
output$query <- renderText(qc_vals$sql())
output$title <- renderText(qc_vals$title() %||% "No Query")

}

Usage:
QueryChat$server(
enable_bookmarking = FALSE,
...,
id = NULL,
session = shiny::getDefaultReactiveDomain()

)

Arguments:

enable_bookmarking Whether to enable bookmarking for the chat state. Default is FALSE.
When enabled, the chat state (including current query, title, and chat history) will be saved
and restored with Shiny bookmarks. This requires that the Shiny app has bookmarking en-
abled via shiny::enableBookmarking() or the enableBookmarking parameter of shiny::shinyApp().

... Ignored.
id Optional module ID for the QueryChat instance. If not provided, will use the ID provided

at initialization. When used in Shiny modules, this id should match the id used in the
corresponding UI function (i.e., qc$ui(id = ns("your_id")) pairs with qc$server(id =
"your_id")).

session The Shiny session object.

Returns: A list containing session-specific reactive values and the chat client with the following
elements:

• df: Reactive expression returning the current filtered data frame
• sql: Reactive value for the current SQL query string
• title: Reactive value for the current title

14 QueryChat

• client: The session-specific chat client instance

Method generate_greeting(): Generate a welcome greeting for the chat.
By default, QueryChat$new() generates a greeting at the start of every new conversation, which
is convenient for getting started and development, but also might add unnecessary latency and
cost. Use this method to generate a greeting once and save it for reuse.

Create QueryChat object
qc <- QueryChat$new(mtcars)

Generate a greeting and save it
greeting <- qc$generate_greeting()
writeLines(greeting, "mtcars_greeting.md")

Later, use the saved greeting
qc2 <- QueryChat$new(mtcars, greeting = "mtcars_greeting.md")

Usage:
QueryChat$generate_greeting(echo = c("none", "output"))

Arguments:

echo Whether to print the greeting to the console. Options are "none" (default, no output) or
"output" (print to console).

Returns: The greeting string in Markdown format.

Method cleanup(): Clean up resources associated with the data source.
This method releases any resources (e.g., database connections) associated with the data source.
Call this when you are done using the QueryChat object to avoid resource leaks.
Note: If auto_cleanup was set to TRUE in the constructor, this will be called automatically when
the Shiny app stops.

Usage:
QueryChat$cleanup()

Returns: Invisibly returns NULL. Resources are cleaned up internally.

Method clone(): The objects of this class are cloneable with this method.

Usage:
QueryChat$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

Basic usage with a data frame
qc <- QueryChat$new(mtcars)
Not run:
app <- qc$app()

End(Not run)

querychat 15

With a custom greeting
greeting <- "Welcome! Ask me about the mtcars dataset."
qc <- QueryChat$new(mtcars, greeting = greeting)

With a specific LLM provider
qc <- QueryChat$new(mtcars, client = "anthropic/claude-sonnet-4-5")

Generate a greeting for reuse (requires internet/API access)
Not run:
qc <- QueryChat$new(mtcars)
greeting <- qc$generate_greeting(echo = "text")
Save greeting for next time
writeLines(greeting, "mtcars_greeting.md")

End(Not run)

Or specify greeting and additional options at initialization
qc <- QueryChat$new(

mtcars,
greeting = "Welcome to the mtcars explorer!",
client = "openai/gpt-4o",
data_description = "Motor Trend car road tests dataset"

)

Create a QueryChat object from a database connection
1. Set up the database connection
con <- DBI::dbConnect(RSQLite::SQLite(), ":memory:")

2. (For this demo) Create a table in the database
DBI::dbWriteTable(con, "mtcars", mtcars)

3. Pass the connection and table name to `QueryChat`
qc <- QueryChat$new(con, "mtcars")

querychat QueryChat convenience functions

Description

Convenience functions for wrapping QueryChat creation (i.e., querychat()) and app launching
(i.e., querychat_app()).

Usage

querychat(
data_source,
table_name = missing_arg(),

16 querychat

...,
id = NULL,
greeting = NULL,
client = NULL,
tools = c("update", "query"),
data_description = NULL,
categorical_threshold = 20,
extra_instructions = NULL,
prompt_template = NULL,
cleanup = NA

)

querychat_app(
data_source,
table_name = missing_arg(),
...,
id = NULL,
greeting = NULL,
client = NULL,
tools = c("update", "query"),
data_description = NULL,
categorical_threshold = 20,
extra_instructions = NULL,
prompt_template = NULL,
cleanup = NA,
bookmark_store = "url"

)

Arguments

data_source Either a data.frame or a database connection (e.g., DBI connection).

table_name A string specifying the table name to use in SQL queries. If data_source is
a data.frame, this is the name to refer to it by in queries (typically the variable
name). If not provided, will be inferred from the variable name for data.frame
inputs. For database connections, this parameter is required.

... Additional arguments (currently unused).

id Optional module ID for the QueryChat instance. If not provided, will be auto-
generated from table_name. The ID is used to namespace the Shiny module.

greeting Optional initial message to display to users. Can be a character string (in Mark-
down format) or a file path. If not provided, a greeting will be generated at the
start of each conversation using the LLM, which adds latency and cost. Use
$generate_greeting() to create a greeting to save and reuse.

client Optional chat client. Can be:

• An ellmer::Chat object
• A string to pass to ellmer::chat() (e.g., "openai/gpt-4o")
• NULL (default): Uses the querychat.client option, the QUERYCHAT_CLIENT

environment variable, or defaults to ellmer::chat_openai()

querychat 17

tools Which querychat tools to include in the chat client, by default. "update" in-
cludes the tools for updating and resetting the dashboard and "query" includes
the tool for executing SQL queries. Use tools = "update" when you only want
the dashboard updating tools, or when you want to disable the querying tool
entirely to prevent the LLM from seeing any of the data in your dataset.

data_description

Optional description of the data in plain text or Markdown. Can be a string or a
file path. This provides context to the LLM about what the data represents.

categorical_threshold

For text columns, the maximum number of unique values to consider as a cate-
gorical variable. Default is 20.

extra_instructions

Optional additional instructions for the chat model in plain text or Markdown.
Can be a string or a file path.

prompt_template

Optional path to or string of a custom prompt template file. If not provided, the
default querychat template will be used. See the package prompts directory for
the default template format.

cleanup Whether or not to automatically run $cleanup() when the Shiny session/app
stops. By default, cleanup only occurs if QueryChat is created within a Shiny
app. Set to TRUE to always clean up, or FALSE to never clean up automatically.
In querychat_app(), in-memory databases created for data frames are always
cleaned up.

bookmark_store The bookmarking storage method. Passed to shiny::enableBookmarking().
If "url" or "server", the chat state (including current query) will be book-
marked. Default is "url".

Value

A QueryChat object. See QueryChat for available methods.

Invisibly returns the chat object after the app stops.

Examples

Quick start - chat with mtcars dataset in one line
querychat_app(mtcars)

Add options
querychat_app(

mtcars,
greeting = "Welcome to the mtcars explorer!",
client = "openai/gpt-4o"

)

Chat with a database table (table_name required)
con <- DBI::dbConnect(RSQLite::SQLite(), ":memory:")
DBI::dbWriteTable(con, "mtcars", mtcars)
querychat_app(con, "mtcars")

18 TblSqlSource

Create QueryChat class object
qc <- querychat(mtcars, greeting = "Welcome to the mtcars explorer!")

Run the app later
qc$app()

TblSqlSource Data Source: SQL Tibble

Description

A DataSource implementation for lazy SQL tibbles connected to databases via dbplyr::tbl_sql()
or dplyr::sql().

Super classes

querychat::DataSource -> querychat::DBISource -> TblSqlSource

Public fields

table_name Name of the table to be used in SQL queries

Methods

Public methods:
• TblSqlSource$new()

• TblSqlSource$get_db_type()

• TblSqlSource$get_schema()

• TblSqlSource$execute_query()

• TblSqlSource$test_query()

• TblSqlSource$prep_query()

• TblSqlSource$get_data()

• TblSqlSource$cleanup()

• TblSqlSource$clone()

Method new(): Create a new TblSqlSource

Usage:
TblSqlSource$new(tbl, table_name = missing_arg())

Arguments:
tbl A dbplyr::tbl_sql() (or SQL tibble via dplyr::tbl()).
table_name Name of the table in the database. Can be a character string, or will be inferred

from the tbl argument, if possible.

Returns: A new TblSqlSource object

TblSqlSource 19

Method get_db_type(): Get the database type

Usage:
TblSqlSource$get_db_type()

Returns: A string describing the database type (e.g., "DuckDB", "SQLite")

Method get_schema(): Get schema information about the table

Usage:
TblSqlSource$get_schema(categorical_threshold = 20)

Arguments:

categorical_threshold Maximum number of unique values for a text column to be consid-
ered categorical

Returns: A string containing schema information formatted for LLM prompts

Method execute_query(): Execute a SQL query and return results

Usage:
TblSqlSource$execute_query(query)

Arguments:

query SQL query string to execute

Returns: A data frame containing query results

Method test_query(): Test a SQL query by fetching only one row

Usage:
TblSqlSource$test_query(query, require_all_columns = FALSE)

Arguments:

query SQL query string to test
require_all_columns If TRUE, validates that the result includes all original table columns

(default: FALSE)

Returns: A data frame containing one row of results (or empty if no matches)

Method prep_query(): Prepare a generic SELECT * FROM ____ query to work with the SQL
tibble

Usage:
TblSqlSource$prep_query(query)

Arguments:

query SQL query as a string

Returns: A complete SQL query string

Method get_data(): Get the unfiltered data as a SQL tibble

Usage:
TblSqlSource$get_data()

Returns: A dbplyr::tbl_sql() containing the original, unfiltered data

20 TblSqlSource

Method cleanup(): Clean up resources (close connections, etc.)

Usage:
TblSqlSource$cleanup()

Returns: NULL (invisibly)

Method clone(): The objects of this class are cloneable with this method.

Usage:
TblSqlSource$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

con <- DBI::dbConnect(duckdb::duckdb())
DBI::dbWriteTable(con, "mtcars", mtcars)

mtcars_source <- TblSqlSource$new(dplyr::tbl(con, "mtcars"))
mtcars_source$get_db_type() # "DuckDB"

result <- mtcars_source$execute_query("SELECT * FROM mtcars WHERE cyl > 4")

Note, the result is not the *full* data frame, but a lazy SQL tibble
result

You can chain this result into a dplyr pipeline
dplyr::count(result, cyl, gear)

Or collect the entire data frame into local memory
dplyr::collect(result)

Finally, clean up when done with the database (closes the DB connection)
mtcars_source$cleanup()

Index

bslib::page_sidebar(), 12
bslib::sidebar(), 12

DataFrameSource, 2, 3
DataSource, 3
DBI::Id(), 6
DBISource, 2, 3, 5
dbplyr::tbl_sql(), 18, 19
dplyr::sql(), 18
dplyr::tbl(), 18

ellmer::Chat, 10, 16
ellmer::chat(), 10, 16
ellmer::chat_openai(), 10, 16

QueryChat, 8, 15, 17
querychat, 15
querychat::DataSource, 2, 5, 18
querychat::DBISource, 2, 18
querychat_app (querychat), 15

shiny::enableBookmarking(), 11, 12, 17
shiny::NS(), 12, 13
shinychat::chat_ui(), 13

TblSqlSource, 18

21

	DataFrameSource
	DataSource
	DBISource
	QueryChat
	querychat
	TblSqlSource
	Index

