
Package ‘pguIMP’
February 20, 2026

Title Visually Guided Preprocessing of Bioanalytical Laboratory Data

Version 0.1.1

Maintainer Jorn Lotsch <j.lotsch@em.uni-frankfurt.de>

Description Reproducible cleaning of biomedical laboratory data using visualization, error correc-
tion, and transformation methods implemented as interactive R notebooks. A detailed descrip-
tion of the methods ca ben found in Malkusch, S., Hahne-
feld, L., Gurke, R. and J. Lotsch. (2021) <doi:10.1002/psp4.12704>.

License GPL (>= 3)

Encoding UTF-8

URL https://github.com/JornLotsch/pguIMP

BugReports https://github.com/JornLotsch/pguIMP/issues

Imports R6 (>= 2.4.1), DT, DataVisualizations, dbscan, dplyr, e1071,
finalfit, ggplot2, ggthemes, Hmisc, magrittr, MASS, RWeka, VIM,
bbmle, grid, gridExtra, mice, nortest, outliers, plotly, psych,
purrr, rcompanion, readr, readxl, rlang, rmarkdown, robust,
shiny, stats, stringr, tibble, tidyr, tidyselect, tools,
writexl

Collate 'dLogLikelihood.R' 'importDataSet.R' 'normalDistribution.R'
'pguCorrValidator.R' 'pguCorrelator.R' 'pguDMwR.R' 'pguFile.R'
'pguData.R' 'pguFilter.R' 'pguLimitsOfQuantification.R'
'pguImporter.R' 'pguStatus.R' 'pguReporter.R' 'pguExporter.R'
'pguValidator.R' 'pguImputation.R' 'pguOutlierDetection.R'
'pguOutliers.R' 'pguMissingsCharacterizer.R' 'pguMissings.R'
'pguNormalizer.R' 'sLogLikelihood.R' 'pguNormDist.R'
'pguModel.R' 'pguTransformator.R' 'pguOptimizer.R'
'pguExplorer.R' 'pguDelegate.R' 'transposeTibble.R' 'pguIMP.R'
'pguRegressor.R'

Suggests knitr, devtools, ellipsis (>= 0.3.2), roxygen2

NeedsCompilation no

RoxygenNote 7.3.3

1

https://doi.org/10.1002/psp4.12704
https://github.com/JornLotsch/pguIMP
https://github.com/JornLotsch/pguIMP/issues

2 Contents

Author Sebastian Malkusch [aut] (ORCID:
<https://orcid.org/0000-0001-6766-140X>),

Jorn Lotsch [aut, cre] (ORCID: <https://orcid.org/0000-0002-5818-6958>)

Repository CRAN

Date/Publication 2026-02-20 10:40:26 UTC

Contents

pguIMP-package . 3
centralValue . 3
dLogLikelihood . 4
importDataSet . 5
knnImputation . 5
nnk . 6
normalDistribution . 7
pgu.correlator . 8
pgu.corrValidator . 13
pgu.data . 16
pgu.delegate . 18
pgu.explorer . 53
pgu.exporter . 56
pgu.file . 57
pgu.filter . 60
pgu.importer . 62
pgu.imputation . 64
pgu.limitsOfQuantification . 71
pgu.missings . 73
pgu.missingsCharacterizer . 74
pgu.model . 76
pgu.normalizer . 81
pgu.normDist . 86
pgu.optimizer . 91
pgu.outliers . 95
pgu.regressor . 103
pgu.reporter . 108
pgu.status . 110
pgu.transformator . 112
pgu.validator . 123
pguIMP . 127
sLogLikelihood . 128
transposeTibble . 129

Index 130

https://orcid.org/0000-0001-6766-140X
https://orcid.org/0000-0002-5818-6958

pguIMP-package 3

pguIMP-package Visually Guided Preprocessing of Bioanalytical Laboratory Data

Description

Reproducible cleaning of biomedical laboratory data using visualization, error correction, and trans-
formation methods implemented as interactive R notebooks. A detailed description of the methods
ca ben found in Malkusch, S., Hahnefeld, L., Gurke, R. and J. Lotsch. (2021) <doi:10.1002/psp4.12704>.

Author(s)

Sebastian Malkusch [aut] (ORCID: <https://orcid.org/0000-0001-6766-140X>), Jorn Lotsch [aut,
cre] (ORCID: <https://orcid.org/0000-0002-5818-6958>)

Maintainer: Jorn Lotsch <j.lotsch@em.uni-frankfurt.de>

References

Malkusch S, Hahnefeld L, Gurke R, Lotsch J (2021). "Visually guided preprocessing of bioan-
alytical laboratory data using an interactive R notebook (pguIMP)." CPT: Pharmacometrics and
Systems Pharmacology, 10(11), 1371–1381. doi:10.1002/psp4.12704

Examples

simple examples of the most important functions

centralValue centralValue

Description

Returns the central value of a variable.

Usage

centralValue(x, ws = NULL)

Arguments

x variable

ws weights

Details

Function that obtains a statistic of centrality of a variable, given a sample of values. If the variable
is numeric it returns de median, if it is a factor it returns the mode. In other cases it tries to convert
to a factor and then returns the mode. Taken from: https://github.com/ltorgo/DMwR2/

https://doi.org/10.1002/psp4.12704

4 dLogLikelihood

Value

central value

Author(s)

Luis Torgo

Examples

centralValue(x = seq(1,10,1))

dLogLikelihood dLogLikelihood

Description

Calculates the log Likelihood of a normally distributed event.

Usage

dLogLikelihood(x = "numeric", pars = c(mu = 0, sigma = 1))

Arguments

x The x-value(numeric)

pars Numeric vector with two entries c(mu, sigma). Where mu is the expectation
value and sigma is the standard deviation. (numeric)

Value

The logLikelihood. (numeric)

Author(s)

Sebastian Malkusch

Examples

y <- pguIMP::dLogLikelihood(x=5, pars = c(mu=0.0, sigma=1.0))

importDataSet 5

importDataSet importDataSet

Description

Imports a data set to the shiny ’pguIMP’ web interface. Extracts import options from a ’pguIMP::file’
instance and imports the desired record based on the passed information.

Usage

importDataSet(obj = "pgu.file")

Arguments

obj Instance of the R6 class pguIMP::pgu.file.

Value

A data frame that contains the imported data (tibble::tibble)

Author(s)

Sebastian Malkusch

knnImputation knnImputation

Description

Imputes missings using kNN.

Usage

knnImputation(data, k = 10, scale = TRUE, meth = "weighAvg", distData = NULL)

Arguments

data data frame containing missing values

k number of nearest neighbors

scale Indicates if data should be scaled

meth Method for estimating the missing value

distData Distance to the case

6 nnk

Details

Function that fills in all unknowns using the k Nearest Neighbours of each case with unknows. By
default it uses the values of the neighbours and obtains an weighted (by the distance to the case)
average of their values to fill in the unknows. If meth=’median’ it uses the median/most frequent
value, instead. Taken from https://github.com/ltorgo/DMwR2/

Value

cleaned data

Author(s)

Luis Torgo

Examples

centralValue(x = seq(1,10,1))

nnk nnk

Description

Outlier detection using kth Nearest Neighbour Distance method Takes a dataset and finds its outliers
using distance-based method

Usage

nnk(
x,
k = 0.05 * nrow(x),
cutoff = 0.95,
Method = "euclidean",
rnames = FALSE,
boottimes = 100

)

Arguments

x dataset for which outliers are to be found

k No. of nearest neighbours to be used, default value is 0.05*nrow(x)

cutoff Percentile threshold used for distance, default value is 0.95

Method Distance method, default is Euclidean

rnames Logical value indicating whether the dataset has rownames, default value is
False

boottimes Number of bootsrap samples to find the cutoff, default is 100 samples

normalDistribution 7

Details

nnk computes kth nearest neighbour distance of an observation and based on the bootstrapped cut-
off, labels an observation as outlier. Outlierliness of the labelled ’Outlier’ is also reported and it is
the bootstrap estimate of probability of the observation being an outlier. For bivariate data, it also
shows the scatterplot of the data with labelled outliers.

Value

Outlier Observations: A matrix of outlier observations

Location of Outlier: Vector of Sr. no. of outliers

Outlier probability: Vector of proportion of times an outlier exceeds local bootstrap cutof

Author(s)

Vinay Tiwari, Akanksha Kashikar

References

Hautamaki, V., Karkkainen, I., and Franti, P. 2004. Outlier detection using k-nearest neighbour
graph. In Proc. IEEE Int. Conf. on Pattern Recognition (ICPR), Cambridge, UK.

Examples

#Create dataset
X=iris[,1:4]
#Outlier detection
nnk(X,k=4)

normalDistribution normalDistribution

Description

Probability density distribution of a normally distributed variable.

Usage

normalDistribution(x = "numeric", mu = "numeric", sigma = "numeric")

Arguments

x The x-value (numeric)

mu The expextation value (numeric)

sigma The standard deviation (numeric)

8 pgu.correlator

Details

Calculates p(x | mu, sigma). Where p is the probability of observing an event x given the expected
value mu and the standard deviation sigma.

Value

The probability of observing event x given mu and sigma. (numeric)

Author(s)

Sebastian Malkusch

Examples

y <- pguIMP::normalDistribution(x=5, mu=0.0, sigma=1.0)

pgu.correlator pgu.correlator

Description

An R6 class that performs pairwise correlation on the pguIMP data set.

Format

[R6::R6Class] object.

Construction

x <- pguIMP::pgu.correlator$new()

Active bindings

featureNames Returns the instance variable featureNames. (character)

setFeatureNames Sets the instance variable featureNames. It further initializes the instance vari-
ables: intercept, pIntercept, slope, pSlope. (character)

method Returns the instance variable method. (character)

r Returns the instance variable r. (matrix)

pPearson Returns the instance variable pPearson. (matrix)

tau Returns the instance variable tau. (matrix)

pKendall Returns the instance variable pKendall. (matrix)

rho Returns the instance variable rho. (matrix)

pSpearman Returns the instance variable pSpearman. (matrix)

abscissa Returns the instance variable abscissa. (character)

pgu.correlator 9

setAbscissa Sets the instance variable abscicca to value.

ordinate Returns the instance variable ordinate. (character)

setOrdinate Sets the instance variable ordinate to value.

test Returns the instance variable test. (stats::cor.test)

Methods

Public methods:
• pgu.correlator$new()

• pgu.correlator$finalize()

• pgu.correlator$print()

• pgu.correlator$resetCorrelator()

• pgu.correlator$resetMatrix()

• pgu.correlator$featureIdx()

• pgu.correlator$calcCorrelationNumeric()

• pgu.correlator$createCorrelationMatrixPearson()

• pgu.correlator$createCorrelationMatrixKendall()

• pgu.correlator$createCorrelationMatrixSpearman()

• pgu.correlator$correlate()

• pgu.correlator$printFeature()

• pgu.correlator$printRTbl()

• pgu.correlator$printPPearsonTbl()

• pgu.correlator$printTauTbl()

• pgu.correlator$printPKendallTbl()

• pgu.correlator$printRhoTbl()

• pgu.correlator$printPSpearmanTbl()

• pgu.correlator$clone()

Method new(): Creates and returns a new ‘pgu.correlator‘ object.

Usage:
pgu.correlator$new(data = "tbl_df")

Arguments:
data The data to be modeled. (tibble::tibble)

Returns: A new ‘pgu.correlator‘ object. (pguIMP::pgu.correlator)

Method finalize(): Clears the heap and indicates if instance of ‘pgu.correlator‘ is removed
from heap.

Usage:
pgu.correlator$finalize()

Method print(): Prints instance variables of a ‘pgu.correlator‘ object.

Usage:
pgu.correlator$print()

10 pgu.correlator

Returns: string

Method resetCorrelator(): Performes pair-wise correlation analysis on the attributes of the
data frame. Progresse is indicated by the progress object passed to the function.

Usage:
pgu.correlator$resetCorrelator(data = "tbl_df", progress = "Progress")

Arguments:
data Dataframe with at least two numeric attributes. (tibble::tibble)
progress Keeps track of the analysis progress. (shiny::Progress)

Method resetMatrix(): Creates a square matrix which dimension corresponds to the length of
the instance variable featureNames. The matrix entries are set to a distict ‘value‘.

Usage:
pgu.correlator$resetMatrix(value = "numeric")

Arguments:
value The value the matrix entries are set to. (numeric)

Returns: A square matrix. (matrix)

Method featureIdx(): Determines the numerical index of the column of an attribute based on
the attribute name.

Usage:
pgu.correlator$featureIdx(feature = "character")

Arguments:
feature The attribute’s name. (character)

Returns: The attributes column index. (numeric)

Method calcCorrelationNumeric(): Creates a correlation test between two attributes of a
dataframe. The test is stored as instance variable.

Usage:
pgu.correlator$calcCorrelationNumeric(
abscissa = "numeric",
ordinate = "numeric",
method = "character"

)

Arguments:
abscissa The abscissa values. (numeric)
ordinate The ordinate values. (numeric)
method The cname of the correlation test. Valid coiced are defined by the instance variable

‘method‘. (chatacter)

Method createCorrelationMatrixPearson(): Performs the actual correlation test routine
after Pearson. Iteratively runs through the attributes known to the class and calculates Pearson’s
correlation for each valid attribute pair. The test results are stored in the instance variables: r,
pPearson. Here, pX represents the p-value of the respective parameter X. Displays the progress if
shiny is loaded.

pgu.correlator 11

Usage:
pgu.correlator$createCorrelationMatrixPearson(
data = "tbl_df",
progress = "Progress"

)

Arguments:
data The data to be analysed. (tibble::tibble)
progress If shiny is loaded, the analysis’ progress is stored within this instance of the shiny

Progress class. (shiny::Progress)

Method createCorrelationMatrixKendall(): Performs the actual correlation test routine
after Kendall. Iteratively runs through the attributes known to the class and calculates Kendall’s
correlation for each valid attribute pair. The test results are stored in the instance variables: tau,
pKendall. Here, pX represents the p-value of the respective parameter X. Displays the progress if
shiny is loaded.

Usage:
pgu.correlator$createCorrelationMatrixKendall(
data = "tbl_df",
progress = "Progress"

)

Arguments:
data The data to be analysed. (tibble::tibble)
progress If shiny is loaded, the analysis’ progress is stored within this instance of the shiny

Progress class. (shiny::Progress)

Method createCorrelationMatrixSpearman(): Performs the actual correlation test routine
after Spearman. Iteratively runs through the attributes known to the class and calculates Spear-
man’s correlation for each valid attribute pair. The test results are stored in the instance variables:
rho, pSpearman. Here, pX represents the p-value of the respective parameter X. Displays the
progress if shiny is loaded.

Usage:
pgu.correlator$createCorrelationMatrixSpearman(
data = "tbl_df",
progress = "Progress"

)

Arguments:
data The data to be analysed. (tibble::tibble)
progress If shiny is loaded, the analysis’ progress is stored within this instance of the shiny

Progress class. (shiny::Progress)

Method correlate(): Performs the all three correlation test routines defined within the instance
variable ‘method‘. Displays the progress if shiny is loaded.

Usage:
pgu.correlator$correlate(data = "tbl_df", progress = "Progress")

Arguments:

12 pgu.correlator

data The data to be analysed. (tibble::tibble)
progress If shiny is loaded, the analysis’ progress is stored within this instance of the shiny

Progress class. (shiny::Progress)

Method printFeature(): Transforms the results of the correlation procedure for a valid pair of
attributes to a dataframe and returns it.

Usage:
pgu.correlator$printFeature()

Returns: The analyis result as a dataframe. (tibble::tibble)

Method printRTbl(): Transfroms instance variable ‘r‘ to a dataframe and returns it.
Usage:
pgu.correlator$printRTbl()

Returns: Dataframe of instance variable ‘r‘. (tibble::tibble)

Method printPPearsonTbl(): Transfroms instance variable ‘pPearson‘ to a dataframe and
returns it.

Usage:
pgu.correlator$printPPearsonTbl()

Returns: Dataframe of instance variable ‘pPearson‘. (tibble::tibble)

Method printTauTbl(): Transfroms instance variable ‘tau‘ to a dataframe and returns it.
Usage:
pgu.correlator$printTauTbl()

Returns: Dataframe of instance variable ‘tau‘. (tibble::tibble)

Method printPKendallTbl(): Transfroms instance variable ‘pKendall‘ to a dataframe and
returns it.

Usage:
pgu.correlator$printPKendallTbl()

Returns: Dataframe of instance variable ‘pKendall‘. (tibble::tibble)

Method printRhoTbl(): Transfroms instance variable ‘rho‘ to a dataframe and returns it.
Usage:
pgu.correlator$printRhoTbl()

Returns: Dataframe of instance variable ‘rho‘. (tibble::tibble)

Method printPSpearmanTbl(): Transfroms instance variable ‘pSpearman‘ to a dataframe and
returns it.

Usage:
pgu.correlator$printPSpearmanTbl()

Returns: Dataframe of instance variable ‘pSpearman‘. (tibble::tibble)

Method clone(): The objects of this class are cloneable with this method.
Usage:
pgu.correlator$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

pgu.corrValidator 13

Author(s)

Sebastian Malkusch

Examples

require(dplyr)
require(tibble)
data(iris)
data_df <- iris %>%

tibble::as_tibble() %>%
dplyr::select(-c("Species"))

correlator = pguIMP::pgu.correlator$new(data_df)

pgu.corrValidator pgu.corrValidator

Description

An R6 class that performs pairwise correlation of the features of the original and the imputed data
set. The correlation results of both data sets are compared by subtraction.

Format

[R6::R6Class] object.

Construction

x <- pguIMP::pgu.corrValidator$new()

Active bindings

featureNames Returns the instance variable featureNames. (character)

orgR_mat Returns the instance variable orgR_mat. (matrix)

impR_mat Returns the instance variable impR_mat. (matrix)

orgP_mat Returns the instance variable orgP_mat. (matrix)

impP_mat Returns the instance variable impP_mat. (matrix)

corr_df Returns the instance variable corr_df. (tibble::tibble)

summary_df Returns the instance variable summary_df. (tibble::tibble)

14 pgu.corrValidator

Methods

Public methods:
• pgu.corrValidator$new()

• pgu.corrValidator$print()

• pgu.corrValidator$reset()

• pgu.corrValidator$fit()

• pgu.corrValidator$correlationScatterPlot()

• pgu.corrValidator$correlationBarPlot()

• pgu.corrValidator$correlationBoxPlot()

• pgu.corrValidator$correlationCompoundPlot()

• pgu.corrValidator$clone()

Method new(): Clears the heap and indicates if instance of ‘pgu.corrValidator‘ is removed from
heap.
Summary of the correlation deviation distribution.
Creates a square matrix which dimension corresponds to the length of the instance variable fea-
tureNames. The matrix entries are set to a distinct ‘value‘.
Flattens the results transforms them into a dataframe and stores it into the instance variable
corr_df.
Creates and returns a new ‘pgu.corrValidator‘ object.

Usage:
pgu.corrValidator$new(org_df = "tbl_df", imp_df = "tbl_df")

Arguments:

org_df The original data to be analyzed. (tibble::tibble)
imp_df The imputed version of the org_df data.

Returns: A new ‘pgu.corrValidator‘ object. (pguIMP::pgu.corrValidator)

Method print(): Prints instance variables of a ‘pgu.corrValidator‘ object.

Usage:
pgu.corrValidator$print()

Returns: string

Method reset(): Resets the object ‘pgu.corrValidator‘ based on the instance variable feature-
Names..

Usage:
pgu.corrValidator$reset()

Method fit(): Runs the corraltion analysis.

Usage:
pgu.corrValidator$fit(org_df = "tbl_df", imp_df = "tbl_df")

Arguments:

org_df Adataframe comprising the original data. (tibble::tibble)

pgu.corrValidator 15

imp_df Adataframe comprising the imputed data. (tibble::tibble)

Method correlationScatterPlot(): Plots the correlation analysis results.

Usage:
pgu.corrValidator$correlationScatterPlot()

Method correlationBarPlot(): Creates and returns a histogram from the cor_delat values.

Usage:
pgu.corrValidator$correlationBarPlot()

Returns: Bar plot (ggplot2::ggplot)

Method correlationBoxPlot(): Plots the correlation analysis results.

Usage:
pgu.corrValidator$correlationBoxPlot()

Method correlationCompoundPlot(): Creates and returns a compund graphical analysis of
the cor_delta values.

Usage:
pgu.corrValidator$correlationCompoundPlot()

Returns: Compound plot (gridExtra::grid.arrange)

Method clone(): The objects of this class are cloneable with this method.

Usage:
pgu.corrValidator$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Sebastian Malkusch

Examples

require(dplyr)
require(tibble)
data(iris)
data_df <- iris %>%

tibble::as_tibble()
comp_df <- data_df %>%

dplyr::mutate(Sepal.Length = sample(Sepal.Length))
corr_obj = pguIMP::pgu.corrValidator$new()
corr_obj$fit(data_df, comp_df)
print(corr_obj)

16 pgu.data

pgu.data pgu.data

Description

Handles the pguIMP dataset.

Format

[R6::R6Class] object.

Details

Stores the pguIMP dataset as instance variable and keeps track of the attributes of interest. Provides
additionally fast access to several statistical information about the data set. This object is used by
the shiny based gui and is not for use in individual R-scripts!

Active bindings

rawData Returns the instance variable rawData (tibble::tibble)

setRawData Sets the instance variable rawData (tibble::tibble)

attributeNames Returns the instance variable attributeNames (character)

numericalAttributeNames Returns the instance variable numericalAttributeNames (character)

categoricalAttributeNames Returns the instance variable categoricalAttributeNames (charac-
ter)

classInformation Returns the instance variable classInformation (tibble::tibble)

statistics Returns the instance variable statistics (tibble::tibble)

reducedStatistics Returns the instance variable reducedStatistics (tibble::tibble)

missingsStatistics Returns the instance variable missingsStatistics (tibble::tibble)

Methods

Public methods:

• pgu.data$new()

• pgu.data$print()

• pgu.data$fit()

• pgu.data$attribute_index()

• pgu.data$numerical_data()

• pgu.data$categorical_data()

• pgu.data$clone()

pgu.data 17

Method new(): Clears the heap and indicates that instance of pguIMP::pgu.data is removed
from heap.
Summarizes information on the instance variable rawData and retruns it in form of a compact data
frame.
Summarizes a vector of numericals and returns summary.
Iterativley calls the function summarize_numerical_data on all numerical attributes of the instance
variable rawData and returns the result in form of a data frame.
Calls the function calculate_statistics filters the result for the attribute names and arithmetic mean
values. and returns the result in form of a data frame.
Calls the class’ function dataStatistics filters the result for the attribute names and information
about missing values. and returns the result in form of a data frame.
Creates and returns a new pguIMP::pgu.data object.

Usage:
pgu.data$new(data_df = "tbl_df")

Arguments:

data_df The data to be analyzed. (tibble::tibble)
val Vector of numericals to be summarized. (numeric)

Returns: A new pguIMP::pgu.data object. (pguIMP::pgu.data)

Method print(): Prints instance variables of a pguIMP::pgu.data object.

Usage:
pgu.data$print()

Returns: string

Method fit(): Extracts information about the instance variable rawData.

Usage:
pgu.data$fit()

Method attribute_index(): Returns the index of an attribute within the instance variable
attributeNames.

Usage:
pgu.data$attribute_index(attribute = "character")

Arguments:

attribute Attribute’s name. (character)

Returns: Index of attribute’s name in rawData (numeric)

Method numerical_data(): Returns the numeric attributes of the instance variable rawData.

Usage:
pgu.data$numerical_data()

Returns: A data frame (tibble::tibble)

Method categorical_data(): Returns the categorical attributes of the instance variable raw-
Data.

18 pgu.delegate

Usage:

pgu.data$categorical_data()

Returns: A data frame (tibble::tibble)

Method clone(): The objects of this class are cloneable with this method.

Usage:

pgu.data$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Sebastian Malkusch

Examples

require(dplyr)
require(tibble)
data(iris)
data_df <- iris %>%

tibble::as_tibble()
data_obj = pguIMP::pgu.data$new(data_df)

pgu.delegate pgu.delegate

Description

Manages the communication between the shiny gui layer and the classes of the pguIMP package

Format

R6::R6Class object.

Details

Comprises all needed classes from the pguIMP package and manages the communication between
the gui and the analysis. This object is used by the shiny based gui and is not for use in individual
R-scripts!

pgu.delegate 19

Active bindings

status Returns the instance variable status (pguIMP::pgu.status)

fileName Returns the instance variable fileName (pguIMP::pgu.file)

loqFileName Returns the instance variable loqFileName (pguIMP::pgu.file)

rawData Returns the instance variable rawData (pguIMP::pgu.data)

filterSet Returns the instance variable filterSet (pguIMP::pgu.filter)

filteredData Returns the instance variable filteredData (pguIMP::pgu.data)

loq Returns the instance variable loq (pguIMP::pgu.limitsOfQuantification)

loqMutatedData Returns the instance variable loqMutatedData (pguIMP::pgu.data)

explorer Returns the instance variable explorer (pguIMP::pgu.explorer)

optimizer Returns the instance variable optimizer (pguIMP::pgu.optimizer)

transformator Returns the instance variable transformator (pguIMP::pgu.transformator)

model Returns the instance variable model (pguIMP::pgu.model)

transformedData Returns the instance variable transformedData (pguIMP::pgu.data)

featureModel Returns the instance variable featureModel (pguIMP::pgu.normDist)

normalizer Returns the instance variable normalizer (pguIMP::pgu.normalizer)

normalizedData Returns the instance variable normalizedData (pguIMP::pgu.data)

missings Returns the instance variable missings (pguIMP::pgu.missings)

missingsCharacterizer Returns the instance variable missingsCharacterizer (pguIMP::pgu.missingsCharacterizer)

outliers Returns the instance variable outlierd (pguIMP::pgu.outliers)

imputer Returns the instance variable imputer (pguIMP::pgu.imputation)

imputedData Returns the instance variable imputedData (pguIMP::pgu.data)

cleanedData Returns the instance variable cleanedData (pguIMP::pgu.data)

validator Returns the instance variable validator (pguIMP::pgu.validator)

corrValidator Returns the instance variable corrValidator (pguIMP::pgu.corrValidator)

exporter Returns the instance variable exporter (pguIMP::pgu.exporter)

reporter Returns the instance variable reporter (pguIMP::pgu.reporter)

Methods

Public methods:
• pgu.delegate$new()

• pgu.delegate$print()

• pgu.delegate$update_import_gui()

• pgu.delegate$query_data()

• pgu.delegate$import_data()

• pgu.delegate$update_import_data_Types_tbl()

• pgu.delegate$update_import_data_statistics_tbl()

• pgu.delegate$update_import_missings_statistics_tbl()

20 pgu.delegate

• pgu.delegate$update_filter_select_tbl()

• pgu.delegate$update_filter()

• pgu.delegate$update_filter_inverse()

• pgu.delegate$reset_filter()

• pgu.delegate$filter_data()

• pgu.delegate$update_filter_statistics_tbl()

• pgu.delegate$update_filter_missings_tbl()

• pgu.delegate$update_exploration_gui()

• pgu.delegate$update_exploration_abscissa()

• pgu.delegate$update_exploration_ordinate()

• pgu.delegate$update_exploration_graphic()

• pgu.delegate$update_exploration_abscissa_graphic()

• pgu.delegate$update_exploration_ordinate_graphic()

• pgu.delegate$update_exploration_abscissa_table()

• pgu.delegate$update_exploration_ordinate_table()

• pgu.delegate$reset_loq_values()

• pgu.delegate$update_loq_upload_gui()

• pgu.delegate$query_loq()

• pgu.delegate$import_loq()

• pgu.delegate$update_loq_define_gui()

• pgu.delegate$update_loq_define_feature()

• pgu.delegate$update_loq_define_lloq()

• pgu.delegate$update_loq_define_uloq()

• pgu.delegate$update_loq_define_table()

• pgu.delegate$update_loq_define_menu()

• pgu.delegate$set_loq_define_values()

• pgu.delegate$set_loq_define_values_globally()

• pgu.delegate$update_loq_detect_gui()

• pgu.delegate$update_loq_na_handling()

• pgu.delegate$init_detect_loq()

• pgu.delegate$detect_loq()

• pgu.delegate$update_loq_detect_statistics_tbl()

• pgu.delegate$update_loq_detect_outlier_tbl()

• pgu.delegate$update_loq_detect_statistics_graphic()

• pgu.delegate$update_loq_detect_attribute_graphic()

• pgu.delegate$update_loq_detect_attribute_tbl()

• pgu.delegate$update_loq_mutate_gui()

• pgu.delegate$update_lloq_substitute()

• pgu.delegate$update_uloq_substitute()

• pgu.delegate$init_mutate_loq()

• pgu.delegate$mutate_loq()

• pgu.delegate$update_loq_mutate_data_tbl()

pgu.delegate 21

• pgu.delegate$update_loq_mutate_statistics_graphic()

• pgu.delegate$update_loq_mutate_attribute_graphic()

• pgu.delegate$init_loq_mutate_attribute_tbl()

• pgu.delegate$update_loq_mutate_attribute_tbl()

• pgu.delegate$optimizeTrafoParameter()

• pgu.delegate$updateDetectedTrafoTypes()

• pgu.delegate$updateDetectedTrafoParameter()

• pgu.delegate$updateTrafoDetectGui()

• pgu.delegate$updateTrafoMutateFeature()

• pgu.delegate$updateTrafoMutateType()

• pgu.delegate$updateTrafoMutateLambda()

• pgu.delegate$updateTrafoMutateMirror()

• pgu.delegate$resetTrafoMutateGui()

• pgu.delegate$updateTrafoMutateGui()

• pgu.delegate$trafoMutateFit()

• pgu.delegate$trafoMutateGlobal()

• pgu.delegate$trafoMutateFeature()

• pgu.delegate$updateTrafoMutateFeatureGraphic()

• pgu.delegate$updateTrafoMutateFeatureParameterTbl()

• pgu.delegate$updateTrafoMutateFeatureQualityTbl()

• pgu.delegate$updateTrafoMutateGlobalParameterTbl()

• pgu.delegate$updateTrafoMutateGlobalModelTbl()

• pgu.delegate$updateTrafoMutateGlobalQualityTbl()

• pgu.delegate$updateTrafoMutateGlobalTestsTbl()

• pgu.delegate$updateTrafoMutateGlobalDataTbl()

• pgu.delegate$updateTrafoNormFeature()

• pgu.delegate$updateTrafoNormMethod()

• pgu.delegate$updateTrafoNormGui()

• pgu.delegate$trafoNormMutate()

• pgu.delegate$updateTrafoNormFeatureGraphic()

• pgu.delegate$resetTrafoNormGui()

• pgu.delegate$updateTrafoNormFeatureStatisticsTbl()

• pgu.delegate$updateTrafoNormStatisticsTbl()

• pgu.delegate$updateTrafoNormParameterTbl()

• pgu.delegate$updateTrafoNormDataTbl()

• pgu.delegate$imputeMissingsAnalyze()

• pgu.delegate$updateImputeMissingsGraphic()

• pgu.delegate$updateImputeMissingsStatisticsTbl()

• pgu.delegate$updateImputeMissingsDistributionTbl()

• pgu.delegate$updateImputeMissingCharacteristicsGraphic()

• pgu.delegate$updateImputeMissingsCharacteristicsTbl()

• pgu.delegate$updateImputeMissingsDetailTbl()

22 pgu.delegate

• pgu.delegate$updateImputeOutliersMethod()

• pgu.delegate$updateImputeOutliersFeature()

• pgu.delegate$updateImputeOutliersAlpha()

• pgu.delegate$updateImputeOutliersEpsilon()

• pgu.delegate$updateImputeOutliersMinSamples()

• pgu.delegate$updateImputeOutliersGamma()

• pgu.delegate$updateImputeOutliersNu()

• pgu.delegate$updateImputeOutliersCutoff()

• pgu.delegate$updateImputeOutliersK()

• pgu.delegate$updateImputeOutliersSeed()

• pgu.delegate$updateImputeOutliersGui()

• pgu.delegate$resetImputeOutliersGui()

• pgu.delegate$imputeOutliersDetect()

• pgu.delegate$updateImputeOutliersGraphic()

• pgu.delegate$updateImputeOutliersFeatureGraphic()

• pgu.delegate$updateImputeOutliersFeatureTbl()

• pgu.delegate$updateImputeOutliersStatisticsTbl()

• pgu.delegate$updateImputeOutliersDetailTbl()

• pgu.delegate$updateImputeMutateFeature()

• pgu.delegate$updateImputeMutateMethod()

• pgu.delegate$updateImputeMutateNNeighbors()

• pgu.delegate$updateImputeMutatePredFrac()

• pgu.delegate$updateImputeMutateOutfluxThr()

• pgu.delegate$updateImputeMutateSeed()

• pgu.delegate$updateImputeMutateIterations()

• pgu.delegate$updateImputeMutateGui()

• pgu.delegate$resetImputeMutateGui()

• pgu.delegate$imputeMutateMutate()

• pgu.delegate$updateImputeFluxGraphic()

• pgu.delegate$updateImputeMutateGraphic()

• pgu.delegate$updateImputeMutateStatisticsTbl()

• pgu.delegate$updateImputeMutateDistributionTbl()

• pgu.delegate$updateImputeMutateFeatureDetailGraphic()

• pgu.delegate$updateImputeMutateFeatureDetailTbl()

• pgu.delegate$updateImputeMutateDetailTbl()

• pgu.delegate$updateImputeMutateDataTbl()

• pgu.delegate$validate()

• pgu.delegate$updateAnalysisValidationGui()

• pgu.delegate$updateAnalysisValidationGraphic()

• pgu.delegate$updateAnalysisValidationTestTbl()

• pgu.delegate$updateCentralMomentsOrgTbl()

• pgu.delegate$updateCentralMomentsImpTbl()

pgu.delegate 23

• pgu.delegate$updateCentralMomentsDeltaTbl()

• pgu.delegate$updateCorrelationValidationScatterGraphic()

• pgu.delegate$updateCorrelationValidationBoxPlotGraphic()

• pgu.delegate$updateCorrelationValidationDeviationTbl()

• pgu.delegate$updateCorrelationValidationDataTbl()

• pgu.delegate$exportFileName()

• pgu.delegate$exportData()

• pgu.delegate$reportFileName()

• pgu.delegate$writeReport()

• pgu.delegate$hide_outdated_results()

• pgu.delegate$update_help_html()

• pgu.delegate$clone()

Method new(): Clears the heap and indicates that instance of pgu.delegate is removed from
heap.
Creates and returns a new pgu.delegate object.

Usage:
pgu.delegate$new(data = "tbl_df")

Arguments:

data The data to be analyzed. (tibble::tibble)

Returns: A new pgu.delegate object. (pguIMP::pgu.delegate)

Method print(): Prints instance variables of a pgu.delegate object.

Usage:
pgu.delegate$print()

Returns: string

Method update_import_gui(): Updates the import gui

Usage:
pgu.delegate$update_import_gui(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method query_data(): Manages the data upload to the R server. Updates the instance class
status.

Usage:
pgu.delegate$query_data(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output

24 pgu.delegate

session Pointer to shiny session

Method import_data(): Imports uploaded data from the R server into the instance variable
rawData. Updates the instance class status.

Usage:
pgu.delegate$import_data(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method update_import_data_Types_tbl(): Updates the tbl.importDataTypes table.

Usage:
pgu.delegate$update_import_data_Types_tbl(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method update_import_data_statistics_tbl(): Updates the tbl.importDataStatistics table.

Usage:
pgu.delegate$update_import_data_statistics_tbl(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method update_import_missings_statistics_tbl(): Updates the tbl.importMissingsStatistics
table.

Usage:
pgu.delegate$update_import_missings_statistics_tbl(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method update_filter_select_tbl(): Updates the tbl.filter table.

Usage:
pgu.delegate$update_filter_select_tbl(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

pgu.delegate 25

Method update_filter(): Queries the filter parameters selected by the user in the gui and
stores them in the instance variable filterSet.

Usage:
pgu.delegate$update_filter(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method update_filter_inverse(): Queries the filter parameters selected by the user in the
gui inverts them and stores them in the instance variable filterSet.

Usage:
pgu.delegate$update_filter_inverse(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method reset_filter(): Generates a filter set that selects the whole data frame. Stores them
in the instance variable filterSet. Updates the gui.

Usage:
pgu.delegate$reset_filter(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method filter_data(): Filters the data corresponding to the user defined parameters stored
in the instance variable filterSet. Results are stored in the instance variables filteredData and
filteredMetadata. Updated the instance variable filterSet.

Usage:
pgu.delegate$filter_data(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method update_filter_statistics_tbl(): Updates the tbl.filterStatistics table.

Usage:
pgu.delegate$update_filter_statistics_tbl(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output

26 pgu.delegate

session Pointer to shiny session

Method update_filter_missings_tbl(): Updates the tbl.filterMissings table.

Usage:
pgu.delegate$update_filter_missings_tbl(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method update_exploration_gui(): Updates the gui.

Usage:
pgu.delegate$update_exploration_gui(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method update_exploration_abscissa(): Transfers the information oabout the selected ab-
scissa attribute to the explorer class.

Usage:
pgu.delegate$update_exploration_abscissa(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method update_exploration_ordinate(): Transfers the information oabout the selected or-
dinate attribute to the explorer class.

Usage:
pgu.delegate$update_exploration_ordinate(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method update_exploration_graphic(): Updates the exploration abscissa vs. ordinate scat-
ter plot corresponding to the respective user defined attributes.

Usage:
pgu.delegate$update_exploration_graphic(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output

pgu.delegate 27

session Pointer to shiny session

Method update_exploration_abscissa_graphic(): Updates the abscissa compound plot
corresponding to the respective user defined attributes.

Usage:
pgu.delegate$update_exploration_abscissa_graphic(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method update_exploration_ordinate_graphic(): Updates the ordinate compound plot
corresponding to the respective user defined attributes.

Usage:
pgu.delegate$update_exploration_ordinate_graphic(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method update_exploration_abscissa_table(): Updates the numerical abscissa analysis
table. corresponding to the respective user defined attributes.

Usage:
pgu.delegate$update_exploration_abscissa_table(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method update_exploration_ordinate_table(): Updates the numerical ordinate analysis
table. corresponding to the respective user defined attributes.

Usage:
pgu.delegate$update_exploration_ordinate_table(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method reset_loq_values(): Initializes the LOQ object after filtering.

Usage:
pgu.delegate$reset_loq_values(input, output, session)

Arguments:
input Pointer to shiny input

28 pgu.delegate

output Pointer to shiny output
session Pointer to shiny session

Method update_loq_upload_gui(): Updates the gui.

Usage:
pgu.delegate$update_loq_upload_gui(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method query_loq(): Manages the loq data upload to the R server.

Usage:
pgu.delegate$query_loq(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method import_loq(): Imports the loq data upload to the R server.

Usage:
pgu.delegate$import_loq(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method update_loq_define_gui(): Updates the gui.

Usage:
pgu.delegate$update_loq_define_gui(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method update_loq_define_feature(): Updates the gui.

Usage:
pgu.delegate$update_loq_define_feature(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

pgu.delegate 29

Method update_loq_define_lloq(): Updates the gui.

Usage:
pgu.delegate$update_loq_define_lloq(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method update_loq_define_uloq(): Updates the gui.

Usage:
pgu.delegate$update_loq_define_uloq(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method update_loq_define_table(): Updates the gui.

Usage:
pgu.delegate$update_loq_define_table(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method update_loq_define_menu(): Updates the gui.

Usage:
pgu.delegate$update_loq_define_menu(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method set_loq_define_values(): Updates loq class.

Usage:
pgu.delegate$set_loq_define_values(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method set_loq_define_values_globally(): Updates loq class.

Usage:

30 pgu.delegate

pgu.delegate$set_loq_define_values_globally(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Details: Imports uploaded data from the R server into the instance variable loqData. Updates
the instance class status.
Example code:
importLoq = function(input, output, session){
if (private$.status$query(processName = "dataImported")){
tryCatch({
private$.loq$setLoq <- private$.importer$importLoq(self$fileName)
private$.status$update(processName = "loqImported", value = TRUE)

},
error = function(e) {
private$.status$update(processName = "loqImported", value = FALSE)
shiny::showNotification(paste(e),type = "error", duration = 10)

}#error
)#tryCatch

}#if
else{
private$.status$update(processName = "loqImported", value = FALSE)

shiny::showNotification(paste("No file uploaded to import. Please upload a valid file first."),type = "error", duration = 10)
}#else

}, #function

Method update_loq_detect_gui(): Updates the gui.

Usage:
pgu.delegate$update_loq_detect_gui(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method update_loq_na_handling(): Updates the si.loqHandling shiny widget corresponding
to the respective user defined parameter.

Usage:
pgu.delegate$update_loq_na_handling(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method init_detect_loq(): Runs the outlier detection routine of the instance variable outliers.
Updates the instance class status.

pgu.delegate 31

Usage:
pgu.delegate$init_detect_loq(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method detect_loq(): Runs the outlier detection routine of the instance variable outliers.
Updates the instance class status.

Usage:
pgu.delegate$detect_loq(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method update_loq_detect_statistics_tbl(): Updates the numerical loq statistics analy-
sis table

Usage:
pgu.delegate$update_loq_detect_statistics_tbl(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method update_loq_detect_outlier_tbl(): Updates the numerical loq table.

Usage:
pgu.delegate$update_loq_detect_outlier_tbl(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method update_loq_detect_statistics_graphic(): Updates the loq statistics graphic.

Usage:
pgu.delegate$update_loq_detect_statistics_graphic(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method update_loq_detect_attribute_graphic(): Updates the loq feature compound graphic.

Usage:

32 pgu.delegate

pgu.delegate$update_loq_detect_attribute_graphic(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method update_loq_detect_attribute_tbl(): Updates the numerical loq feature table.

Usage:
pgu.delegate$update_loq_detect_attribute_tbl(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method update_loq_mutate_gui(): Updates the gui.

Usage:
pgu.delegate$update_loq_mutate_gui(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method update_lloq_substitute(): Updates the si.lloqSubstitute shiny widget.

Usage:
pgu.delegate$update_lloq_substitute(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method update_uloq_substitute(): Updates the si.uloqSubstitute shiny widget.

Usage:
pgu.delegate$update_uloq_substitute(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method init_mutate_loq(): Calls the mutation routine of the instance variable loq on the
instance variable filteredData. The reult is stored in the instance variable loqMutatedData Updates
the instance class status.

Usage:
pgu.delegate$init_mutate_loq(input, output, session)

pgu.delegate 33

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method mutate_loq(): Calls the mutation routine of the instance variable loq on the instance
variable filteredData. The reult is stored in the instance variable loqMutatedData Updates the
instance class status.

Usage:
pgu.delegate$mutate_loq(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method update_loq_mutate_data_tbl(): Updates the numerical loq mutate outliers table.

Usage:
pgu.delegate$update_loq_mutate_data_tbl(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method update_loq_mutate_statistics_graphic(): Updates the loq mutate statistics graphic.

Usage:
pgu.delegate$update_loq_mutate_statistics_graphic(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method update_loq_mutate_attribute_graphic(): Updates the loq mutate feature graphic.

Usage:
pgu.delegate$update_loq_mutate_attribute_graphic(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method init_loq_mutate_attribute_tbl(): Updates the numeric loq mutate feature table.

Usage:
pgu.delegate$init_loq_mutate_attribute_tbl(input, output, session)

Arguments:

34 pgu.delegate

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method update_loq_mutate_attribute_tbl(): Updates the numeric loq mutate feature ta-
ble.

Usage:
pgu.delegate$update_loq_mutate_attribute_tbl(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method optimizeTrafoParameter(): Calls the optimize routine of the instance variable opti-
mizer on the instance variable loqMutatedData. Updates the instance class status.

Usage:
pgu.delegate$optimizeTrafoParameter(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateDetectedTrafoTypes(): Updates the detected trafo types table.

Usage:
pgu.delegate$updateDetectedTrafoTypes(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateDetectedTrafoParameter(): Updates the detected trafo parameters table.

Usage:
pgu.delegate$updateDetectedTrafoParameter(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateTrafoDetectGui(): Updates the gui.

Usage:
pgu.delegate$updateTrafoDetectGui(input, output, session)

Arguments:
input Pointer to shiny input

pgu.delegate 35

output Pointer to shiny output
session Pointer to shiny session

Method updateTrafoMutateFeature(): Updates the si.trafoMutateFeature shiny widget.

Usage:
pgu.delegate$updateTrafoMutateFeature(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateTrafoMutateType(): Updates the si.trafoMutateType shiny widget.

Usage:
pgu.delegate$updateTrafoMutateType(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateTrafoMutateLambda(): Updates the ni.trafoMutateLambda shiny widget.

Usage:
pgu.delegate$updateTrafoMutateLambda(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateTrafoMutateMirror(): Updates the cb.trafoMutateMirror shiny widget.

Usage:
pgu.delegate$updateTrafoMutateMirror(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method resetTrafoMutateGui(): Updates the gui.

Usage:
pgu.delegate$resetTrafoMutateGui(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

36 pgu.delegate

Method updateTrafoMutateGui(): Updates the gui.

Usage:
pgu.delegate$updateTrafoMutateGui(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method trafoMutateFit(): Estimates the optimal transformation parameters. Updates the
GUI

Usage:
pgu.delegate$trafoMutateFit(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method trafoMutateGlobal(): Calls the transformation routine of the instance variable trans-
formator on the instance variable loqMutatedData. Updates the instance class status.

Usage:
pgu.delegate$trafoMutateGlobal(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method trafoMutateFeature(): Calls the transformation routine of the instance variable trans-
formator on a user defined attribute of the instance variable loqMutatedData.

Usage:
pgu.delegate$trafoMutateFeature(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateTrafoMutateFeatureGraphic(): Updates the trafo mutate feature graphic.

Usage:
pgu.delegate$updateTrafoMutateFeatureGraphic(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

pgu.delegate 37

Method updateTrafoMutateFeatureParameterTbl(): Updates the trafo mutate feature patame-
ter table.

Usage:
pgu.delegate$updateTrafoMutateFeatureParameterTbl(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateTrafoMutateFeatureQualityTbl(): Updates the trafo mutate feature quality
table.

Usage:
pgu.delegate$updateTrafoMutateFeatureQualityTbl(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateTrafoMutateGlobalParameterTbl(): Updates the trafo mutate global param-
eter table.

Usage:
pgu.delegate$updateTrafoMutateGlobalParameterTbl(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateTrafoMutateGlobalModelTbl(): Updates the tbl.trafoMutateGlobalModel ta-
ble.

Usage:
pgu.delegate$updateTrafoMutateGlobalModelTbl(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateTrafoMutateGlobalQualityTbl(): Updates the tbl.trafoMutateGlobalQuality
table.

Usage:
pgu.delegate$updateTrafoMutateGlobalQualityTbl(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output

38 pgu.delegate

session Pointer to shiny session

Method updateTrafoMutateGlobalTestsTbl(): Updates the tbl.trafoMutateGlobalTests ta-
ble.

Usage:
pgu.delegate$updateTrafoMutateGlobalTestsTbl(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateTrafoMutateGlobalDataTbl(): Updates the tbl.trafoMutateGlobalData table.

Usage:
pgu.delegate$updateTrafoMutateGlobalDataTbl(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateTrafoNormFeature(): Updates the si.trafoNormFeature shiny widget.

Usage:
pgu.delegate$updateTrafoNormFeature(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateTrafoNormMethod(): Updates the si.trafoNormMethod shiny widget.

Usage:
pgu.delegate$updateTrafoNormMethod(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateTrafoNormGui(): Updates the gui.

Usage:
pgu.delegate$updateTrafoNormGui(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

pgu.delegate 39

Method trafoNormMutate(): Calls the scale routine of the instance variable normalizer on the
instance variable transformedData. Updates the instance class status.

Usage:
pgu.delegate$trafoNormMutate(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateTrafoNormFeatureGraphic(): Updates the impute norm feature compound
graphic.

Usage:
pgu.delegate$updateTrafoNormFeatureGraphic(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method resetTrafoNormGui(): Updates the gui.

Usage:
pgu.delegate$resetTrafoNormGui(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateTrafoNormFeatureStatisticsTbl(): Updates the numerical impute norm
analysis table for a user defined feature. corresponding to the respective user defined attributes.

Usage:
pgu.delegate$updateTrafoNormFeatureStatisticsTbl(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateTrafoNormStatisticsTbl(): Updates the numerical impute norm analysis
table. corresponding to the respective user defined attributes.

Usage:
pgu.delegate$updateTrafoNormStatisticsTbl(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output

40 pgu.delegate

session Pointer to shiny session

Method updateTrafoNormParameterTbl(): Updates the impute norm parameter table. corre-
sponding to the respective user defined attributes.

Usage:
pgu.delegate$updateTrafoNormParameterTbl(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateTrafoNormDataTbl(): Updates the impute norm scaled data table. correspond-
ing to the respective user defined attributes.

Usage:
pgu.delegate$updateTrafoNormDataTbl(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method imputeMissingsAnalyze(): Calls the missing detection routine of the instance vari-
able imputer on the instance variable normalizedData. Updates the instance class status.

Usage:
pgu.delegate$imputeMissingsAnalyze(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateImputeMissingsGraphic(): Updates the plt.imputeMissingsSummary graphic.

Usage:
pgu.delegate$updateImputeMissingsGraphic(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateImputeMissingsStatisticsTbl(): Updates the tbl.imputeMissingsStatistics
table.

Usage:
pgu.delegate$updateImputeMissingsStatisticsTbl(input, output, session)

Arguments:
input Pointer to shiny input

pgu.delegate 41

output Pointer to shiny output
session Pointer to shiny session

Method updateImputeMissingsDistributionTbl(): Updates the tbl.imputeMissingsDistribution
table.

Usage:
pgu.delegate$updateImputeMissingsDistributionTbl(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateImputeMissingCharacteristicsGraphic(): Updates the plt.imputeMissingsPairs
graphic.

Usage:
pgu.delegate$updateImputeMissingCharacteristicsGraphic(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateImputeMissingsCharacteristicsTbl(): Updates the tbl.imputeMissingsCharacteristics
table.

Usage:
pgu.delegate$updateImputeMissingsCharacteristicsTbl(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateImputeMissingsDetailTbl(): Updates the tbl.imputeDetectDetail table.

Usage:
pgu.delegate$updateImputeMissingsDetailTbl(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

updateImputeMissingsDataTbl = function(input, output, session){
if(self$status$query(processName = "naDetected")){

output$tbl.imputeMissingsData <- DT::renderDataTable(
self$filteredMetadata$rawData %>%

dplyr::right_join(self$normalizedData$rawData, by = "Sample Name") %>%
format.data.frame(scientific = TRUE, digits = 4) %>%

42 pgu.delegate

DT::datatable(
extensions = "Buttons",
options = list(
scrollX = TRUE,
scrollY = '350px',
paging = FALSE,
dom = "Blfrtip",
buttons = list(list(

extend = 'csv',
filename = self$fileName$predict("imputationSiteDetectionData") %>%

tools::file_path_sans_ext(),
text = "Download"

))#buttons
)#options

)#DT::datatable
)#output

}#if
else{

output$tbl.imputeMissingsData <- DT::renderDataTable(NULL)
}#else

}, #function

Method updateImputeOutliersMethod(): Updates the si.imputeOutliersMethod shiny wid-
get.

Usage:
pgu.delegate$updateImputeOutliersMethod(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateImputeOutliersFeature(): Updates the si.imputeOutliersFeature shiny wid-
get.

Usage:
pgu.delegate$updateImputeOutliersFeature(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateImputeOutliersAlpha(): Updates the ni.imputeOutliersAlpha shiny widget.

Usage:
pgu.delegate$updateImputeOutliersAlpha(input, output, session)

Arguments:

input Pointer to shiny input

pgu.delegate 43

output Pointer to shiny output
session Pointer to shiny session

Method updateImputeOutliersEpsilon(): Updates the ni.imputeOutliersEpsilon shiny wid-
get.

Usage:
pgu.delegate$updateImputeOutliersEpsilon(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateImputeOutliersMinSamples(): Updates the ni.imputeOutliersMinSamples
shiny widget.

Usage:
pgu.delegate$updateImputeOutliersMinSamples(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateImputeOutliersGamma(): Updates the ni.imputeOutliersGamma shiny widget.

Usage:
pgu.delegate$updateImputeOutliersGamma(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateImputeOutliersNu(): Updates the ni.imputeOutliersNu shiny widget.

Usage:
pgu.delegate$updateImputeOutliersNu(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateImputeOutliersCutoff(): Updates the ni.imputeOutliersCutoff shiny widget.

Usage:
pgu.delegate$updateImputeOutliersCutoff(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output

44 pgu.delegate

session Pointer to shiny session

Method updateImputeOutliersK(): Updates the ni.imputeOutliersK shiny widget.

Usage:
pgu.delegate$updateImputeOutliersK(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateImputeOutliersSeed(): Updates the ni.imputeOutliersSeed shiny widget.

Usage:
pgu.delegate$updateImputeOutliersSeed(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateImputeOutliersGui(): Updates the gui.

Usage:
pgu.delegate$updateImputeOutliersGui(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method resetImputeOutliersGui(): Updates the gui.

Usage:
pgu.delegate$resetImputeOutliersGui(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method imputeOutliersDetect(): Calls the detectOutliers routine of the instance variable
outliers on the instance variable normalizedData. Updates the instance class status.

Usage:
pgu.delegate$imputeOutliersDetect(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

pgu.delegate 45

Method updateImputeOutliersGraphic(): Updates the plt.outliersImputeSummary graphic.

Usage:
pgu.delegate$updateImputeOutliersGraphic(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateImputeOutliersFeatureGraphic(): Updates the plt.outliersImputeFeature
graphic.

Usage:
pgu.delegate$updateImputeOutliersFeatureGraphic(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateImputeOutliersFeatureTbl(): Updates the numeric outlier feature table.

Usage:
pgu.delegate$updateImputeOutliersFeatureTbl(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateImputeOutliersStatisticsTbl(): Updates the numerical loq statistics anal-
ysis table

Usage:
pgu.delegate$updateImputeOutliersStatisticsTbl(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateImputeOutliersDetailTbl(): Updates the numerical outlier table.

Usage:
pgu.delegate$updateImputeOutliersDetailTbl(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateImputeMutateFeature(): Updates the si.imputeMutateFeature shiny widget.

46 pgu.delegate

Usage:
pgu.delegate$updateImputeMutateFeature(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateImputeMutateMethod(): Updates the si.imputeMutateMethod shiny widget.

Usage:
pgu.delegate$updateImputeMutateMethod(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateImputeMutateNNeighbors(): Updates the ni.imputeMutateNumberOfNeighbors
shiny widget.

Usage:
pgu.delegate$updateImputeMutateNNeighbors(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateImputeMutatePredFrac(): Updates the ni.imputeMutatePredFrac shiny wid-
get.

Usage:
pgu.delegate$updateImputeMutatePredFrac(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateImputeMutateOutfluxThr(): Updates the ni.imputeMutateOutfluxThr shiny
widget.

Usage:
pgu.delegate$updateImputeMutateOutfluxThr(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateImputeMutateSeed(): Updates the ni.imputeMutateSeed shiny widget.

pgu.delegate 47

Usage:
pgu.delegate$updateImputeMutateSeed(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateImputeMutateIterations(): Updates the ni.imputeMutateIterations shiny
widget.

Usage:
pgu.delegate$updateImputeMutateIterations(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateImputeMutateGui(): Updates the gui.

Usage:
pgu.delegate$updateImputeMutateGui(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method resetImputeMutateGui(): Resets the gui.

Usage:
pgu.delegate$resetImputeMutateGui(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method imputeMutateMutate(): Calls the mutate imputation site routine of the instance vari-
able imputer on the instance variable transformedData. Updates the instance class status.

Usage:
pgu.delegate$imputeMutateMutate(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateImputeFluxGraphic(): Updates the plt.imputeMutateFlux graphic.

Usage:

48 pgu.delegate

pgu.delegate$updateImputeFluxGraphic(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateImputeMutateGraphic(): Updates the plt.imputeMutateSummary graphic.

Usage:
pgu.delegate$updateImputeMutateGraphic(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateImputeMutateStatisticsTbl(): Updates the tbl.imputeMutateStatistics table.

Usage:
pgu.delegate$updateImputeMutateStatisticsTbl(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateImputeMutateDistributionTbl(): Updates the tbl.imputeMutateDistribution
table.

Usage:
pgu.delegate$updateImputeMutateDistributionTbl(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateImputeMutateFeatureDetailGraphic(): Updates the plt.imputeMutateFeatureDetail
graphic.

Usage:
pgu.delegate$updateImputeMutateFeatureDetailGraphic(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateImputeMutateFeatureDetailTbl(): Updates the tbl.imputeMutateFeatureDetail
table.

Usage:

pgu.delegate 49

pgu.delegate$updateImputeMutateFeatureDetailTbl(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateImputeMutateDetailTbl(): Updates the tbl.imputeMutateDetail table.

Usage:
pgu.delegate$updateImputeMutateDetailTbl(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateImputeMutateDataTbl(): Updates the tbl.imputeMutateData table.

Usage:
pgu.delegate$updateImputeMutateDataTbl(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method validate(): Calls the validate routine of the instance variable validator on the instance
variables rawData and clenaedData. Updates the instance class status.

Usage:
pgu.delegate$validate(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateAnalysisValidationGui(): Updates the si.analysisValidationFeature shiny
widget.

Usage:
pgu.delegate$updateAnalysisValidationGui(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateAnalysisValidationGraphic(): Updates the plt.analysisValidationFeature
shiny widget.

Usage:

50 pgu.delegate

pgu.delegate$updateAnalysisValidationGraphic(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateAnalysisValidationTestTbl(): Updtates the tbl.analysisValidationTest table.

Usage:
pgu.delegate$updateAnalysisValidationTestTbl(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateCentralMomentsOrgTbl(): Updtates the tbl.centralMomentsOrg table.

Usage:
pgu.delegate$updateCentralMomentsOrgTbl(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateCentralMomentsImpTbl(): Updtates the tbl.centralMomentsImp table.

Usage:
pgu.delegate$updateCentralMomentsImpTbl(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateCentralMomentsDeltaTbl(): Updtates the tbl.centralMomentsDelta table.

Usage:
pgu.delegate$updateCentralMomentsDeltaTbl(input, output, session)

Arguments:

input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateCorrelationValidationScatterGraphic(): Updtates the plt.correlationValidationScatter
graphic.

Usage:
pgu.delegate$updateCorrelationValidationScatterGraphic(input, output, session)

pgu.delegate 51

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateCorrelationValidationBoxPlotGraphic(): Updtates the plt.correlationValidationBoxPlot
graphic.

Usage:
pgu.delegate$updateCorrelationValidationBoxPlotGraphic(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateCorrelationValidationDeviationTbl(): Updtates the tbl.correlationValidationDeviation
table.

Usage:
pgu.delegate$updateCorrelationValidationDeviationTbl(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method updateCorrelationValidationDataTbl(): Updtates the tbl.correlationValidationData
table.

Usage:
pgu.delegate$updateCorrelationValidationDataTbl(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method exportFileName(): Creates and returns an export filename.

Usage:
pgu.delegate$exportFileName(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Returns: export filename (character)

Method exportData(): Exports the pguIMP analysis results

Usage:

52 pgu.delegate

pgu.delegate$exportData(input, file)

Arguments:
input Pointer to shiny input
file export filename (character)

Method reportFileName(): Creates and returns a report filename.
Usage:
pgu.delegate$reportFileName(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session
Returns: export filename (character)

Method writeReport(): Exports a report on the pguIMP analysis in pdf format.
Usage:
pgu.delegate$writeReport(input, file)

Arguments:
input Pointer to shiny input
file export filename (character)

Method hide_outdated_results(): Updates the gui if analysis parameters change.
Usage:
pgu.delegate$hide_outdated_results(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method update_help_html(): Updates the gui if analysis parameters change.
Usage:
pgu.delegate$update_help_html(input, output, session)

Arguments:
input Pointer to shiny input
output Pointer to shiny output
session Pointer to shiny session

Method clone(): The objects of this class are cloneable with this method.
Usage:
pgu.delegate$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Sebastian Malkusch

pgu.explorer 53

pgu.explorer pgu.explorer

Description

Visual exploration of the pguIMP dataset.

Format

[R6::R6Class] object.

Details

Pariwise anlysis of attributes from the pguIMP dataset. This object is used by the shiny based gui
and is not for use in individual R-scripts!

Active bindings

rawData Returns the instance variable rawData (tibble::tibble)

setRawData Sets the instance variable rawData (tibble::tibble)

abscissa Returns the instance variable abscissa (character)

setAbscissa Sets the instance variable abscissa (character)

ordinate Returns the instance variable ordinate (character)

setOrdinate Sets the instance variable ordinate (character)

abscissaStatistics Returns the instance variable abscissaStatistics (character)

ordinateStatistics Returns the instance variable ordinateStatistics (character)

Methods

Public methods:

• pgu.explorer$new()

• pgu.explorer$print()

• pgu.explorer$reset()

• pgu.explorer$fit()

• pgu.explorer$scatterPlot()

• pgu.explorer$abscissaBarPlot()

• pgu.explorer$abscissaBoxPlot()

• pgu.explorer$abscissaPlot()

• pgu.explorer$ordinateBarPlot()

• pgu.explorer$ordinateBoxPlot()

• pgu.explorer$ordinatePlot()

• pgu.explorer$clone()

54 pgu.explorer

Method new(): Tests if the abscissa attribute is of type numeric.
Tests if the ordinate attribute is of type numeric.
Summarizes the numeric values of a vector.
Calculates the statistics of the abscissa values. Stores the result in the instance variable abscissaS-
tatistics.
Calculates the statistics of the ordinate values. Stores the result in the instance variable ordinat-
eStatistics.
Clears the heap and indicates that instance of ‘pgu.explorer‘ is removed from heap.
Creates and returns a new ‘pgu.explorer‘ object.

Usage:
pgu.explorer$new(data_df = "tbl_df")

Arguments:
data_df The data to be analyzed. (tibble::tibble)

Returns: A new ‘pgu.explorer‘ object. (pguIMP::pgu.optimizer)

Method print(): Prints instance variables of a ‘pgu.explorer‘ object.

Usage:
pgu.explorer$print()

Returns: string

Method reset(): Resets the instance of the pgu.explorer class

Usage:
pgu.explorer$reset(data_df = "tbl_df", abs = "character", ord = "character")

Arguments:
data_df The data to be analyzed. (tibble::tibble)
abs The abscissa attribute (character)
ord The ordinate attribute (character)

Method fit(): Calculates the abscissa and ordinate statistics

Usage:
pgu.explorer$fit()

Method scatterPlot(): Creates and returns a scatter plot abscissa and ordinate value pairs.

Usage:
pgu.explorer$scatterPlot()

Returns: Scatter plot (ggplot2::ggplot)

Method abscissaBarPlot(): Creates and returns a histogram from the abscissa values.

Usage:
pgu.explorer$abscissaBarPlot()

Returns: Bar plot (ggplot2::ggplot)

Method abscissaBoxPlot(): Creates and returns a box plot from the abscissa values.

pgu.explorer 55

Usage:

pgu.explorer$abscissaBoxPlot()

Returns: Box plot (ggplot2::ggplot)

Method abscissaPlot(): Creates and returns a compund graphical analysis of the abscissa
values.

Usage:

pgu.explorer$abscissaPlot()

Returns: Compound plot (gridExtra::grid.arrange)

Method ordinateBarPlot(): Creates and returns a histogram from the ordinate values.

Usage:

pgu.explorer$ordinateBarPlot()

Returns: Bar plot (ggplot2::ggplot)

Method ordinateBoxPlot(): Creates and returns a box plot from the ordinate values.

Usage:

pgu.explorer$ordinateBoxPlot()

Returns: Box plot (ggplot2::ggplot)

Method ordinatePlot(): Creates and returns a compund graphical analysis of the ordinate
values.

Usage:

pgu.explorer$ordinatePlot()

Returns: Compound plot (gridExtra::grid.arrange)

Method clone(): The objects of this class are cloneable with this method.

Usage:

pgu.explorer$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Sebastian Malkusch

56 pgu.exporter

pgu.exporter pgu.exporter

Description

A class that writes the results of the pguIMP analysis to an Excel file.

Format

[R6::R6Class] object.

Details

Creates a download file name and saves a list of tibbles to an Excel file. Each tibble is written to a
separate sheet. This object is used by the shiny based gui and is not for use in individual R-scripts!

Active bindings

fileName Returns the fileName. (character)

setFileName Set the fileName. (character)

suffix Returns the file suffix. (character)

Methods

Public methods:
• pgu.exporter$new()

• pgu.exporter$finalize()

• pgu.exporter$print()

• pgu.exporter$extractSuffix()

• pgu.exporter$writeDataToExcel()

• pgu.exporter$clone()

Method new(): Creates and returns a new ‘pgu.exporter‘ object.

Usage:
pgu.exporter$new()

Returns: A new ‘pgu.exporter‘ object. (pguIMP::pgu.exporter)

Method finalize(): Clears the heap and indicates if instance of ‘pgu.exporter‘ is removed
from heap.

Usage:
pgu.exporter$finalize()

Method print(): Prints instance variables of a ‘pgu.exporter‘ object.

Usage:
pgu.exporter$print()

pgu.file 57

Returns: string

Method extractSuffix(): extracts the suffix from the fileName

Usage:

pgu.exporter$extractSuffix()

Method writeDataToExcel(): writes tibble to an excel file of the name fileName.

Usage:

pgu.exporter$writeDataToExcel(obj = "list")

Arguments:

obj A tibble or list of tibble. If obj is a list, each member will be written to a seperate sheet.

Method clone(): The objects of this class are cloneable with this method.

Usage:

pgu.exporter$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Sebastian Malkusch

pgu.file pgu.fie

Description

Handles file names for the pguIMP shiny web interface.

Format

[R6::R6Class] object.

Details

The class stores filenames and upload specifications for the pguIMP shiny web interface in its
instance variables. This object is used by the shiny based gui and is not for use in individual R-
scripts!

58 pgu.file

Active bindings

uploadFileName Returns the instance variable uploadFileName (character)

fileName Returns the instance variable fileName (character)

baseName Returns the instance variable baseName (character)

folderName Returns the instance variable folderName (character)

suffix Returns the instance variable suffix (character)

exportSuffix Returns the instance variable exportSuffix (character)

timeString Returns the instance variable timeString (character)

sheetIndex Returns the instance variable sheetIndex (numeric)

separator Returns the instance variable separator (character)

skipRows Returns the instance variable skipRows (numeric)

columnNames Returns the instance variable columnNames (logical)

naChar Returns the instance variable naChar (character)

Methods

Public methods:
• pgu.file$new()

• pgu.file$print()

• pgu.file$reset()

• pgu.file$fit()

• pgu.file$predict()

• pgu.file$fit_predict()

• pgu.file$clone()

Method new(): Clears the heap and indicates that instance of ‘pgu.file‘ is removed from heap.
Splits fileName and writes the results in the class’ instance variables folderName, baseName,
suffix.
Stores the current system time into the instance variable timeString.
Creates and returns a new object of type pgu.file.

Usage:
pgu.file$new(
uploadFileName = "",
fileName = "",
sheetIndex = 1,
separator = ",",
skipRows = 0,
columnNames = TRUE,
naChar = "NA"

)

Arguments:

uploadFileName Name of uploaded file. (string)

pgu.file 59

fileName Actual file name. (string)
sheetIndex Index excel sheet to import. (integer)
separator Character for column separation. (character)
skipRows Number of rows to skip. (integer)
columnNames Indicates if the data source file has a columnNames. (logical)
naChar Character for missing values. (string)

Returns: A new pgu.file object. (pguIMP::pgu.file)

Method print(): Prints the instance variables of the object.

Usage:
pgu.file$print()

Returns: string

Method reset(): Resets the instance variables of the object.

Usage:
pgu.file$reset(
uploadFileName = "",
fileName = "",
sheetIndex = 1,
separator = ",",
skipRows = 0,
columnNames = TRUE,
naChar = "NA"

)

Arguments:

uploadFileName Name of uploaded file. (string)
fileName Actual file name. (string)
sheetIndex Index excel sheet to import. (integer)
separator Character for column separation. (character)
skipRows Number of rows to skip. (integer)
columnNames Indicates if the data source file has a columnNames. (logical)
naChar Character for missing values. (string)

Method fit(): Extracts information about upload specifications from the instance variables.

Usage:
pgu.file$fit()

Method predict(): Predicts an export file name.

Usage:
pgu.file$predict(affix = "analysis")

Arguments:

affix User dedined file name affix. (string)

Returns: A file name. (string)

60 pgu.filter

Method fit_predict(): Extracts information about upload specifications from the instance
variables and predicts an export file name.

Usage:
pgu.file$fit_predict(affix = "analysis")

Arguments:

affix User dedined file name affix. (string)

Returns: A file name. (string)

Method clone(): The objects of this class are cloneable with this method.

Usage:
pgu.file$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Sebastian Malkusch

pgu.filter pgu.filter

Description

Filter the pguIMP dataset.

Format

[R6::R6Class] object.

Details

The filtering is done by column and row indices. This object is used by the shiny based gui and is
not for use in individual R-scripts!

Active bindings

colIdx Returns the instance variable colIdx (numeric)

setColIdx Sets the instance variable colIdx (numeric)

rowIdx Returns the instance variable rowIdx (numeric)

setRowIdx Sets the instance variable rowIdx (numeric)

pgu.filter 61

Methods

Public methods:
• pgu.filter$new()

• pgu.filter$print()

• pgu.filter$reset()

• pgu.filter$predict()

• pgu.filter$clone()

Method new(): Resets the filter parameter colIdx to the full dataframe.
Resets the filter parameter rowIdx to the full dataframe.
Clears the heap and indicates that instance of pguIMP::pgu.filter is removed from heap.
Creates and returns a new pguIMP::pgu.filter object.

Usage:
pgu.filter$new(data_df = "tbl_df")

Arguments:
data_df The data to be analyzed. (tibble::tibble)
Returns: A new pguIMP::pgu.filter object. (pguIMP::pgu.filter)

Method print(): Prints instance variables of a pguIMP::pgu.filter object.
Usage:
pgu.filter$print()

Returns: string

Method reset(): Resets the filter parameter colIdx and rowIdx to the full dataframe.
Usage:
pgu.filter$reset(data_df = "tbl_df")

Arguments:
data_df The data to be analyzed. (tibble::tibble)

Method predict(): Filters and returns the given data frame.
Usage:
pgu.filter$predict(data_df = "tbl_df")

Arguments:
data_df The data to be analyzed. (tibble::tibble)
Returns: The filtered data frame (tibble::tibble)

Method clone(): The objects of this class are cloneable with this method.
Usage:
pgu.filter$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Sebastian Malkusch

62 pgu.importer

pgu.importer pgu.importer

Description

Handles the data import

Format

[R6::R6Class] object.

Details

Menages the import of the pguIMP dataset This object is used by the shiny based gui and is not for
use in individual R-scripts!

Active bindings

suffixes Returns the instance variable suffixes (character)

Methods

Public methods:
• pgu.importer$new()

• pgu.importer$finalize()

• pgu.importer$print()

• pgu.importer$suffixIsKnown()

• pgu.importer$importData()

• pgu.importer$importLoq()

• pgu.importer$importMetadata()

• pgu.importer$clone()

Method new(): Creates and returns a new ‘pgu.importer‘ object.

Usage:
pgu.importer$new()

Returns: A new ‘pgu.importer‘ object. (pguIMP::pgu.importer)

Method finalize(): Clears the heap and indicates that instance of ‘pgu.importer‘ is removed
from heap.

Usage:
pgu.importer$finalize()

Method print(): Prints instance variables of a ‘pgu.importer‘ object.

Usage:
pgu.importer$print()

pgu.importer 63

Returns: string

Method suffixIsKnown(): Takes an instance of pgu.file and tests if the suffix is valid.

Usage:
pgu.importer$suffixIsKnown(obj = "pgu.file")

Arguments:

obj instance of pgu.file. (pguIMP::pgu.file)

Returns: test result (logical)

Method importData(): Takes an instance of pgu.file imports a dataset.

Usage:
pgu.importer$importData(obj = "pgu.file")

Arguments:

obj instance of pgu.file. (pguIMP::pgu.file)

Returns: data frame (tibble::tibble)

Method importLoq(): Takes an instance of pgu.file imports a loq dataset.

Usage:
pgu.importer$importLoq(obj = "pgu.file")

Arguments:

obj instance of pgu.file. (pguIMP::pgu.file)

Returns: data frame (tibble::tibble)

Method importMetadata(): Takes an instance of pgu.file imports a metadata dataset.

Usage:
pgu.importer$importMetadata(obj = "pgu.file")

Arguments:

obj instance of pgu.file. (pguIMP::pgu.file)

Returns: data frame (tibble::tibble)

Method clone(): The objects of this class are cloneable with this method.

Usage:
pgu.importer$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Sebastian Malkusch

64 pgu.imputation

pgu.imputation pgu.imputation

Description

Analyses and substitutes imputation sites in a data set.

Format

[R6::R6Class] object.

Details

Analyses imputation sites in a data set. Replaces imputation sites by missing values and substitutes
NAs by classical and ML-powered substitution algorithms. This object is used by the shiny based
gui and is not for use in individual R-scripts!

Active bindings

imputationStatistics Returns the instance variable imputationStatistics. (tibble::tibble)

imputationSites Returns the instance variable imputationSites. (tibble::tibble)

one_hot_df Returns the positions of missings in one_hot encoding (tibble::tibble)

imputationSiteDistribution Returns the instance variable imputationSiteDistribution. (ma-
trix)

imputationAgentAlphabet Returns the instance variable imputationagentAlphabet. (character)

imputationAgent Returns the instance variable imputationAgent. (character)

setImputationAgent Sets the instance variable imputationAgent. (character)

nNeighbors Returns the instance variable nNeighbors. (integer)

setNNeighbors Sets the instance variable nNeighbors. (integer)

flux_df Returns the instance variable flux_df (tibble::tibble)

outflux_thr Returns the instance variable outflux_thr. (numeric)

setOutflux_thr Sets the instance variable outflux_thr. (numeric)

pred_frac Returns the instance variable pred_frac. (numeric)

setPred_frac Sets the instance variable pred_frac. (numeric)

pred_mat Returns the instance variable pred_mat. (matrix)

exclude_vec Returns the instance variable exclude_vec (character)

seed Returns the instance variable seed. (numeric)

setSeed Sets the instance variable seed. (numeric)

iterations Returns the instance variable iterations. (numeric)

setIterations Sets the instance variable iterations. (numeric)

amv Returns the instance variable amv. (numeric)

success Returns the instance variable success. (logical)

pgu.imputation 65

Methods

Public methods:
• pgu.imputation$new()

• pgu.imputation$finalize()

• pgu.imputation$print()

• pgu.imputation$gatherImputationSites()

• pgu.imputation$gatherImputationSiteStatistics()

• pgu.imputation$gatherImputationSiteDistribution()

• pgu.imputation$insertImputationSites()

• pgu.imputation$one_hot()

• pgu.imputation$analyzeImputationSites()

• pgu.imputation$imputationSiteIdxByFeature()

• pgu.imputation$nanFeatureList()

• pgu.imputation$average_number_of_predictors()

• pgu.imputation$detectPredictors()

• pgu.imputation$handleImputationSites()

• pgu.imputation$imputeByMedian()

• pgu.imputation$imputeByMean()

• pgu.imputation$imputeByExpectationValue()

• pgu.imputation$imputeByMC()

• pgu.imputation$imputeByKnn()

• pgu.imputation$imputeByMice()

• pgu.imputation$imputeByM5P()

• pgu.imputation$imputationSiteHeatMap()

• pgu.imputation$featureBarPlot()

• pgu.imputation$featureBoxPlotWithSubset()

• pgu.imputation$featurePlot()

• pgu.imputation$fluxPlot()

• pgu.imputation$clone()

Method new(): Creates and returns a new ‘pgu.imputation‘ object.

Usage:
pgu.imputation$new(
seed = 42,
iterations = 4,
imputationAgent = "none",
nNeighbors = 3,
pred_frac = 1,
outflux_thr = 0.5

)

Arguments:
seed Initially sets the instance variable seed. Default is 42. (integer)
iterations Initially sets the instance variable iterations. Default is 4. (integer)

66 pgu.imputation

imputationAgent Initially sets the instance variable imputationAgent. Default is "none". Op-
tions are: ""none", "median", "mean", "expValue", "monteCarlo", "knn", "pmm", "cart",
"randomForest", "M5P". (string)

nNeighbors Initially sets the instance variable nNeighbors. (integer)
pred_frac Initially sets the instance variable pred_frac. (numeric)
outflux_thr Initially sets the instance variable outflux_thr

Returns: A new ‘pgu.imputation‘ object. (pguIMP::pgu.imputation)

Method finalize(): Clears the heap and indicates that instance of ‘pgu.imputation‘ is removed
from heap.

Usage:
pgu.imputation$finalize()

Method print(): Prints instance variables of a ‘pgu.imputation‘ object.

Usage:
pgu.imputation$print()

Returns: string

Method gatherImputationSites(): Gathers imputation sites from pguIMP’s missings and
outliers class.

Usage:
pgu.imputation$gatherImputationSites(
missings_df = "tbl_df",
outliers_df = "tbl_df"

)

Arguments:

missings_df Dataframe comprising information about the imputation sites of pguIMP’s miss-
ings class. (tibble::tibble)

outliers_df Dataframe comprising information about the imputation sites of pguIMP’s out-
liers class. (tibble::tibble)

Method gatherImputationSiteStatistics(): Gathers statistical information about imputa-
tion sites The information is stored within the classes instance variable ‘imputationStatistics‘

Usage:
pgu.imputation$gatherImputationSiteStatistics(data_df = "tbl_df")

Arguments:

data_df The data frame to be analyzed. (tibble::tibble)

Method gatherImputationSiteDistribution(): Gathers the distribution of imputation sites
within the data frame. The information is stored within the classes instance variable imputation-
SiteDistribution.

Usage:
pgu.imputation$gatherImputationSiteDistribution(data_df = "tbl_df")

Arguments:

pgu.imputation 67

data_df The data frame to be analyzed. (tibble::tibble)

Returns: A data frame (tibble::tibble)

Method insertImputationSites(): Takes a dataframe, replaces the imputation sites indicated
by the instance variable ‘imputationsites‘ by NA, and returns the mutated dataframe.

Usage:
pgu.imputation$insertImputationSites(data_df = "tbl_df")

Arguments:
data_df The data frame to be analyzed. (tibble::tibble)

Returns: A mutated version of data_df. (tibble::tibble)

Method one_hot(): Gathers statistical information about missing values in one hot format. The
result is stored in the instance variable one_hot_df.

Usage:
pgu.imputation$one_hot(data_df = "tbl_df")

Arguments:
data_df The data frame to be analyzed. (tibble::tibble)

Method analyzeImputationSites(): Takes a dataframe and analyses the imputation sites.

Usage:
pgu.imputation$analyzeImputationSites(data_df = "tbl_df")

Arguments:
data_df The data frame to be analyzed. (tibble::tibble)

Method imputationSiteIdxByFeature(): Returns the position of an attribute’s imputation
sites within a data frame.

Usage:
pgu.imputation$imputationSiteIdxByFeature(featureName = "character")

Arguments:
featureName The attribute’s name. (character)

Returns: The postion of the imputation sites. (numeric)

Method nanFeatureList(): Characterizes each row of the data frame as either ‘complete‘ or
indicates which attribute are missing within the row. If multiple attributes’ row entries are missing,
the row is characterized by ‘multiple‘.

Usage:
pgu.imputation$nanFeatureList(data_df = "tbl_df")

Arguments:
data_df The data frame to be analyzed. (tibble::tibble)

Returns: Vector of row characteristics. (character)

Method average_number_of_predictors(): Calculates the average number of predictors for
a given dataframe and minpuc and mincor variables using the mice::quickpred routine.

68 pgu.imputation

Usage:
pgu.imputation$average_number_of_predictors(
data_df = "tbl_df",
minpuc = 0,
mincor = 0.1

)

Arguments:

data_df The dataframe to be analyzed (tibble::tibble)
minpuc Specifies the minimum threshold for the proportion of usable cases. (numeric)
mincor Specifies the minimum threshold against which the absolute correlation in the dataframe

is compared. (numeric)

Returns: Average_number_of_predictors. (numeric)

Method detectPredictors(): Identifies possible predictors for each feature. Analysis results
are written to the instance variable pred_mat. Intermediate analysis results are an influx/outflux
dataframe that is written to the instance variable flux_df and detect predictors and a list of features
that is excluded from the search for possible predictors that is written to the instance variable
exclude_vec.

Usage:
pgu.imputation$detectPredictors(data_df = "tbl_df")

Arguments:

data_df The dataframe to be analyzed. (tibble::tibble)

Method handleImputationSites(): Chooses a cleaning method based upon the instance vari-
able ‘imputationAgent‘ and handles the imputation sites in the dataframe. Returns a cleaned data
set. Display the progress if shiny is loaded.

Usage:
pgu.imputation$handleImputationSites(data_df = "tbl_df", progress = "Progress")

Arguments:

data_df The data frame to be analyzed. (tibble::tibble)
progress If shiny is loaded, the analysis’ progress is stored within this instance of the shiny

Progress class. (shiny::Progress)

Returns: Cleaned dataframe. (tibble:tibble)

Method imputeByMedian(): Substitutes imputation sites by the median of the respective at-
tribute. Returns the cleaned dataframe. Display the progress if shiny is loaded.

Usage:
pgu.imputation$imputeByMedian(data_df = "tbl_df", progress = "Progress")

Arguments:

data_df The data frame to be analyzed. (tibble::tibble)
progress If shiny is loaded, the analysis’ progress is stored in this instance of the shiny

Progress class. (shiny::Progress)

Returns: Cleaned dataframe. (tibble:tibble)

pgu.imputation 69

Method imputeByMean(): Substitutes imputation sites by the aritmertic mean of the respective
attribute. Returns the cleaned dataframe. Display the progress if shiny is loaded.

Usage:
pgu.imputation$imputeByMean(data_df = "tbl_df", progress = "Progress")

Arguments:
data_df The data frame to be analyzed. (tibble::tibble)
progress If shiny is loaded, the analysis’ progress is stored in this instance of the shiny

Progress class. (shiny::Progress)

Returns: Cleaned dataframe. (tibble:tibble)

Method imputeByExpectationValue(): Substitutes imputation sites by the expectation value
of the respective attribute. Returns the cleaned dataframe. Display the progress if shiny is loaded.

Usage:
pgu.imputation$imputeByExpectationValue(
data_df = "tbl_df",
progress = "Progress"

)

Arguments:
data_df The data frame to be analyzed. (tibble::tibble)
progress If shiny is loaded, the analysis’ progress is stored in this instance of the shiny

Progress class. (shiny::Progress)

Returns: Cleaned dataframe. (tibble:tibble)

Method imputeByMC(): Substitutes imputation sites by values generated by a monte carlo sim-
ulation. The procedure runs several times as defined by the instance variable ‘iterations‘. The run
with the best result is identified and used for substitution. Returns the cleaned dataframe. Display
the progress if shiny is loaded.

Usage:
pgu.imputation$imputeByMC(data_df = "tbl_df", progress = "Progress")

Arguments:
data_df The data frame to be analyzed. (tibble::tibble)
progress If shiny is loaded, the analysis’ progress is stored in this instance of the shiny

Progress class. (shiny::Progress)

Returns: Cleaned dataframe. (tibble:tibble)

Method imputeByKnn(): Substitutes imputation sites by predictions of a KNN analysis of the
whole dataframe. Returns the cleaned dataframe. Display the progress if shiny is loaded.

Usage:
pgu.imputation$imputeByKnn(data_df = "tbl_df", progress = "Progress")

Arguments:
data_df The data frame to be analyzed. (tibble::tibble)
progress If shiny is loaded, the analysis’ progress is stored in this instance of the shiny

Progress class. (shiny::Progress)

70 pgu.imputation

Returns: Cleaned dataframe. (tibble:tibble)

Method imputeByMice(): Substitutes imputation sites by values generated by a different meth-
ods of the mice package. The procedure runs several times as defined by the instance variable
‘iterations‘. The run with the best result is identified and used for substitution. Returns the
cleaned dataframe. Display the progress if shiny is loaded.

Usage:
pgu.imputation$imputeByMice(data_df, progress = "Progress")

Arguments:
data_df The data frame to be analyzed. (tibble::tibble)
progress If shiny is loaded, the analysis’ progress is stored in this instance of the shiny

Progress class. (shiny::Progress)

Returns: Cleaned dataframe. (tibble:tibble)

Method imputeByM5P(): Substitutes imputation sites by predictions of a M5P tree trained on
the whole dataframe. Returns the cleaned dataframe. Display the progress if shiny is loaded.

Usage:
pgu.imputation$imputeByM5P(data_df = "tbl_df", progress = "Progress")

Arguments:
data_df The data frame to be analyzed. (tibble::tibble)
progress If shiny is loaded, the analysis’ progress is stored in this instance of the shiny

Progress class. (shiny::Progress)

Returns: Cleaned dataframe. (tibble:tibble)

Method imputationSiteHeatMap(): Displays the distribution of missing values in form of a
heatmap.

Usage:
pgu.imputation$imputationSiteHeatMap()

Returns: A heatmap plot. (ggplot2::ggplot)

Method featureBarPlot(): Displays the distribution of an attribute values as histogram.

Usage:
pgu.imputation$featureBarPlot(data_df = "tbl_df", feature = "character")

Arguments:
data_df dataframe to be analyzed. (tibble::tibble)
feature attribute to be shown. (character)

Returns: A histogram. (ggplot2::ggplot)

Method featureBoxPlotWithSubset(): Displays the distribution of an attribute’s values as
box plot.

Usage:
pgu.imputation$featureBoxPlotWithSubset(
data_df = "tbl_df",
feature = "character"

)

pgu.limitsOfQuantification 71

Arguments:

data_df dataframe to be analyzed. (tibble::tibble)
feature attribute to be shown. (character)

Returns: A box plot. (ggplot2::ggplot)

Method featurePlot(): Displays the distribution of an attribute’s values as a composition of a
box plot and a histogram.

Usage:
pgu.imputation$featurePlot(data_df = "tbl_df", feature = "character")

Arguments:

data_df dataframe to be analyzed. (tibble::tibble)
feature attribute to be shown. (character)

Returns: A composite plot. (ggplot2::ggplot)

Method fluxPlot(): Displays an influx/outflux plot

Usage:
pgu.imputation$fluxPlot()

Returns: A composite plot. (ggplot2::ggplot)

Method clone(): The objects of this class are cloneable with this method.

Usage:
pgu.imputation$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Sebastian Malkusch

pgu.limitsOfQuantification

pgu.limitsOfQuantification

Description

Handles values in the pguIMP dataset that exceed the limits of quantification. This object is used
by the shiny based gui and is not for use in individual R-scripts!

Format

R6::R6Class object.

72 pgu.limitsOfQuantification

Details

more information

Active bindings

loq Returns the instance variable loq (tibble::tibble)

setLoq Sets the instance variable loq (tibble::tibble)

outliers Returns instance variable outliers (tibble::tibble)

lloqSubstituteAlphabet Returns the instance variable lloqSubstititeAlphabet (character)

lloqSubstituteAgent Returns the instance variable lloqSubstituteAgent (character)

setLloqSubstituteAgent Sets the instance variable lloqSubstituteAgent (character)

uloqSubstituteAlphabet Returns the instance variable uloqSubstititeAlphabet (character)

uloqSubstituteAgent Returns the instance variable uloqSubstituteAgent (character)

setUloqSubstituteAgent Sets the instance variable uloqSubstituteAgent (character)

naHandlingAlphabet Returns the instance variable naHandlingAlphabet (character)

naHandlingAgent Returns the instance variable naHandlingAgent (character)

setNaHandlingAgent Sets the instance variable naHandlingAgent (character)

loqStatistics Returns the instance variable loqStatistics

Methods

The following public methods are available:

- ‘new()‘: Creates a new pgu.limitsOfQuantification object - ‘print()‘: Prints instance variables
- ‘reset()‘: Resets the object - ‘fit()‘: Analyzes data for LOQ violations - ‘predict()‘: Applies
LOQ corrections - ‘attribute_lloq()‘, ‘attribute_uloq()‘: Get LOQ values - ‘set_attribute_lloq()‘,
‘set_attribute_uloq()‘: Set LOQ values - ‘attribute_outliers()‘: Get outliers for an attribute - ‘plot_loq_distribution()‘:
Plot LOQ statistics - ‘attribute_bar_plot()‘, ‘attribute_box_plot_with_subset()‘, ‘attribute_plot()‘:
Create diagnostic plots - ‘clone()‘: Clone the object

Author(s)

Sebastian Malkusch

See Also

Other pguIMP classes: pgu.missings

pgu.missings 73

pgu.missings pgu.missings

Description

Detects and substitutes missing values from data set.

Format

R6::R6Class object.

Details

Detects missing values in the transformed and normalized data set. This object is used by the shiny
based gui and is not for use in individual R-scripts!

Active bindings

imputationParameter Returns the instance variable imputationParameter (tibble::tibble)

imputationSites Returns the instance variable imputationSites (tibble::tibble)

one_hot_df Returns the positions of missings in one_hot encoding (tibble::tibble)

amv Returns the instance variable amv (numeric)

Methods

The following public methods are available:

- ‘new()‘: Creates a new pgu.missings object - ‘print()‘: Prints instance variables - ‘resetImputa-
tionParameter()‘: Resets imputation parameters - ‘featureIdx()‘: Get feature position - ‘filterFea-
tures()‘: Filter features with missings - ‘gatherMeasurements()‘, ‘gatherMissings()‘, ‘gatherExist-
ings()‘, ‘gatherFractionOfMissings()‘: Gather missing value statistics - ‘gatherImputationStatis-
tics()‘: Collect imputation statistics - ‘one_hot()‘: Create one-hot encoding of missings - ‘detectIm-
putationSites()‘: Detect missing value positions - ‘imputationSiteDistribution()‘: Get missing value
distribution - ‘imputationSiteHeatMap()‘: Create missing value heatmap - ‘clone()‘: Clone the ob-
ject

Author(s)

Sebastian Malkusch

See Also

Other pguIMP classes: pgu.limitsOfQuantification

74 pgu.missingsCharacterizer

pgu.missingsCharacterizer

pgu.missingsCharacterizer

Description

A class that characterizes the origin of missing values.

Format

[R6::R6Class] object.

Details

A class that characterizes the origin of missing values. This object is used by the shiny based gui
and is not for use in individual R-scripts!

Active bindings

featureAlphabet Returns the instance variable featureAlphabet. (character)

featureAgent Returns the instance variable featureAgent. (character)

setFeatureAgent Sets the instance variable featureAgent. (character)

missingsCharacteristics_df Returns the instance variable missingsCharacteristics_df. (tib-
ble::tibble)

Methods

Public methods:
• pgu.missingsCharacterizer$new()

• pgu.missingsCharacterizer$finalize()

• pgu.missingsCharacterizer$print()

• pgu.missingsCharacterizer$reset()

• pgu.missingsCharacterizer$analyze()

• pgu.missingsCharacterizer$plot_pair_dist()

• pgu.missingsCharacterizer$clone()

Method new(): Creates and returns a new ‘pgu.missingsCharacterizer‘ object.

Usage:
pgu.missingsCharacterizer$new(data_df = "tbl_df")

Arguments:
data_df The data to be analyzed. (tibble::tibble)

Returns: A new ‘pgu.missingsCharacterizer‘ object. (pguIMP::pgu.missingsCharacterizer)

Method finalize(): Clears the heap and indicates if instance of ‘pgu.missingsCharacterizer‘
is removed from heap.

pgu.missingsCharacterizer 75

Usage:
pgu.missingsCharacterizer$finalize()

Method print(): Prints instance variables of a ‘pgu.missingsCharacterizer‘ object.

Usage:
pgu.missingsCharacterizer$print()

Returns: string

Method reset(): Takes a dataframe that will be analyzed using the analyze function and resets
the instance variables.

Usage:
pgu.missingsCharacterizer$reset(data_df = "tbl_df")

Arguments:

data_df The data to be analyzed. (tibble::tibble)

Method analyze(): resets the instance variables and analyzes a dataframe.

Usage:
pgu.missingsCharacterizer$analyze(data_df = "tbl_df", progress = "Progress")

Arguments:

data_df The data to be analyzed. (tibble::tibble)
progress If shiny is loaded, the analysis’ progress is stored within this instance of the shiny

Progress class. (shiny::Progress)

Method plot_pair_dist(): Plots the analysis result.

Usage:
pgu.missingsCharacterizer$plot_pair_dist(data_df = "tbl_df")

Arguments:

data_df The data to be analyzed. (tibble::tibble)

Method clone(): The objects of this class are cloneable with this method.

Usage:
pgu.missingsCharacterizer$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Sebastian Malkusch

76 pgu.model

pgu.model pgu.model

Description

Comprises a list of models for data manipulation.

Format

[R6::R6Class] object.

Details

Comprises a list of pgu.normDist objects and model parameters. These can be used to scale data.
This object is used by the shiny based gui and is not for use in individual R-scripts!

Active bindings

modelList Returns a vector of pgu-normDist objects. (pgu.normDist)

modelParameter Returns a dataframe comrising model parameters. (tibble::tibble)

Methods

Public methods:
• pgu.model$new()

• pgu.model$finalize()

• pgu.model$print()

• pgu.model$resetModelParameter()

• pgu.model$resetModelList()

• pgu.model$resetModel()

• pgu.model$setNormDist()

• pgu.model$featureIdx()

• pgu.model$fitFeature()

• pgu.model$fitData()

• pgu.model$logFitResultsFeature()

• pgu.model$logFailedFitResultsFeature()

• pgu.model$scaleNumeric()

• pgu.model$scaleData()

• pgu.model$rescaleNumeric()

• pgu.model$rescaleData()

• pgu.model$modelParameterData()

• pgu.model$modelParameterFeature()

• pgu.model$modelQualityData()

• pgu.model$modelQualityFeature()

pgu.model 77

• pgu.model$fitResultData()

• pgu.model$fitResultFeature()

• pgu.model$testResultData()

• pgu.model$testResultFeature()

• pgu.model$plotModel()

• pgu.model$clone()

Method new(): Creates and returns a new ‘pgu.model‘ object.

Usage:
pgu.model$new(data = "tbl_df")

Arguments:

data The data to be analyzed. (tibble::tibble)

Returns: A new ‘pgu.model‘ object. (pguIMP::pgu.model)

Method finalize(): Clears the heap and indicates that instance of ‘pgu.model‘ is removed
from heap.

Usage:
pgu.model$finalize()

Method print(): Prints instance variables of a ‘pgu.model‘ object.

Usage:
pgu.model$print()

Returns: string

Method resetModelParameter(): Resets instance variable ‘modelParameter‘

Usage:
pgu.model$resetModelParameter(data = "tbl_df")

Arguments:

data Dataframe to be analyzed. (tibble::tibble)

Method resetModelList(): Resets instance variable ‘modelList‘

Usage:
pgu.model$resetModelList(data = "tbl_df")

Arguments:

data Dataframe to be analyzed. (tibble::tibble)

Method resetModel(): Resets instance variable ‘modelList‘. Resets instance variable ‘model-
Parameter‘. Displays progress if shiny is loaded.

Usage:
pgu.model$resetModel(data = "tbl_df", progress = "Progress")

Arguments:

data Dataframe to be analyzed. (tibble::tibble)

78 pgu.model

progress If shiny is loaded, the analysis’ progress is stored in this instance of the shiny
Progress class. (shiny::Progress)

Method setNormDist(): Stores the information of a pgu.norDist object in an entry of the
instance variable ‘modelList‘

Usage:
pgu.model$setNormDist(data = "pgu.normDist", feature = "character")

Arguments:
data Instance of pgu.normDist (pguIMP::pgu.normDist)
feature Attribute corresponding to the pgu.normDist object data. (character)

Method featureIdx(): Returns the index of a pgu.normDist object wihtin the instance variable
‘modelParameter‘.

Usage:
pgu.model$featureIdx(feature = "character")

Arguments:
feature Attribute’s name. (character)

Returns: Index of attribute entry in dataframe (numeric)

Method fitFeature(): Runs the fit function of a pgu.normDist object at a user denied position
within the instance variable modelList.

Usage:
pgu.model$fitFeature(feature = "character")

Arguments:
feature Attribute’s name. (character)

Method fitData(): Loops through all attributes and calls the object’s ftiFeature function. Dis-
plays progress if shiny is loaded.

Usage:
pgu.model$fitData(progress = "Progress")

Arguments:
progress If shiny is loaded, the analysis’ progress is stored in this instance of the shiny

Progress class. (shiny::Progress)

Method logFitResultsFeature(): Stores results from fitting procedure of a user defined
attribute into the corrsponding attribute of instance variable ‘modelParameter‘.

Usage:
pgu.model$logFitResultsFeature(feature = "character")

Arguments:
feature Attribute’s name. (character)

Method logFailedFitResultsFeature(): Stores results from fitting procedure of a user de-
fined attribute into the corrsponding attribute of instance variable ‘modelParameter‘ in case of a
failed fitting routine.

pgu.model 79

Usage:
pgu.model$logFailedFitResultsFeature(feature = "character")

Arguments:
feature Attribute’s name. (character)

Method scaleNumeric(): Scales numeric data based upon the model of a user defined attribute.

Usage:
pgu.model$scaleNumeric(value = "numeric", feature = "character")

Arguments:
value Numeric vector (numeric)
feature Attribute’s name. (character)

Returns: scaled version of the given vector (numeric)

Method scaleData(): Scales a dataframe based upon a list of models stored in the instance
variable modelList..

Usage:
pgu.model$scaleData(data = "tbl_df")

Arguments:
data Dataframe to be analyzed. (tibble::tibble)

Returns: scaled version of the given dataframe (tibble::tibble)

Method rescaleNumeric(): Re-scales numeric data based upon the model of a user defined
attribute.

Usage:
pgu.model$rescaleNumeric(value = "numeric", feature = "character")

Arguments:
value Numeric vector (numeric)
feature Attribute’s name. (character)

Returns: Re-scaled version of the given vector (numeric)

Method rescaleData(): Re-scales a dataframe based upon a list of models stored in the in-
stance variable modelList..

Usage:
pgu.model$rescaleData(data = "tbl_df")

Arguments:
data Dataframe to be analyzed. (tibble::tibble)

Returns: Re-scaled version of the given dataframe (tibble::tibble)

Method modelParameterData(): Returns the model parameter (expectation value, standard
deviation).

Usage:
pgu.model$modelParameterData()

80 pgu.model

Returns: Dataframe comprising model parameter. (tibble::tibble)

Method modelParameterFeature(): Returns the model parameter (expectation value, standard
deviation) for a user deined attribute.

Usage:
pgu.model$modelParameterFeature(feature = "character")

Arguments:
feature Attribute’s name. (character)

Returns: Dataframe comprising model parameter. (tibble::tibble)

Method modelQualityData(): Returns the model parameters connected to model quality.

Usage:
pgu.model$modelQualityData()

Returns: Dataframe comprising model parameter. (tibble::tibble)

Method modelQualityFeature(): Returns the model parameters connected to model quality
for a user deined attribute.

Usage:
pgu.model$modelQualityFeature(feature = "character")

Arguments:
feature Attribute’s name. (character)

Returns: Dataframe comprising model parameter. (tibble::tibble)

Method fitResultData(): Returns the model fit results.

Usage:
pgu.model$fitResultData()

Returns: Dataframe comprising model fit results. (tibble::tibble)

Method fitResultFeature(): Returns the model fit results for a user deined attribute.

Usage:
pgu.model$fitResultFeature(feature = "character")

Arguments:
feature Attribute’s name. (character)

Returns: Dataframe comprising model fit results. (tibble::tibble)

Method testResultData(): Returns the hypothesis test results.

Usage:
pgu.model$testResultData()

Returns: Dataframe comprising the hypothesis test results. (tibble::tibble)

Method testResultFeature(): Returns the hypothesis test results. for a user deined attribute.

Usage:
pgu.model$testResultFeature(feature = "character")

pgu.normalizer 81

Arguments:
feature Attribute’s name. (character)

Returns: Dataframe comprising the hypothesis test results. (tibble::tibble)

Method plotModel(): Creates and returns a composite graphical analysis of the modeling
procedure of a user defined attribute.

Usage:
pgu.model$plotModel(feature = "character")

Arguments:
feature Attribute’s name. (character)

Returns: Composite result plot. (ggplot2::ggplot)

Method clone(): The objects of this class are cloneable with this method.

Usage:
pgu.model$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Sebastian Malkusch

pgu.normalizer pgu.normalizer

Description

Normalization of data. Part of pguIMP.

Format

[R6::R6Class] object.

Details

Performs a data normalization in order to achieve a standardized version of the dataframe. This
object is used by the shiny based gui and is not for use in individual R-scripts!

Active bindings

normAgentAlphabet Returns the instance variable normAgentAlphabt.

normAgent Returns the instance variable normAgent. (character)

setNormAgent Sets the instance variable normAgent. (character)

features Returns instance variable features. (character)

normParameter Returns the instance variable normParameter.

82 pgu.normalizer

Methods

Public methods:
• pgu.normalizer$new()

• pgu.normalizer$finalize()

• pgu.normalizer$print()

• pgu.normalizer$detectNormParameter()

• pgu.normalizer$scale_data()

• pgu.normalizer$scale_minMax()

• pgu.normalizer$scale_minMax_numeric()

• pgu.normalizer$scale_mean()

• pgu.normalizer$scale_mean_numeric()

• pgu.normalizer$scale_zScore()

• pgu.normalizer$scale_zScore_numeric()

• pgu.normalizer$rescale_data()

• pgu.normalizer$rescale_minMax()

• pgu.normalizer$rescale_minMax_numeric()

• pgu.normalizer$rescale_mean()

• pgu.normalizer$rescale_mean_numeric()

• pgu.normalizer$rescale_zScore()

• pgu.normalizer$rescale_zScore_numeric()

• pgu.normalizer$featureBarPlot()

• pgu.normalizer$featureBoxPlotWithSubset()

• pgu.normalizer$featurePlot()

• pgu.normalizer$clone()

Method new(): Creates and returns a new ‘pgu.normalizer‘ object.

Usage:
pgu.normalizer$new(data_df = "tbl_df")

Arguments:
data_df The data to be analyzed. (tibble::tibble)

Returns: A new ‘pgu.normalizer‘ object. (pguIMP::pgu.normalizer)

Method finalize(): Clears the heap and indicates that instance of ‘pgu.normalizer‘ is removed
from heap.

Usage:
pgu.normalizer$finalize()

Method print(): Prints instance variables of a ‘pgu.normalizer‘ object.

Usage:
pgu.normalizer$print()

Returns: string

Method detectNormParameter(): Resets instance variable ‘normParameter‘

pgu.normalizer 83

Usage:
pgu.normalizer$detectNormParameter(data_df = "tbl_df")

Arguments:

data_df Dataframe to be analyzed. (tibble::tibble)

Method scale_data(): Scales a tibble using the method defined by the instance variable nor-
mAgent

Usage:
pgu.normalizer$scale_data(data_df = "tbl_df")

Arguments:

data_df Dataframe to be scaled (tible::tibble)

Returns: A normalized version of the dataframe. (tibble::tibble)

Method scale_minMax(): Scales a tibble using min-max normalization

Usage:
pgu.normalizer$scale_minMax(data_df = "tbl_df")

Arguments:

data_df Dataframe to be scaled (tibble::tibble)

Returns: A min-max normalized version of the dataframe

Method scale_minMax_numeric(): Scales a numeric object using min-max normalization

Usage:
pgu.normalizer$scale_minMax_numeric(values = "numeric", feature = "character")

Arguments:

values Values to be scaled. Either a number or a vector (numeric)
feature Character to idtentify the proper normalization parameters. (character)

Returns: A min-max normalized version of the numeric object

Method scale_mean(): Scales a tibble using mean normalization

Usage:
pgu.normalizer$scale_mean(data_df = "tbl_df")

Arguments:

data_df Dataframe to be scaled. (tibble::tibble)

Returns: A mean normalized version of the dataframe

Method scale_mean_numeric(): Scales a numeric object using mean normalization

Usage:
pgu.normalizer$scale_mean_numeric(values = "numeric", feature = character)

Arguments:

values Values to be scaled. Either a number or a vector (numeric)
feature Character to idtentify the proper normalization parameters. (character)

84 pgu.normalizer

Returns: A mean normalized version of the numeric object

Method scale_zScore(): Scales a tibble using z-score normalization

Usage:
pgu.normalizer$scale_zScore(data_df = "tbl_df")

Arguments:
data_df Dataframe to be scaled (tibble::tibble)

Returns: A z-score normalized version of the dataframe

Method scale_zScore_numeric(): Scales a numeric object using z-score normalization

Usage:
pgu.normalizer$scale_zScore_numeric(values = "numeric", feature = character)

Arguments:
values Values to be scaled. Either a number or a vector (numeric)
feature Character to idtentify the proper normalization parameters. (character)

Returns: A z-score normalized version of the numeric object

Method rescale_data(): Rescales a tibble using the method defined by the instance variable
normAgent

Usage:
pgu.normalizer$rescale_data(data_df = "tbl_df")

Arguments:
data_df Normalized dataframe to be rescaled (tible::tibble)

Returns: A rescaled version of the normalized dataframe. (tibble::tibble)

Method rescale_minMax(): Rescales a tibble using min-max normalization

Usage:
pgu.normalizer$rescale_minMax(data_df = "tbl_df")

Arguments:
data_df Normalized dataframe to be rescaled (tibble::tibble)

Returns: A rescaled version of a min-max normalized dataframe

Method rescale_minMax_numeric(): Rescales a numeric object using min-max normalization

Usage:
pgu.normalizer$rescale_minMax_numeric(values = "numeric", feature = character)

Arguments:
values Normalized values to be rescaled. Either a number or a vector (numeric)
feature Character to idtentify the proper normalization parameters. (character)

Returns: Rescaled version of min-max normalized numeric object

Method rescale_mean(): Rescales a tibble using mean normalization

Usage:

pgu.normalizer 85

pgu.normalizer$rescale_mean(data_df = "tbl_df")

Arguments:
data_df Normalized dataframe to be rescaled (tibble::tibble)

Returns: A rescaled version of a mean normalized dataframe

Method rescale_mean_numeric(): Rescales a numeric object using mean normalization

Usage:
pgu.normalizer$rescale_mean_numeric(values = "numeric", feature = character)

Arguments:
values Normalized values to be rescaled. Either a number or a vector (numeric)
feature Character to idtentify the proper normalization parameters. (character)

Returns: Rescaled version of mean normalized numeric object

Method rescale_zScore(): Rescales a tibble using z-score normalization

Usage:
pgu.normalizer$rescale_zScore(data_df = "tbl_df")

Arguments:
data_df Normalized dataframe to be rescaled (tibble::tibble)

Returns: A rescaled version of a z-score normalized dataframe

Method rescale_zScore_numeric(): Rescales a numeric object using z-score normalization

Usage:
pgu.normalizer$rescale_zScore_numeric(values = "numeric", feature = character)

Arguments:
values Normalized values to be rescaled. Either a number or a vector (numeric)
feature Character to idtentify the proper normalization parameters. (character)

Returns: Rescaled version of z-score normalized numeric object

Method featureBarPlot(): Displays the distribution of an attribute values as histogram.

Usage:
pgu.normalizer$featureBarPlot(data_df = "tbl_df", feature = "character")

Arguments:
data_df dataframe to be analyzed. (tibble::tibble)
feature attribute to be shown. (character)

Returns: A histogram. (ggplot2::ggplot)

Method featureBoxPlotWithSubset(): Displays the distribution of an attribute’s values as
box plot.

Usage:
pgu.normalizer$featureBoxPlotWithSubset(
data_df = "tbl_df",
feature = "character"

)

86 pgu.normDist

Arguments:

data_df dataframe to be analyzed. (tibble::tibble)
feature attribute to be shown. (character)

Returns: A box plot. (ggplot2::ggplot)

Method featurePlot(): Displays the distribution of an attribute’s values as a composition of a
box plot and a histogram.

Usage:
pgu.normalizer$featurePlot(data_df = "tbl_df", feature = "character")

Arguments:

data_df dataframe to be analyzed. (tibble::tibble)
feature attribute to be shown. (character)

Returns: A composite plot. (ggplot2::ggplot)

Method clone(): The objects of this class are cloneable with this method.

Usage:
pgu.normalizer$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Sebastian Malkusch

pgu.normDist pgu.normDist

Description

Compares the distribution of a single attribute’s values to normal distribution by using several statis-
tic tests.

Format

[R6::R6Class] object.

Details

The distribution of a single value is tested for normality by Shapiro-Wilk test, Kolmogorov-Smirnov
test, Anderson-Darling test. The expectation value and standard deviation of a normal distribution
representing the data are determined by maximizing the log Likelihood with respect to the expec-
tation value and standard deviation. This object is used by the shiny based gui and is not for use in
individual R-scripts!

pgu.normDist 87

Active bindings

featureName Returns the instance variable featureName. (character)

rawData Returns the instance variable rawData. (tibble::tibble)

setRawData Sets the instance variable rawData. (tibble::tibble)

histogram Returns the instance variable histogram. (tibble::tibble)

expMu Returns the instance variable expMu. (numeric)

expSigma Returns the instance variable expSigma. (numeric)

dataPoints Returns the instance variable dataPoints. (numeric)

logLikelihood Returns the instance variable logLikelihood. (numeric)

degOfFreedom Returns the instance variable degOfFreedom. (numeric)

n Returns the instance variable n. (integer)

bic Returns the instance variable bic. (numeric)

aic Returns the instance variable aic. (numeric)

aicc Returns the instance variable aicc. (numeric)

rmse Returns the instance variable rmse. (numeric)

fitSuccess Returns the instance variable fitSuccess. (logical)

testNames Returns the instance variable testNames. (character)

testParameterNames Returns the instance variable testParameterNames. (character)

alpha Returns the instance variable alpha. (numeric)

w.shapiro Returns the instance variable w.shapiro. (numeric)

p.shapiro Returns the instance variable p.shapiro. (numeric)

d.kolmogorow Returns the instance variable d.kolmogorow. (numeric)

p.kolmogorow Returns the instance variable p.kolmogorow. (numeric)

a.anderson Returns the instance variable a.anderson. (numeric)

p.anderson Returns the instance variable p.anderson. (numeric)

Methods

Public methods:
• pgu.normDist$new()

• pgu.normDist$finalize()

• pgu.normDist$print()

• pgu.normDist$resetNormDist()

• pgu.normDist$resetFail()

• pgu.normDist$optimize()

• pgu.normDist$createHistogram()

• pgu.normDist$normalQQData()

• pgu.normDist$test.shapiro()

• pgu.normDist$test.kolmogorow()

88 pgu.normDist

• pgu.normDist$test.anderson()

• pgu.normDist$fitResult()

• pgu.normDist$testResult()

• pgu.normDist$testResultCompendium()

• pgu.normDist$plotHistogram()

• pgu.normDist$plotResiduals()

• pgu.normDist$plotResidualDist()

• pgu.normDist$plotRawResidualDist()

• pgu.normDist$plotRawDataDist()

• pgu.normDist$normalQQPlot()

• pgu.normDist$fit()

• pgu.normDist$clone()

Method new(): Creates and returns a new ‘pgu.normDist‘ object.

Usage:
pgu.normDist$new(data = "tbl_df")

Arguments:

data The data to be analyzed. (tibble::tibble)

Returns: A new ‘pgu.normDist‘ object. (pguIMP::pgu.normDist)

Method finalize(): Clears the heap and indicates that instance of ‘pgu.normDist‘ is removed
from heap.

Usage:
pgu.normDist$finalize()

Method print(): Prints instance variables of a ‘pgu.normDist‘ object.

Usage:
pgu.normDist$print()

Returns: string

Method resetNormDist(): Resets instance variables

Usage:
pgu.normDist$resetNormDist(data = "tbl_df")

Arguments:

data Dataframe to be analyzed. (tibble::tibble)

Method resetFail(): Resets instance variables in case of a failed analysis.

Usage:
pgu.normDist$resetFail()

Method optimize(): Optimizes the logLikelihood between the data and a normal distribution
with respect to the expectation value and standard deviation. The quality of the best model is
calculated subsequently.

pgu.normDist 89

Usage:
pgu.normDist$optimize()

Method createHistogram(): Creates a histogram from the instance variable ‘rawData‘. The
histogram is stored in the instance variable ‘histogram‘.

Usage:
pgu.normDist$createHistogram()

Method normalQQData(): Performes a qq-analysis of the instance variable ‘rawData‘ The qq-
analysis is stored in the attributes ‘sample_quantile‘ and ‘theoretical_quantile‘ of the instance
variable ‘rawData‘.

Usage:
pgu.normDist$normalQQData()

Method test.shapiro(): Performes Shapiro-Wilk’s test for normality on the instance variable
‘rawData‘. The test result is stored in the instance variable ‘w.shapiro‘. The p-value of the test is
stored in the instance variable ‘p.shapiro‘

Usage:
pgu.normDist$test.shapiro()

Method test.kolmogorow(): Performes Kolmogorow-Smirnow’s test for normality on the
instance variable ‘rawData‘. The test result is stored in the instance variable ‘d.kolmogorow‘.
The p-value of the test is stored in the instance variable ‘p.kolmogorow‘

Usage:
pgu.normDist$test.kolmogorow()

Method test.anderson(): Performes Anderson-Darling’s test for normality on the instance
variable ‘rawData‘. The test result is stored in the instance variable ‘a.anderson‘. The p-value of
the test is stored in the instance variable ‘p.anderson‘

Usage:
pgu.normDist$test.anderson()

Method fitResult(): Returns the result of the classes optimize function in form of a formated
string.

Usage:
pgu.normDist$fitResult()

Returns: String of the results of the fitting routine (character)

Method testResult(): Returns the result of the classes test functions in form of a formated
string.

Usage:
pgu.normDist$testResult(testName = "Shapiro-Wilk")

Arguments:

testName Defines the test which result shall be returned. Can be of type:‘Shapiro-Wilk‘,
‘Kolmogorow-Smirnow‘ or ‘Anderson-Darling‘. (character)

90 pgu.normDist

Returns: String of the results of the testing routine (character)

Method testResultCompendium(): Returns the result of the classes test functions ‘Shapiro-
Wilk‘, ‘Kolmogorow-Smirnow‘ and ‘Anderson-Darling‘ in form of a formated string. (character)

Usage:
pgu.normDist$testResultCompendium()

Returns: String of the results of the testing routine (character)

Method plotHistogram(): Displays the instance variable ‘histogram‘ in form of a bar plot and
overlays the corresponding normal distribution.

Usage:
pgu.normDist$plotHistogram()

Returns: A bar plot. (ggplot2::ggplot)

Method plotResiduals(): Displays the residuals between the instance variable ‘histogram‘
and the corresponding normal distribution.

Usage:
pgu.normDist$plotResiduals()

Returns: A scatter plot. (ggplot2::ggplot)

Method plotResidualDist(): Displays the distribution of the residuals between the distribu-
tion of the instance variable ‘histogram‘ in form of a histogram.

Usage:
pgu.normDist$plotResidualDist()

Returns: A bar plot. (ggplot2::ggplot)

Method plotRawResidualDist(): Displays the distribution of the residuals between the distri-
bution of the instance variable ‘rawData‘ in form of a histogram.

Usage:
pgu.normDist$plotRawResidualDist()

Returns: A bar plot. (ggplot2::ggplot)

Method plotRawDataDist(): Displays the distribution of the instance variable ‘rawData‘ in
form of a histogram.

Usage:
pgu.normDist$plotRawDataDist()

Returns: A bar plot. (ggplot2::ggplot)

Method normalQQPlot(): Displays a qqplot of the instance variable ‘rawData‘.

Usage:
pgu.normDist$normalQQPlot()

Returns: A qq-plot. (ggplot2::ggplot)

Method fit(): Runs the optimization process and performs all implemented quality controls.
Additionally performs hypothesis tests for normality.

pgu.optimizer 91

Usage:
pgu.normDist$fit()

Method clone(): The objects of this class are cloneable with this method.

Usage:
pgu.normDist$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Sebastian Malkusch

pgu.optimizer pgu.optimizer

Description

Finds the transformation models that result in distributions that come closest to a normal distribu-
tion.

Format

[R6::R6Class] object.

Details

Analysis is performed individually on each attribute. This object is used by the shiny based gui and
is not for use in individual R-scripts!

Active bindings

features Returns the instance variable features. (character)

trafoAlphabet Returns the instance variable trafoAlphabet. (character)

setTrafoAlphabet Sets the instance variable trafoAlphabet to data. (character)

mirror Returns the instance variable mirror (logical)

setMirror Sets the instance variable mirror to data (logical)

optParameter Returns the instance variable optParameter (tibble::tibble)

optTypes Returns the instance variable optTypes (tibble::tibble)

92 pgu.optimizer

Methods

Public methods:
• pgu.optimizer$new()

• pgu.optimizer$finalize()

• pgu.optimizer$print()

• pgu.optimizer$resetFeatures()

• pgu.optimizer$resetOptParameter()

• pgu.optimizer$resetOptTypes()

• pgu.optimizer$resetOptimizer()

• pgu.optimizer$featureIdx()

• pgu.optimizer$modelParameterIsBigger()

• pgu.optimizer$modelParameterIsSmaller()

• pgu.optimizer$updateTrafoType()

• pgu.optimizer$updateMirrorLogic()

• pgu.optimizer$updateOptParameter()

• pgu.optimizer$optimize()

• pgu.optimizer$trafoAlpahbetTblDf()

• pgu.optimizer$clone()

Method new(): Creates and returns a new ‘pgu.optimizer‘ object.

Usage:
pgu.optimizer$new(data = "tbl_df")

Arguments:

data The data to be analyzed. (tibble::tibble)

Returns: A new ‘pgu.optimizer‘ object. (pguIMP::pgu.optimizer)

Method finalize(): Clears the heap and indicates that instance of ‘pgu.optimizer‘ is removed
from heap.

Usage:
pgu.optimizer$finalize()

Method print(): Prints instance variables of a ‘pgu.optimizer‘ object.

Usage:
pgu.optimizer$print()

Returns: string

Method resetFeatures(): Extract the attribute names from the given data frame and stores
them in the class’ instance variable features,

Usage:
pgu.optimizer$resetFeatures(data = "tbl_df")

Arguments:

data The data to be analyzed. (tibble::tibble)

pgu.optimizer 93

Method resetOptParameter(): Initializes the instance variable optParameter.

Usage:
pgu.optimizer$resetOptParameter()

Method resetOptTypes(): Initializes the instance variable optTypes.

Usage:
pgu.optimizer$resetOptTypes()

Method resetOptimizer(): Initializes the optimizer instance variables. Here, initialization
defines a consecutive sequence of the class’ functions: resetFeatures, setTrafoAlphabet, setMirror,
resetOptParameter and resetOptTypes.

Usage:
pgu.optimizer$resetOptimizer(data = "tbl_df")

Arguments:
data The data to be analyzed. (tibble::tibble)

Method featureIdx(): Determines the numerical index of the column of an attribute based on
the attribute name.

Usage:
pgu.optimizer$featureIdx(feature = "character")

Arguments:
feature The attribute’s name. (character)

Returns: The attributes column index. (numeric)

Method modelParameterIsBigger(): Compares a model parameter to a reference parameter
and tests, if the model parameter is bigger.

Usage:
pgu.optimizer$modelParameterIsBigger(
modelParameter = "numeric",
referenceParameter = "numeric"

)

Arguments:
modelParameter The model parameter (numeric)
referenceParameter The reference parameter (numeric)

Returns: Test Result (logical)

Method modelParameterIsSmaller(): Compares a model parameter to a reference parameter
and tests, if the model parameter is smaller.

Usage:
pgu.optimizer$modelParameterIsSmaller(
modelParameter = "numeric",
referenceParameter = "numeric"

)

Arguments:

94 pgu.optimizer

modelParameter The model parameter (numeric)
referenceParameter The reference parameter (numeric)

Returns: Test Result (logical)

Method updateTrafoType(): Takes an instance of the pgu.transfromator class and sets the
transformation type to a user defined value.

Usage:
pgu.optimizer$updateTrafoType(
transformator = "pgu.transformator",
type = "character"

)

Arguments:
transformator An instance of the pgu.transformator class (pguIMP::pgu.transformator)
type A transfromation type (character)

Returns: An updated instance of the pgu.transformator class (pguIMP::pgu.transformator)

Method updateMirrorLogic(): Takes an instance of the pgu.transfromator class and sets the
mirrorLogic parameter to a user defined value.

Usage:
pgu.optimizer$updateMirrorLogic(
transformator = "pgu.transformator",
logic = "logical"

)

Arguments:
transformator An instance of the pgu.transformator class (pguIMP::pgu.transformator)
logic The mirrorLogic parameter (logic)

Returns: An updated instance of the pgu.transformator class (pguIMP::pgu.transformator)

Method updateOptParameter(): Takes an instance of the pgu.model class and analyzes it.
Keeps track of the optimal model parameters during optimization and stores them in the instance
variables optTypes and optParameter.

Usage:
pgu.optimizer$updateOptParameter(
model = "pgu.model",
type = "character",
logic = "character"

)

Arguments:
model An instance of the pgu.model class (pguIMP::pgu.model)
type A transfromation type (character)
logic The mirrorLogic parameter (logic)

Method optimize(): Permutates all possible variations of data transfromations and iterates
through them. Analysis the optimal transformation parameters for each attribute in the data frame
and stores them in the instance variables optParameter, optTypes.

pgu.outliers 95

Usage:

pgu.optimizer$optimize(data = "tbl_df", progress = "Progress")

Arguments:

data The data frame to be analyzed. (tibble::tibble)

progress If shiny is loaded, the analysis’ progress is stored within this instance of the shiny
Progress class. (shiny::Progress)

Method trafoAlpahbetTblDf(): Returns information on the optimization progress

Usage:

pgu.optimizer$trafoAlpahbetTblDf()

Returns: The data frame comprizing analysis information. (tibble::tibble)

Method clone(): The objects of this class are cloneable with this method.

Usage:

pgu.optimizer$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Sebastian Malkusch

pgu.outliers pgu.outliers

Description

Detects and replaces possible outliers from data set.

Format

[R6::R6Class] object.

Details

Performes Grubb’s test for outliers to detect outliers in the normalized and Z-score transfromed data
set. Replace missing values with substitutes by classical and AI-powerd substitution algorithms. For
this purpose outliers are handled as imputation sites.

96 pgu.outliers

Active bindings

outliersParameter Returns the instance variable outliersParameter. (tibble::tibble)

outliers Returns the instance variable outliers. (tibble::tibble)

one_hot_df Returns the positions of missings in one_hot encoding (tibble::tibble)

outliersStatistics Returns the instance variable outliersStatistics. (tibble::tibble)

outliersAgentAlphabet Returns the instance variable of outliersAgentAlphabet (character)

outliersAgent Returns the instance variable outliersAgent. (character)

setOutliersAgent Sets the instance variable outliersAgent. (character)

featureData Returns the instance variable featureData. (numeric)

alpha Returns the instance variable alpha. (numeric)

setAlpha Set the instance variable alpha. (numeric)

epsilon Returns the instance variable epsilon. (numeric)

setEpsilon Set the instance variable epsilon. (numeric)

minSamples Returns the instance variable minSamples. (integer)

setMinSamples Set the instance variable minSamples. (integer)

gamma Returns the instance variable gamma. (numeric)

setGamma Set the instance variable gamma. (numeric)

nu Returns the instance variable nu. (numeric)

setNu Set the instance variable nu. (numeric)

k Returns the instance variable k (integer)

setK Sets the instance variable k. (integer)

cutoff Returns the instance variable cutoff. (numeric)

setCutoff Sets the instance variable cutoff. (numeric)

seed Returns the instance variable seed. (integer)

setSeed Set the instance variable seed. (integer)

Methods

Public methods:
• pgu.outliers$new()

• pgu.outliers$finalize()

• pgu.outliers$print()

• pgu.outliers$resetOutliers()

• pgu.outliers$filterFeatures()

• pgu.outliers$checkFeatureValidity()

• pgu.outliers$detectOutliersParameter()

• pgu.outliers$outliersFeatureList()

• pgu.outliers$featureOutlier()

• pgu.outliers$one_hot()

pgu.outliers 97

• pgu.outliers$detectOutliers()

• pgu.outliers$detectByGrubbs()

• pgu.outliers$grubbs_numeric()

• pgu.outliers$detectByDbscan()

• pgu.outliers$dbscan_numeric()

• pgu.outliers$detectBySvm()

• pgu.outliers$svm_numeric()

• pgu.outliers$detectByKnn()

• pgu.outliers$knn_numeric()

• pgu.outliers$setImputationSites()

• pgu.outliers$calcOutliersStatistics()

• pgu.outliers$outlierTable()

• pgu.outliers$plotOutliersDistribution()

• pgu.outliers$featureBarPlot()

• pgu.outliers$featureBoxPlotWithSubset()

• pgu.outliers$featurePlot()

• pgu.outliers$clone()

Method new(): Creates and returns a new ‘pgu.outliers‘ object.

Usage:
pgu.outliers$new(
data_df = "tbl_df",
alpha = 0.05,
epsilon = 0.1,
minSamples = 4,
gamma = 0.05,
nu = 0.1,
k = 4,
cutoff = 0.99,
seed = 42

)

Arguments:
data_df The data to be cleaned. (tibble::tibble)
alpha Initial definition of the instance variable alpha. (numeric)
epsilon Initial definition of the instance variable epsilon. (numeric)
minSamples Initial definition of the instance variable minSamples. (integer)
gamma Initial definition of the instance variable gamma. (numeric)
nu Initial definition of the instance variable nu. (numeric)
k Initial definition of the instance variable k. (integer)
cutoff Initial definition of the instance variable cutoff. (numeric)
seed Initial definition of the instance variable seed. (integer)

Returns: A new ‘pgu.outliers‘ object. (pguIMP::pgu.outliers)

Method finalize(): Clears the heap and indicates that instance of ‘pgu.outliers‘ is removed
from heap.

98 pgu.outliers

Usage:
pgu.outliers$finalize()

Method print(): Prints instance variables of a ‘pgu.outliers‘ object.

Usage:
pgu.outliers$print()

Returns: string

Method resetOutliers(): Resets instance variables and performes Grubb’s test for outliers to
detect outliers in the normalized and Z-score transfromed data set. Progresse is indicated by the
progress object passed to the function.

Usage:
pgu.outliers$resetOutliers(data_df = "tbl_df")

Arguments:
data_df Dataframe to be analyzed. (tibble::tibble)

Method filterFeatures(): Filters attributes from the given dataframe that are known to the
class.

Usage:
pgu.outliers$filterFeatures(data_df = "tbl_df")

Arguments:
data_df Dataframe to be filtered. (tibble::tibble)

Returns: A filterd dataframe. (tibble::tibble)

Method checkFeatureValidity(): Checks if the feature consists of a sufficient number of
instances.

Usage:
pgu.outliers$checkFeatureValidity(data_df = "tbl_df", feature = "character")

Arguments:
data_df Dataframe to be analyzed (tibble::tibble)
feature The attribute to be analyzed. (character)

Method detectOutliersParameter(): determines the outliers parameter by analyzing the
tibble data_df and the instance variable outliers. Results are stored to instance variable outliersPa-
rameter.

Usage:
pgu.outliers$detectOutliersParameter(data_df = "tbl_df")

Arguments:
data_df Dataframe to be analyzed. (tibble::tibble)

Method outliersFeatureList(): Characterizes each row of the data frame as either ‘com-
plete‘ or indicates which attribute has been identified as an outlier within the row. If multiple
attributes’ row entries were identified as outliers, the row is characterized by ‘multiple‘.

Usage:

pgu.outliers 99

pgu.outliers$outliersFeatureList(data_df = "tbl_df")

Arguments:
data_df The data frame to be analyzed. (tibble::tibble)

Returns: Vector of row characteristics. (character)

Method featureOutlier(): Returns the detected outliers of a given attribute.

Usage:
pgu.outliers$featureOutlier(feature = "character")

Arguments:
feature The attribute to be analyzed (character)

Returns: The attribute’s outliers (tibble::tibble)

Method one_hot(): Gathers statistical information about missing values in one hot format. The
result is stored in the instance variable one_hot_df.

Usage:
pgu.outliers$one_hot(data_df = "tbl_df")

Arguments:
data_df The data frame to be analyzed. (tibble::tibble)

Method detectOutliers(): Chooses a method for identification of anomalies based upon the
instance variable ‘outliersAgent‘ Detects anomalies in a data frame by one-dimensional analysis
of each feature.

Usage:
pgu.outliers$detectOutliers(data_df = "tbl_df", progress = "Progress")

Arguments:
data_df Data frame to be analyzed. (tibble::tibble)
progress If shiny is loaded, the analysis’ progress is stored in this instance of the shiny

Progress class. (shiny::Progress)

Method detectByGrubbs(): Identifies anomalies in the data frame based on Grubb’s test.
Iterates over the whole data frame. Calls the object’s public function ‘grubbs_numeric‘ until
no more anomalies are identified. The threshold for anomaly detection is defined in the instance
variable ‘alpha‘. Display the progress if shiny is loaded.

Usage:
pgu.outliers$detectByGrubbs(data_df = "tbl_df", progress = "Progress")

Arguments:
data_df Data frame to be analyzed. (tibble::tibble)
progress If shiny is loaded, the analysis’ progress is stored in this instance of the shiny

Progress class. (shiny::Progress)

Method grubbs_numeric(): Performs Grubb’s test for anomalies to detect a single outlier in the
provided attributes data. If an outlier is found, it is added to the instance variable ‘outliers‘. The
threshold for anomaly detection is difined in the instance variable ‘alpha‘. The function indicates
a find by a positive feedback.

100 pgu.outliers

Usage:
pgu.outliers$grubbs_numeric(data_df = "tbl_df", feature = "character")

Arguments:

data_df The data frame to be analyzed. (tibble::tibble)
feature The attribute within the data frame to be analyzed.

Returns: Feedback if an outlier was found. (logical)

Method detectByDbscan(): Identifies anomalies in the data frame based on DBSCAN. Iterates
over the whole data frame. Calls the object’s public function ‘dbscan_numeric‘ until all features
are analyzed. The cluster hyper parameter are defined in the instance variables ‘epsilon‘ and
‘minSamples‘. The results of the ‘dbscan_numeric‘ routine are added to the instance variable
‘outliers‘. Display the progress if shiny is loaded.

Usage:
pgu.outliers$detectByDbscan(data_df = "tbl_df", progress = "Progress")

Arguments:

data_df Data frame to be analyzed. (tibble::tibble)
progress If shiny is loaded, the analysis’ progress is stored in this instance of the shiny

Progress class. (shiny::Progress)

Method dbscan_numeric(): Identifies anomalies in a single feature of a data frame based on
DBSCAN. The cluster hyperparameter are defined in the instance variables ‘epsilon‘ and ‘min-
Samples‘. Display the progress if shiny is loaded.

Usage:
pgu.outliers$dbscan_numeric(data_df = "tbl_df", feature = "character")

Arguments:

data_df Data frame to be analyzed. (tibble::tibble)
feature Feature to be analyzed (character)
progress If shiny is loaded, the analysis’ progress is stored in this instance of the shiny

Progress class. (shiny::Progress)

Returns: A data frame comprising the information about detected anomalies of the feature.
(tibble::tibble)

Method detectBySvm(): Identifies anomalies in the data frame based on one class SVM. Iter-
ates over the whole data frame. Calls the object’s public function ‘svm_numeric‘ until all features
are analyzed. The cluster hyper parameter are defined in the instance variables ‘gamma‘ and ‘nu‘.
The results of the ‘svm_numeric‘ routine are added to the instance variable ‘outliers‘. Display the
progress if shiny is loaded.

Usage:
pgu.outliers$detectBySvm(data_df = "tbl_df", progress = "Process")

Arguments:

data_df Data frame to be analyzed. (tibble::tibble)
progress If shiny is loaded, the analysis’ progress is stored in this instance of the shiny

Progress class. (shiny::Progress)

pgu.outliers 101

Method svm_numeric(): Identifies anomalies in a single feature of a data frame based on one
class SVM. The cluster hyperparameter are defined in the instance variables ‘gamma‘ and ‘nu‘.
Display the progress if shiny is loaded.

Usage:
pgu.outliers$svm_numeric(data_df = "tbl_df", feature = "character")

Arguments:

data_df Data frame to be analyzed. (tibble::tibble)
feature Feature to be analyzed (character)
progress If shiny is loaded, the analysis’ progress is stored in this instance of the shiny

Progress class. (shiny::Progress)

Returns: A data frame comprising the information about detected anomalies of the feature.
(tibble::tibble)

Method detectByKnn(): Identifies anomalies in the data frame based on knnO. Iterates over the
whole data frame. Calls the object’s public function ‘svm_numeric‘ until all features are analyzed.
The cluster hyper parameter are defined in the instance variables ‘alpha‘ and ‘minSamples‘. The
results of the ‘knn_numeric‘ routine are added to the instance variable ‘outliers‘. Display the
progress if shiny is loaded.

Usage:
pgu.outliers$detectByKnn(data_df = "tbl_df", progress = "Process")

Arguments:

data_df Data frame to be analyzed. (tibble::tibble)
progress If shiny is loaded, the analysis’ progress is stored in this instance of the shiny

Progress class. (shiny::Progress)

Method knn_numeric(): Identifies anomalies in a single feature of a data frame based on
knnO. The cluster hyperparameter are defined in the instance variables ‘alpha‘ and ‘minSmaples‘.
Display the progress if shiny is loaded.

Usage:
pgu.outliers$knn_numeric(data_df = "tbl_df", feature = "character")

Arguments:

data_df Data frame to be analyzed. (tibble::tibble)
feature Feature to be analyzed (character)
progress If shiny is loaded, the analysis’ progress is stored in this instance of the shiny

Progress class. (shiny::Progress)

Returns: A data frame comprising the information about detected anomalies of the feature.
(tibble::tibble)

Method setImputationSites(): Replaces the detected anomalies of a user provided data
frame with ‘NA‘ for further imputation routines.

Usage:
pgu.outliers$setImputationSites(data_df = "tbl_df")

Arguments:

102 pgu.outliers

data_df Data frame to be mutated. (tibble::tibble)

Returns: A data frame with anomalies replaced by ‘NA‘. (tibble::tibble)

Method calcOutliersStatistics(): Calculates the statistics on the previously performed
outlier detection analysis and stores the results in the instance variable ‘outliersStatistcs‘.

Usage:
pgu.outliers$calcOutliersStatistics(data_df = "tbl_df")

Arguments:
data_df The data frame to be analyzed. (tibble::tibble)

Method outlierTable(): Creates a datatable with substituted outliers highlightes by colored
background.

Usage:
pgu.outliers$outlierTable(data_df = "tbl_df")

Arguments:
data_df The data frame to be analyzed. (tibble::tibble)

Returns: A colored datatable (DT::datatable)

Method plotOutliersDistribution(): Displays the occurrence of outlier candidates per at-
tribute as bar plot.

Usage:
pgu.outliers$plotOutliersDistribution()

Returns: A bar plot. (ggplot2::ggplot)

Method featureBarPlot(): Displays the distribution of an attribute’s values as histogram.

Usage:
pgu.outliers$featureBarPlot(data_df = "tbl_df", feature = "character")

Arguments:
data_df dataframe to be analyzed. (tibble::tibble)
feature attribute to be shown. (character)

Returns: A histogram. (ggplot2::ggplot)

Method featureBoxPlotWithSubset(): Displays the distribution of an attribute’s vlues as box
plot.

Usage:
pgu.outliers$featureBoxPlotWithSubset(
data_df = "tbl_df",
feature = "character"

)

Arguments:
data_df dataframe to be analyzed. (tibble::tibble)
feature attribute to be shown. (character)

Returns: A box plot. (ggplot2::ggplot)

pgu.regressor 103

Method featurePlot(): Displays the distribution of an attribute’s values as a composition of a
box plot and a histogram.

Usage:
pgu.outliers$featurePlot(data_df = "tbl_df", feature = "character")

Arguments:
data_df dataframe to be analyzed. (tibble::tibble)
feature attribute to be shown. (character)

Returns: A composite plot. (ggplot2::ggplot)

Method clone(): The objects of this class are cloneable with this method.

Usage:
pgu.outliers$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Sebastian Malkusch

pgu.regressor pgu.regressor

Description

A class that performs pairwise robust regression on the pguIMP data set.

Format

[R6::R6Class] object.

Details

A class that performs pairwise robust regression on the pguIMP data set. This object is used by the
shiny based gui and is not for use in individual R-scripts!

Active bindings

featureNames Returns the instance variable featureNames. (character)

setFeatureNames Sets the instance variable featureNames. It further initializes the instance vari-
ables: intercept, pIntercept, slope, pSlope. (character)

intercept Returns the instance variable intercept. (matrix)

pIntercept Returns instance variable pIntercept. (matrix)

slope Returns the instance variable slope. (matrix)

pSlope Returns the instance variable pSlope. (matrix)

model Returns the instance variable model. (robust::lmRob)

104 pgu.regressor

Methods

Public methods:
• pgu.regressor$new()

• pgu.regressor$finalize()

• pgu.regressor$print()

• pgu.regressor$resetRegressor()

• pgu.regressor$resetDiagonal()

• pgu.regressor$resetMatrix()

• pgu.regressor$featureIdx()

• pgu.regressor$featureIsValid()

• pgu.regressor$featurePairIsValid()

• pgu.regressor$createModel()

• pgu.regressor$createRegressionMatrix()

• pgu.regressor$printModel()

• pgu.regressor$printInterceptTbl()

• pgu.regressor$printPInterceptTbl()

• pgu.regressor$printSlopeTbl()

• pgu.regressor$printPSlopeTbl()

• pgu.regressor$plotRegression()

• pgu.regressor$plotResidualDist()

• pgu.regressor$plotResidualBox()

• pgu.regressor$plotModel()

• pgu.regressor$clone()

Method new(): Creates and returns a new ‘pgu.regressor‘ object.

Usage:
pgu.regressor$new(data = "tbl_df")

Arguments:
data The data to be modeled. (tibble::tibble)

Returns: A new ‘pgu.regressor‘ object. (pguIMP::pgu.regressor)

Method finalize(): Clears the heap and indicates if instance of ‘pgu.regressor‘ is removed
from heap.

Usage:
pgu.regressor$finalize()

Method print(): Prints instance variables of a ‘pgu.regressor‘ object.

Usage:
pgu.regressor$print()

Returns: string

Method resetRegressor(): Performes pair-wise robust linear regression on the attributes of
the data tibble. Progresse is indicated by the progress object passed to the function.

pgu.regressor 105

Usage:
pgu.regressor$resetRegressor(data = "tbl_df", progress = "Progress")

Arguments:
data Dataframe with at least two numeric attributes. (tibble::tibble)
progress Keeps track of the analysis progress. (shiny::Progress)

Method resetDiagonal(): Sets the diagonal of a square matrix to NA.

Usage:
pgu.regressor$resetDiagonal(data = "matrix")

Arguments:
data The matrix whose diagonal is to be reset. (matrix)

Returns: A matrix with its diagonal reset to NA. (matrix)

Method resetMatrix(): Creates a square matrix which dimension corresponds to the length of
the instance variable featureNames. The matrix entries are set to a distict ‘value‘. The diagonal is
set to NA.

Usage:
pgu.regressor$resetMatrix(value = "numeric")

Arguments:
value The value the matrix entries are set to. (numeric)

Returns: A square matrix. (matrix)

Method featureIdx(): Determines the numerical index of the column of an attribute based on
the attribute name.

Usage:
pgu.regressor$featureIdx(feature = "character")

Arguments:
feature The attribute’s name. (character)

Returns: The attributes column index. (numeric)

Method featureIsValid(): Checks if the feature is known to the class.

Usage:
pgu.regressor$featureIsValid(feature = "character")

Arguments:
feature An attribute’s name that is to be checked. (character)

Returns: The test result. (logical)

Method featurePairIsValid(): Checks a if a pair of attributes different and known to the
class.

Usage:
pgu.regressor$featurePairIsValid(
abscissa = "character",
ordinate = "character"

)

106 pgu.regressor

Arguments:

abscissa An attribute’s name that is to be checked. (character)
ordinate An attribute’s name that is to be checked. (character)

Returns: The test result. (logical)

Method createModel(): Creates a robust model of linear regression between two attributes of
a dataframe. The model is stored as instance variable.

Usage:
pgu.regressor$createModel(
data = "tbl_df",
abscissa = "character",
ordinate = "character"

)

Arguments:

data The data to be modeled. (tibble::tibble)
abscissa An attribute’s name that equals a column name in the data. (character)
ordinate An attribute’s name that equals a column name in the data. (character)

Method createRegressionMatrix(): Performs the actual robust linear regression routine.
Iteratively runs through the attributes known to the class and creates a robust linear regression
model for each valid attribute pair. The model results are stored in the instance variables: intercept,
pIntercept, slope, pSlope. Here, pX represents the p-value of the respective parameter X. Displays
the progress if shiny is loaded.

Usage:
pgu.regressor$createRegressionMatrix(data = "tbl_df", progress = "Progress")

Arguments:

data The data to be modeled. (tibble::tibble)
progress If shiny is loaded, the analysis’ progress is stored within this instance of the shiny

Progress class. (shiny::Progress)

Method printModel(): Transforms the results of the modeling procedure for a valid pair of
attributes to a dataframe and returns it.

Usage:
pgu.regressor$printModel(abscissa = "character", ordinate = "character")

Arguments:

abscissa The name of the attribute which is assigned to the abscissa. (character)
ordinate The name of the attribute which is assigned to the ordinate. (character)

Returns: The analyis result as a dataframe. (tibble::tibble)

Method printInterceptTbl(): Transfroms instance variable intercept to a dataframe and
returns it.

Usage:
pgu.regressor$printInterceptTbl()

pgu.regressor 107

Returns: Dataframe of instance variable intercept. (tibble::tibble)

Method printPInterceptTbl(): Transfroms instance variable pIntercept to a dataframe and
returns it.

Usage:
pgu.regressor$printPInterceptTbl()

Returns: Dataframe of instance variable pIntercept. (tibble::tibble)

Method printSlopeTbl(): Transfroms instance variable slope to a dataframe and returns it.

Usage:
pgu.regressor$printSlopeTbl()

Returns: Dataframe of instance variable slope. (tibble::tibble)

Method printPSlopeTbl(): Transfroms instance variable pSlope to a dataframe and returns it.

Usage:
pgu.regressor$printPSlopeTbl()

Returns: Dataframe of instance variable pSlope. (tibble::tibble)

Method plotRegression(): Creates a scatter plot of the model stored within the instance
variable of the class.

Usage:
pgu.regressor$plotRegression()

Returns: A scatter plot. (ggplot2::ggplot)

Method plotResidualDist(): Creates a histogram of the residual distribution of the model
stored within the instance variable of the class.

Usage:
pgu.regressor$plotResidualDist()

Returns: A histogram plot. (ggplot2::ggplot)

Method plotResidualBox(): Creates a box plot of the residual distribution of the model stored
within the instance variable of the class.

Usage:
pgu.regressor$plotResidualBox()

Returns: A box plot. (ggplot2::ggplot)

Method plotModel(): Creates a model of robust linear regression. Executes all graphical
exploration functions of the class and creates a composite graph based on their results.

Usage:
pgu.regressor$plotModel(
data = "tbl_df",
abscissa = "character",
ordinate = "character"

)

108 pgu.reporter

Arguments:
data The data to be modeled. (tibble::tibble)
abscissa The name of the attribute which is assigned to the abscissa. (character)
ordinate The name of the attribute which is assigned to the ordinate. (character)

Returns: A composite graph. (gridExtra::grid.arrange)

Method clone(): The objects of this class are cloneable with this method.

Usage:
pgu.regressor$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Sebastian Malkusch

pgu.reporter pgu.reporter

Description

Creates a human readable report file of the pguIMP analysis in odf format via rmarkdown and latex.
This object is used by the shiny based gui and is not for use in individual R-scripts!

Format

[R6::R6Class] object.

Details

I run at the end of the analysis.

Active bindings

filename Returns the instance variable filename (character)

setFilename Sets the instance variable filename to name. (character)

Methods

Public methods:
• pgu.reporter$new()

• pgu.reporter$finalize()

• pgu.reporter$print()

• pgu.reporter$write_report()

• pgu.reporter$clone()

pgu.reporter 109

Method new(): Creates and returns a new ‘pgu.reporter‘ object.

Usage:

pgu.reporter$new(name = "character")

Arguments:

name Filename of the report pdf. (character)

Returns: A new ‘pgu.reporter‘ object. (pguIMP::pgu.report)

Method finalize(): Clears the heap and indicates that instance of ‘pgu.reporter‘ is removed
from heap.

Usage:

pgu.reporter$finalize()

Method print(): Prints instance variables of a ‘pgu.reporter‘ object.

Usage:

pgu.reporter$print()

Returns: string

Method write_report(): Writes a report of the pguIMP analysis to a pdf file.

Usage:

pgu.reporter$write_report(obj)

Arguments:

obj A list of class objects that are passed to the rmarkdown script.

Returns: t.b.a.

Method clone(): The objects of this class are cloneable with this method.

Usage:

pgu.reporter$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Sebastian Malkusch

110 pgu.status

pgu.status pgu.status

Description

A class that keeps track of the pguIMP analysis process.

Format

[R6::R6Class] object.

Details

pguIMP uses a defined linear analysis path The current status therefore provides information about
which analyses have already been performed and which still have to be performed. This way
pguIMG knows any time during analysis, if all necessary information for the next desired anal-
ysis step are available. This object is used by the shiny based gui and is not for use in individual
R-scripts!

Active bindings

processAlphabet Reurns the process alphabet of the pguIMP analysis routine. (character)

processStatus Returns the process status of the pguIMP routine. (logical)

Methods

Public methods:

• pgu.status$new()

• pgu.status$finalize()

• pgu.status$print()

• pgu.status$reset()

• pgu.status$update()

• pgu.status$query()

• pgu.status$clone()

Method new(): Creates and returns a new ‘pgu.status“ object.

Usage:
pgu.status$new()

Returns: A new ‘pgu.status‘ object. (pguIMP::pgu.status)

Method finalize(): Clears the heap and indicates if instance of ‘pgu.status‘ is removed from
heap.

Usage:
pgu.status$finalize()

pgu.status 111

Method print(): Prints instance variables of a ‘pgu.status‘ object.

Usage:

pgu.status$print()

Returns: string

Method reset(): resets the intance variables ‘processAlphabet‘ and ‘processStatus‘ to their
initial values (FALSE).

Usage:

pgu.status$reset()

Method update(): updates the process status

Usage:

pgu.status$update(processName = "character", value = "logical")

Arguments:

processName The name of the ‘pguIMP‘ process that has been performed. (character)

value Indicates if the process ended with success. (logical)

Method query(): Queries if a process has already been performed successfully.

Usage:

pgu.status$query(processName = "character")

Arguments:

processName Name of the process to be checked. (character)

Returns: Status of the queried process (logical)

Method clone(): The objects of this class are cloneable with this method.

Usage:

pgu.status$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Sebastian Malkusch

112 pgu.transformator

pgu.transformator pgu.transformator

Description

Transforms the data of pguIMP.

Format

[R6::R6Class] object.

Details

Performs a data transformation in order to achieve a normally distributed version of the dataframe.
This object is used by the shiny based gui and is not for use in individual R-scripts!

Active bindings

trafoAlphabet Returns the instance variable trafoAlphabte.

trafoParameter Returns the instance variable trafoParameter.

Methods

Public methods:
• pgu.transformator$new()

• pgu.transformator$finalize()

• pgu.transformator$print()

• pgu.transformator$resetTrafoParameter()

• pgu.transformator$trafoType()

• pgu.transformator$setTrafoType()

• pgu.transformator$addConstant()

• pgu.transformator$mirrorLogic()

• pgu.transformator$setMirrorLogic()

• pgu.transformator$lambdaLOP()

• pgu.transformator$setLambdaLOP()

• pgu.transformator$lambdaBC()

• pgu.transformator$lambdaAS()

• pgu.transformator$featureIdx()

• pgu.transformator$addConstGenerator()

• pgu.transformator$mirrorNumeric()

• pgu.transformator$mirrorData()

• pgu.transformator$calculateAddConst()

• pgu.transformator$translateNumeric()

• pgu.transformator$translateData()

pgu.transformator 113

• pgu.transformator$backTranslateNumeric()

• pgu.transformator$backTranslateData()

• pgu.transformator$lambdaEstimator()

• pgu.transformator$estimateLambda_temp()

• pgu.transformator$estimateLambda()

• pgu.transformator$normalizeArcSine()

• pgu.transformator$optimizeTukeyLadderOfPowers()

• pgu.transformator$optimizeBoxCox()

• pgu.transformator$transformNumeric()

• pgu.transformator$transformData()

• pgu.transformator$transformLogModulus()

• pgu.transformator$transformSquareRoot()

• pgu.transformator$transformCubeRoot()

• pgu.transformator$transformArcsine()

• pgu.transformator$transformInverse()

• pgu.transformator$transformTukeyLadderOfPowers()

• pgu.transformator$transformBoxCox()

• pgu.transformator$inverseTransformNumeric()

• pgu.transformator$inverseTransformData()

• pgu.transformator$inverseTransformLogModulus()

• pgu.transformator$inverseTransformSquareRoot()

• pgu.transformator$inverseTransformCubeRoot()

• pgu.transformator$inverseTransformArcsine()

• pgu.transformator$inverseTransformInverse()

• pgu.transformator$inverseTransformTukeyLadderOfPowers()

• pgu.transformator$inverseTransformBoxCox()

• pgu.transformator$fit()

• pgu.transformator$mutateData()

• pgu.transformator$reverseMutateData()

• pgu.transformator$clone()

Method new(): Creates and returns a new ‘pgu.transformator‘ object.

Usage:
pgu.transformator$new(data_df = "tbl_df")

Arguments:

data_df The data to be analyzed. (tibble::tibble)

Returns: A new ‘pgu.transformator‘ object. (pguIMP::pgu.transformator)

Method finalize(): Clears the heap and indicates that instance of ‘pgu.transformator‘ is re-
moved from heap.

Usage:
pgu.transformator$finalize()

114 pgu.transformator

Method print(): Prints instance variables of a ‘pgu.transformator‘ object.

Usage:
pgu.transformator$print()

Returns: string

Method resetTrafoParameter(): Resets instance variable ‘trafoParameter‘

Usage:
pgu.transformator$resetTrafoParameter(data = "tbl_df")

Arguments:
data Dataframe to be analyzed. (tibble::tibble)

Method trafoType(): Returns entry of ‘trafoType‘ for user defined attribute.

Usage:
pgu.transformator$trafoType(feature = "character")

Arguments:
feature Attribute’s name. (character)

Returns: Value of entry. (character)

Method setTrafoType(): Sets entry of ‘trafoType‘ for user defined attribute.

Usage:
pgu.transformator$setTrafoType(feature = "character", type = "character")

Arguments:
feature Attribute’s name. (character)
type Trafo type parameter. Valid choices are: "none", "exponential", "log2", "logNorm",

"log10", "arcsine", "tukeyLOP", "boxCox". (character)

Method addConstant(): Returns entry of ‘addConst‘ for user defined attribute.

Usage:
pgu.transformator$addConstant(feature = "character")

Arguments:
feature Attribute’s name. (character)

Returns: Value of entry. (numeric)

Method mirrorLogic(): Returns entry of ‘mirrorLogic‘ for user defined attribute.

Usage:
pgu.transformator$mirrorLogic(feature = "character")

Arguments:
feature Attribute’s name. (character)

Returns: Value of entry. (logical)

Method setMirrorLogic(): Sets entry of ‘mirrorLogic‘ for user defined attribute.

Usage:

pgu.transformator 115

pgu.transformator$setMirrorLogic(feature = "character", logic = "logical")

Arguments:
feature Attribute’s name. (character)
logic Specifies whether the data should be mirrored at the coordinate origin. (logical)

Method lambdaLOP(): Returns entry of ‘lambda_lop‘ for user defined attribute. Lambda is a
specific optimization parameter that is derived from the Tukey-LOP transfromation procedure.

Usage:
pgu.transformator$lambdaLOP(feature = "character")

Arguments:
feature Attribute’s name. (character)

Returns: Value of entry. (numeric)

Method setLambdaLOP(): Sets entry of ‘lambda_lop‘ for user defined attribute.

Usage:
pgu.transformator$setLambdaLOP(feature = "character", lambda = "numeric")

Arguments:
feature Attribute’s name. (character)
lambda Sets the feature specific exponential value. (numeric)

Method lambdaBC(): Returns entry of ‘lambda_bc‘ for user defined attribute. Lambda is a
specific optimization parameter that is derived from the Box-Cox transfromation procedure.

Usage:
pgu.transformator$lambdaBC(feature = "character")

Arguments:
feature Attribute’s name. (character)

Returns: Value of entry. (numeric)

Method lambdaAS(): Returns entry of ‘lambda_as‘ for user defined attribute. Lambda is a
specific optimization parameter that is derived from the arcsine transfromation procedure.

Usage:
pgu.transformator$lambdaAS(feature = "character")

Arguments:
feature Attribute’s name. (character)

Returns: Value of entry. (numeric)

Method featureIdx(): Returns the index of a pgu.normDist object wihtin the instance variable
‘trafoParameter‘.

Usage:
pgu.transformator$featureIdx(feature = "character")

Arguments:
feature Attribute’s name. (character)

116 pgu.transformator

Returns: Index of attribute entry in dataframe (numeric)

Method addConstGenerator(): Calculates and returns the addConst. A constant that prevents
the occurrence of negative values as well as zero, if added to an attribute.

Usage:
pgu.transformator$addConstGenerator(value = "numeric")

Arguments:
value The smallest of the attribute’s values. (numeric)

Returns: The addConst for the attribute (numeric)

Method mirrorNumeric(): Mirrors the assigned values at the coordinate origin.

Usage:
pgu.transformator$mirrorNumeric(value = "numeric")

Arguments:
value Value or vector of values. (numeric)

Returns: Value or vector of values. (numeric)

Method mirrorData(): Calls the class’ mirrorNumeric function on all numeric attributes of a
data frame.

Usage:
pgu.transformator$mirrorData(data = "tbl_df")

Arguments:
data A data frame. (tibble:tibble)

Returns: A data frame (tibble::tibble)

Method calculateAddConst(): Calculates the addConst value for each attribute of the assigned
data frame, by calling the class’ addConstGenerator function. The results are stored in addConst
attribute of the trafoParameter instance variable.

Usage:
pgu.transformator$calculateAddConst(data = "tbl_df")

Arguments:
data A data frame. (tibble:tibble)

Method translateNumeric(): Translates the assigned values by a constant.

Usage:
pgu.transformator$translateNumeric(value = "numeric", const = "numeric")

Arguments:
value A numeric or a vector of numerics to be translated. (numeric)
const A constant value. (numeric)

Returns: A numeric or a vector of numerics. (numeric)

Method translateData(): Translates each attribute of the assigned data frame, by calling the
class’ translateNumeric function. The respective addConst values of the individual attributes of
the data frame serve as const variables.

pgu.transformator 117

Usage:
pgu.transformator$translateData(data = "tbl_df")

Arguments:
data A data frame. (tibble:tibble)

Returns: A data frame. (tibble:tibble)

Method backTranslateNumeric(): Back-translates the assigned values by a constant.

Usage:
pgu.transformator$backTranslateNumeric(value = "numeric", const = "numeric")

Arguments:
value A numeric or a vector of numerics to be back-translated. (numeric)
const A constant value. (numeric)

Returns: A numeric or a vector of numerics. (numeric)

Method backTranslateData(): Back-translates each attribute of the assigned data frame, by
calling the class’ backTranslateNumeric function. The respective addConst values of the individ-
ual attributes of the data frame serve as const variables.

Usage:
pgu.transformator$backTranslateData(data = "tbl_df")

Arguments:
data A data frame. (tibble:tibble)

Returns: A data frame. (tibble:tibble)

Method lambdaEstimator(): Estimates the lambda factor for the given values, that are assigned
to a user defined attribute..

Usage:
pgu.transformator$lambdaEstimator(value = "numeric", feature = "character")

Arguments:
value A numeric or a vector of numerics to be analyzed. (numeric)
feature The attribute which the given values are assigned to. (character)

Returns: The specific lambda factor. (numeric)

Method estimateLambda_temp(): Estimates the lambda factor for each attribute of the as-
signed data frame, by calling the class’ lambdaEstimator function. The respective lambda values
of the individual attributes of the data frame are stored in the lambda attribute of the instance
variable trafoParameter.

Usage:
pgu.transformator$estimateLambda_temp(data = "tbl_df")

Arguments:
data A data frame. (tibble:tibble)

Method estimateLambda(): Estimates the arcsine transformation lambda factor for each at-
tribute of the assigned data frame. The respective lambda values of the individual attributes of the
data frame are stored in the lambda attribute of the instance variable trafoParameter.

118 pgu.transformator

Usage:
pgu.transformator$estimateLambda(data = "tbl_df")

Arguments:

data A data frame. (tibble:tibble)

Method normalizeArcSine(): Estimates the lambda factor for an arcsine transformation for
the given values,

Usage:
pgu.transformator$normalizeArcSine(value = "numeric")

Arguments:

value A numeric or a vector of numerics to be analyzed. (numeric)

Returns: The specific lambda factor. (numeric)

Method optimizeTukeyLadderOfPowers(): Estimates the lambda factor for a tukeyLOP trans-
formation for the given values,

Usage:
pgu.transformator$optimizeTukeyLadderOfPowers(value = "numeric")

Arguments:

value A numeric or a vector of numerics to be analyzed. (numeric)

Returns: The specific lambda factor. (numeric)

Method optimizeBoxCox(): Estimates the lambda factor for a boxcox transformation for the
given values,

Usage:
pgu.transformator$optimizeBoxCox(value = "numeric")

Arguments:

value A numeric or a vector of numerics to be analyzed. (numeric)

Returns: The specific lambda factor. (numeric)

Method transformNumeric(): Transforms the given numeric values, that are assigned to a user
defined attribute.

Usage:
pgu.transformator$transformNumeric(value = "numeric", feature = "character")

Arguments:

value A numeric or a vector of numerics to be tranformed. (numeric)
feature The attribute which the given values are assigned to. (character)

Returns: A transfromed version of the given numeric or vector of numerics. (numeric)

Method transformData(): Transforms each attribute of the assigned data frame, by calling the
class’ tranformNumeric function. The respective lambda values of the individual attributes of the
data frame are read from the lambda attribute of the instance variable trafoParameter.

Usage:

pgu.transformator 119

pgu.transformator$transformData(data = "tbl_df")

Arguments:

data A data frame. (tibble:tibble)

Method transformLogModulus(): Performes a log transformation for the given values, based
on a user defined base value.

Usage:
pgu.transformator$transformLogModulus(value = "numeric", base = "numeric")

Arguments:

value A numeric or a vector of numerics to be analyzed. (numeric)
base Logarithmic base. (numeric)

Returns: The transformed values. (numeric)

Method transformSquareRoot(): Performes a square root transformation for the given values.

Usage:
pgu.transformator$transformSquareRoot(value = "numeric")

Arguments:

value A numeric or a vector of numerics to be analyzed. (numeric)

Returns: The transformed values. (numeric)

Method transformCubeRoot(): Performes a cube root transformation for the given values.

Usage:
pgu.transformator$transformCubeRoot(value = "numeric")

Arguments:

value A numeric or a vector of numerics to be analyzed. (numeric)

Returns: The transformed values. (numeric)

Method transformArcsine(): Performes an arcsine transformation for the given values.

Usage:
pgu.transformator$transformArcsine(value = "numeric", lambda = "numeric")

Arguments:

value A numeric or a vector of numerics to be analyzed. (numeric)
lambda Normalization factor. (numeric)

Returns: The transformed values. (numeric)

Method transformInverse(): Performes an inverse transformation for the given values.

Usage:
pgu.transformator$transformInverse(value = "numeric")

Arguments:

value A numeric or a vector of numerics to be analyzed. (numeric)

Returns: The transformed values. (numeric)

120 pgu.transformator

Method transformTukeyLadderOfPowers(): Performes a tukeyLOP transformation for the
given values.

Usage:
pgu.transformator$transformTukeyLadderOfPowers(
value = "numeric",
lambda = "numeric"

)

Arguments:

value A numeric or a vector of numerics to be analyzed. (numeric)
lambda Lambda factor. (numeric)

Returns: The transformed values. (numeric)

Method transformBoxCox(): Performes a boxcox transformation for the given values.

Usage:
pgu.transformator$transformBoxCox(value = "numeric", lambda = "numeric")

Arguments:

value A numeric or a vector of numerics to be analyzed. (numeric)
lambda Lambda factor. (numeric)

Returns: The transformed values. (numeric)

Method inverseTransformNumeric(): Inverse transforms the given numeric values, that are
assigned to a user defined attribute.

Usage:
pgu.transformator$inverseTransformNumeric(
value = "numeric",
feature = "character"

)

Arguments:

value A numeric or a vector of numerics to be tranformed. (numeric)
feature The attribute which the given values are assigned to. (character)

Returns: An inverse transfromed version of the given numeric or vector of numerics. (numeric)

Method inverseTransformData(): Inverse transforms each attribute of the assigned data
frame, by calling the class’ tranformNumeric function. The respective lambda values of the in-
dividual attributes of the data frame are read from the lambda attribute of the instance variable
trafoParameter.

Usage:
pgu.transformator$inverseTransformData(data = "tbl_df")

Arguments:

data A data frame. (tibble:tibble)

Method inverseTransformLogModulus(): Performes an inverse log transformation for the
given values, based on a user defined base value.

pgu.transformator 121

Usage:
pgu.transformator$inverseTransformLogModulus(
value = "numeric",
base = "numeric"

)

Arguments:
value A numeric or a vector of numerics to be analyzed. (numeric)
base Logarithmic base. (numeric)

Returns: The transformed values. (numeric)

Method inverseTransformSquareRoot(): Performes an inverse square root transformation
for the given values.

Usage:
pgu.transformator$inverseTransformSquareRoot(value = "numeric")

Arguments:
value A numeric or a vector of numerics to be analyzed. (numeric)

Returns: The transformed values. (numeric)

Method inverseTransformCubeRoot(): Performes an inverse cube root transformation for the
given values.

Usage:
pgu.transformator$inverseTransformCubeRoot(value = "numeric")

Arguments:
value A numeric or a vector of numerics to be analyzed. (numeric)

Returns: The transformed values. (numeric)

Method inverseTransformArcsine(): Performes an inverse arcsine transformation for the
given values.

Usage:
pgu.transformator$inverseTransformArcsine(
value = "numeric",
lambda = "numeric"

)

Arguments:
value A numeric or a vector of numerics to be analyzed. (numeric)
lambda Normalization factor. (numeric)

Returns: The transformed values. (numeric)

Method inverseTransformInverse(): Performes an inverse inverse-transformation for the
given values.

Usage:
pgu.transformator$inverseTransformInverse(value = "numeric")

Arguments:

122 pgu.transformator

value A numeric or a vector of numerics to be analyzed. (numeric)

Returns: The transformed values. (numeric)

Method inverseTransformTukeyLadderOfPowers(): Performes an inverse tukeyLOP trans-
formation for the given values.

Usage:
pgu.transformator$inverseTransformTukeyLadderOfPowers(
value = "numeric",
lambda = "numeric"

)

Arguments:
value A numeric or a vector of numerics to be analyzed. (numeric)
lambda Lambda factor. (numeric)

Returns: The transformed values. (numeric)

Method inverseTransformBoxCox(): Performes an inverse boxcox transformation for the
given values.

Usage:
pgu.transformator$inverseTransformBoxCox(value = "numeric", lambda = "numeric")

Arguments:
value A numeric or a vector of numerics to be analyzed. (numeric)
lambda Lambda factor. (numeric)

Returns: The transformed values. (numeric)

Method fit(): Estimate all transformation parameters(lambda, addConst,...) for each attribute
of a given data frame. The function calls the class’ functions calculateAddConst and estimate-
Lambda. The results are stored in the respective attributes of the instance variable trafoParameter.

Usage:
pgu.transformator$fit(data = "tbl_df")

Arguments:
data A data frame. (tibble:tibble)

Method mutateData(): Mutates the values of each attribute of a given data frame. Here,
mutation is defined as the cesecutive sequence of the class’ functions mirrorData, tranlsateData
and transfromData.

Usage:
pgu.transformator$mutateData(data = "tbl_df")

Arguments:
data A data frame. (tibble:tibble)

Returns: A mutated data frame. (tibble::tibble)

Method reverseMutateData(): Re-mutates the values of each attribute of a given data frame.
Here, re-mutation is defined as the cesecutive sequence of the class’ functions inverseTransform-
Data, backTranslateData, mirrorData

pgu.validator 123

Usage:
pgu.transformator$reverseMutateData(data = "tbl_df")

Arguments:

data A data frame. (tibble:tibble)

Returns: A mutated data frame. (tibble::tibble)

Method clone(): The objects of this class are cloneable with this method.

Usage:
pgu.transformator$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Sebastian Malkusch

pgu.validator pgu.validator

Description

Validates that the distribution is not significantly altered by the imputation process. This object is
used by the shiny based gui and is not for use in individual R-scripts!

Format

[R6::R6Class] object.

Details

Takes two distributions (before and after imputation). Performs a Wilcoxon-Mann-Whitney U test.
Performs a Kolmogorow-Smirnow test.

Active bindings

testStatistics_df Returns the instance variable ‘testStatistics_df‘. (tibble::tibble)

centralMoments_org Returns the instance variable ‘centralMoments_org‘ (tibble::tibble)

centralMoments_imp Returns the instance variable ‘centralMoments_imp‘ (tibble::tibble)

centralMoments_delta Returns the instance variable ‘centralMoments_delta‘ (tibble::tibble)

features Returns the instance variable ‘features‘ (character)

seed Returns the instance variable seed (integer)

setSeed Sets the instance variable seed. (numeric)

124 pgu.validator

Methods

Public methods:

• pgu.validator$new()

• pgu.validator$finalize()

• pgu.validator$print()

• pgu.validator$resetValidator()

• pgu.validator$kolmogorowTestFeature()

• pgu.validator$wilcoxonTestFeature()

• pgu.validator$centralMomentsFeature()

• pgu.validator$validate()

• pgu.validator$featurePdf()

• pgu.validator$featureCdf()

• pgu.validator$featureVs()

• pgu.validator$featureBoxPlot()

• pgu.validator$featurePlot()

• pgu.validator$clone()

Method new(): Creates and returns a new ‘pgu.validator‘ object.

Usage:
pgu.validator$new(seed = 42)

Arguments:

seed Set the instance variable ‘seed‘. (integer)

Returns: A new ‘pgu.validator‘ object. (pguIMP::pgu.validator)

Method finalize(): Clears the heap and indicates that instance of ‘pgu.validator‘ is removed
from heap.

Usage:
pgu.validator$finalize()

Method print(): Prints instance variables of a ‘pgu.validator‘ object.

Usage:
pgu.validator$print()

Returns: string

Method resetValidator(): Resets instance variables

Usage:
pgu.validator$resetValidator()

Method kolmogorowTestFeature(): Performs a comparison between the original and the im-
putated distribution of a given feature using a two-sided Kolmorogow-Smirnow test with simu-
lated p-vaue distribution.

Usage:

pgu.validator 125

pgu.validator$kolmogorowTestFeature(
org = "numeric",
imp = "numeric",
feature = "character"

)

Arguments:
org Original data to be analzed. (numeric)
imp Imputed data to be analyzed. (numeric)
feature Feature name of the analyzed distributions. (character)

Returns: One row dataframe comprising the test results. (tibble::tibble)

Method wilcoxonTestFeature(): Performs a comparison between the original and the impu-
tated distribution of a given feature using a two-sided Wilcoxon/Mann-Whitney test.

Usage:
pgu.validator$wilcoxonTestFeature(
org = "numeric",
imp = "numeric",
feature = "character"

)

Arguments:
org Original data to be analzed. (numeric)
imp Imputed data to be analyzed. (numeric)
feature Feature name of the analyzed distributions. (character)

Returns: One row dataframe comprising the test results. (tibble::tibble)

Method centralMomentsFeature(): Estimates estimates the central moments of the given
distribution.

Usage:
pgu.validator$centralMomentsFeature(values = "numeric", feature = "character")

Arguments:
values Data to be analzed. (numeric)
feature Feature name of the analyzed distributions. (character)

Returns: One row dataframe comprising the statistics. (tibble::tibble)

Method validate(): Validates the feature distributions of the original and the imputated
dataframe“ using a two-sided Kolmorogow-Smirnow test and a two-sided Wilcoxon/Mann-Whitney
test. The result is stored in the instance variables ‘testStatistics_df‘and ‘distributionStatistics_df‘.
Displays the progress if shiny is loaded.

Usage:
pgu.validator$validate(
org_df = "tbl_df",
imp_df = "tbl_df",
progress = "Progress"

)

126 pgu.validator

Arguments:
org_df Original dataframe to be analzed. (tibble::tibble)
imp_df Imputed dataframe to be analyzed. (tibble::tibble)
progress If shiny is loaded, the analysis’ progress is stored in this instance of the shiny

Progress class. (shiny::Progress)

Method featurePdf(): Receives a dataframe and plots the pareto density of the features
’org_pdf’ and ’imp_pdf’. Returns the plot

Usage:
pgu.validator$featurePdf(data_df = "tbl_df")

Arguments:
data_df dataframe to be plotted (tibble::tibble)

Returns: A ggplot2 object (ggplot2::ggplot)

Method featureCdf(): Receives a dataframe and plost the feature ’x’ against the features
’org_cdf’ and ’imp_cdf’. Returns the plot

Usage:
pgu.validator$featureCdf(data_df = "tbl_df")

Arguments:
data_df dataframe to be plotted (tibble::tibble)

Returns: A ggplot2 object (ggplot2::ggplot)

Method featureVs(): Receives two numeric vectors ’org’ and ’imp’. Plots the qq-plot of both
vectors. Returns the plot

Usage:
pgu.validator$featureVs(org = "numeric", imp = "numeric")

Arguments:
org Numric vector comprising the original data. (numeric)
imp Numeric vector comprising the imputed data. (numeric)

Returns: A ggplot2 object (ggplot2::ggplot)

Method featureBoxPlot(): Receives a dataframe and information about the lloq and uloq and
retuns a boxplot

Usage:
pgu.validator$featureBoxPlot(
data_df = "tbl_df",
lloq = "numeric",
uloq = "numeric",
feature = "character"

)

Arguments:
data_df Dataframe to be analyzed (tibble::tibble)
lloq lower limit of quantification (numeric)

pguIMP 127

uloq upper limit of quantification (numeric)
feature Feature name (character)

Returns: A ggplot2 object (ggplot2::ggplot)

Method featurePlot(): Receives two numeric dataframes ’org_df’ and ’imp_df’, and a feature
name. Creates a compund plot of the validation results for the given feature.. Returns the plot

Usage:
pgu.validator$featurePlot(
org_df = "tbl_df",
imp_df = "tbl_df",
lloq = "numeric",
uloq = "numeric",
impIdx_df = "tbl_df",
feature = "character"

)

Arguments:
org_df Dataframe comprising the original data. (tibble::tibble)
imp_df Dataframe comprising the imputed data. (tibble::tibble)
lloq lower limit of quantification (numeric)
uloq upper limit of quantification (numeric)
impIdx_df dataframe comprising information about imputation sites (tibble::tibble)
feature Feature name. (character)

Returns: A ggplot2 object (ggplot2::ggplot)

Method clone(): The objects of this class are cloneable with this method.

Usage:
pgu.validator$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Sebastian Malkusch

pguIMP pguIMP

Description

Reproducible cleaning of biomedical laboratory data using methods of visualization, error correc-
tion and transformation implemented as interactive R-notebooks.

Usage

pguIMP()

128 sLogLikelihood

Details

A graphical data preprocessing toolbox, named “pguIMP”, that includes a fixed sequence of prepro-
cessing steps to enable error-free data preprocessing interactively. By implementing contemporary
data processing methods including machine learning-based imputation procedures, the creation of
corrected and cleaned bioanalytical datasets is ensured, which preserve data structures such as clus-
ters better than resulting with classical methods.

Value

shiny application object

Author(s)

Sebastian Malkusch

sLogLikelihood dLogLikelihood

Description

Calculates bbmle snmor function.

Usage

sLogLikelihood(mu = "numeric", sigma = "numeric")

Arguments

mu The expextation value. (numeric)

sigma The standard deviation. (numeric)

Value

the bbmle::snorm results.

Author(s)

Sebastian Malkusch

Examples

y <- sLogLikelihood (mu=0.0, sigma=1.0)

transposeTibble 129

transposeTibble transposeTibble

Description

Transposes a tibble This object is used by the shiny based gui and is not for use in individual
R-scripts!

Usage

transposeTibble(obj = "tbl_df")

Arguments

obj The data frame to be transposed. (numeric)

Value

The transposed data frame. (tibble:tibble)

Author(s)

Sebastian Malkusch

Index

∗ datasets
pgu.limitsOfQuantification, 71
pgu.missings, 73

∗ package
pguIMP-package, 3

centralValue, 3

dLogLikelihood, 4

importDataSet, 5

knnImputation, 5

nnk, 6
normalDistribution, 7

pgu.correlator, 8
pgu.corrValidator, 13
pgu.data, 16
pgu.delegate, 18
pgu.explorer, 53
pgu.exporter, 56
pgu.file, 57
pgu.filter, 60
pgu.importer, 62
pgu.imputation, 64
pgu.limitsOfQuantification, 71, 73
pgu.missings, 72, 73
pgu.missingsCharacterizer, 74
pgu.model, 76
pgu.normalizer, 81
pgu.normDist, 86
pgu.optimizer, 91
pgu.outliers, 95
pgu.regressor, 103
pgu.reporter, 108
pgu.status, 110
pgu.transformator, 112
pgu.validator, 123
pguIMP, 127

pguIMP-package, 3

R6::R6Class, 18, 71, 73

sLogLikelihood, 128

transposeTibble, 129

130

	pguIMP-package
	centralValue
	dLogLikelihood
	importDataSet
	knnImputation
	nnk
	normalDistribution
	pgu.correlator
	pgu.corrValidator
	pgu.data
	pgu.delegate
	pgu.explorer
	pgu.exporter
	pgu.file
	pgu.filter
	pgu.importer
	pgu.imputation
	pgu.limitsOfQuantification
	pgu.missings
	pgu.missingsCharacterizer
	pgu.model
	pgu.normalizer
	pgu.normDist
	pgu.optimizer
	pgu.outliers
	pgu.regressor
	pgu.reporter
	pgu.status
	pgu.transformator
	pgu.validator
	pguIMP
	sLogLikelihood
	transposeTibble
	Index

