

Package ‘metarep’

January 29, 2026

Title Replicability-Analysis Tools for Meta-Analysis

Version 1.2.1

Depends R (>= 4.1), meta (>= 6.0-0)

Imports stats, utils

Suggests metafor (>= 1.9.9), lme4, numDeriv, BiasedUrn, knitr, rmarkdown

Date 2026-01-29

URL <https://github.com/IJaljuli/metarep>

Description User-friendly package for reporting replicability-analysis methods, affixed to meta-analyses summary. The replicability-analysis output provides an assessment of the investigated intervention, where it offers quantification of effect replicability and assessment of the consistency of findings.

- Replicability-analysis for fixed-effects and random-effect meta analysis;
- $r(u)$ -value;
- lower bounds on the number of studies with replicated positive and/or negative effect;
- Allows detecting inconsistency of signals;
- forest plots with the summary of replicability analysis results;
- Allows Replicability-analysis with or without the common-effect assumption.

License GPL (>= 2)

Encoding UTF-8

NeedsCompilation yes

RoxygenNote 7.3.3

VignetteBuilder knitr

LazyData true

Author Iman Jaljuli [cre, aut]

Maintainer Iman Jaljuli <jaljuli.iman@gmail.com>

Repository CRAN

Date/Publication 2026-01-29 22:30:08 UTC

Contents

CD002943_CMP001	2
CD003366_CMP005	3
CD006823_CMP001	4
CD007077_CMP001	5
find_umax	6
forest.metarep	7
metarep	8
metaRValue.onesided.U	9
print.metarep	10
print.summary.metarep	11
summary.metarep	12
truncatedPearson	13

Index

14

CD002943_CMP001	<i>Data in meta-analysis reported in review CD002943, 'Cochrane library'.</i>
-----------------	---

Description

A dataset containing the meta-data of the the intervention 'Invitation letter' (CMP001), in the review "PStrategies for increasing the participation of women in community breast cancer screening" (CD002943) the results were reported by 5 studies, and analysed by Fixed-Effects meta-analysis.

Usage

CD002943_CMP001

Format

A data frame with 5 rows of 12 variables:

STUDY Name of the study.

STUDY_WEIGHT Study weight in meta-analysis as reported in th review.

N_EVENTS1 Number of events in the first group tested.

N_EVENTS2 Number of events in the second group tested.

N_TOTAL1 Number of patirnts in the first group tested.

N_TOTAL2 Number of patirnts in the second group tested.

GROUP1 Names of the first group in each study.

GROUP2 Names of the second group in each study.

N_STUDIES Overall number of studies in the meta-analysis

CMP_ID Cochrane Database review number

SM A character string indicating which summary measure ("RR", "OR", "RD", or "ASD") is to be used for pooling of studies.

RANDOM "YES" or "NO" indicating whether random-effects meta-analysis was performed.

Source

[doi:10.1002/14651858.CD002943](https://doi.org/10.1002/14651858.CD002943)

CD003366_CMP005

Data in meta-analysis reported in review CD003366, 'Cochrane library'.

Description

A dataset containing the meta-data of the outcome 'Leukopaenia' (CMP005), in the review "Texane-containing regimens for metastatic breast cancer" (CD003366) the results were reported by 28 studies, and analysed by Random-Effects meta-analysis.

Usage

CD003366_CMP005

Format

A data frame with 28 rows and 12 variables:

STUDY Name of the study.

STUDY_WEIGHT Study weight in meta-analysis as reported in the review.

N_EVENTS1 Number of events in the first group tested.

N_EVENTS2 Number of events in the second group tested.

N_TOTAL1 Number of patients in the first group tested.

N_TOTAL2 Number of patients in the second group tested.

GROUP1 Names of the first group in each study.

GROUP2 Names of the second group in each study.

N_STUDIES Overall number of studies in the meta-analysis

CMP_ID Cochrane Database review number

SM A character string indicating which summary measure ("RR", "OR", "RD", or "ASD") is to be used for pooling of studies.

RANDOM "YES" or "NO" indicating whether random-effects meta-analysis was performed.

Source

[doi:10.1002/14651858.CD003366.pub3](https://doi.org/10.1002/14651858.CD003366.pub3)

CD006823_CMP001	<i>Data in meta-analysis reported in review CD006823, 'Cochrane library'.</i>
-----------------	---

Description

A dataset containing the meta-data of the outcome 'Seroma formation' (CMP001), in the review "Wound drainage after axillary dissection for carcinoma of the breast" (CD006823) the results were reported by 7 studies, and analysed by Random-Effects meta-analysis.

Usage

CD006823_CMP001

Format

A data frame with 7 rows and 12 variables:

STUDY Name of the study.

STUDY_WEIGHT Study weight in meta-analysis as reported in the review.

N_EVENTS1 Number of events in the first group tested.

N_EVENTS2 Number of events in the second group tested.

N_TOTAL1 Number of patients in the first group tested.

N_TOTAL2 Number of patients in the second group tested.

GROUP1 Names of the first group in each study.

GROUP2 Names of the second group in each study.

N_STUDIES Overall number of studies in the meta-analysis

CMP_ID Cochrane Database review number

SM A character string indicating which summary measure ("RR", "OR", "RD", or "ASD") is to be used for pooling of studies.

RANDOM "YES" or "NO" indicating whether random-effects meta-analysis was performed.

Source

[doi:10.1002/14651858.CD006823.pub2](https://doi.org/10.1002/14651858.CD006823.pub2)

CD007077_CMP001	<i>Data in meta-analysis reported in review CD007077, 'Cochrane library'.</i>
-----------------	---

Description

A dataset containing the meta-data of the outcome 'cosmesis' (CMP001), in the review "Partial breast irradiation for early breast cancer" (CD007077) the results were reported by 5 studies, and analysed by Fixed-Effects meta-analysis.

Usage

CD007077_CMP001

Format

A data frame with 5 rows and 12 variables:

STUDY Name of the study.

STUDY_WEIGHT Study weight in meta-analysis as reported in the review.

N_EVENTS1 Number of events in the first group tested.

N_EVENTS2 Number of events in the second group tested.

N_TOTAL1 Number of patients in the first group tested.

N_TOTAL2 Number of patients in the second group tested.

GROUP1 Names of the first group in each study.

GROUP2 Names of the second group in each study.

N_STUDIES Overall number of studies in the meta-analysis

CMP_ID Cochrane Database review number

SM A character string indicating which summary measure ("RR", "OR", "RD", or "ASD") is to be used for pooling of studies.

RANDOM "YES" or "NO" indicating whether random-effects meta-analysis was performed.

Source

[doi:10.1002/14651858.CD007077.pub3](https://doi.org/10.1002/14651858.CD007077.pub3)

find_umax*Lower bounds on the number of studies with replicated effect*

Description

lower bounds on the number of studies with increased and\ or decreased effect.

Usage

```
find_umax(
  x,
  alternative = "two-sided",
  t = 0.05,
  confidence = 0.95,
  common.effect = FALSE
)
```

Arguments

x Object of class 'meta'

alternative 'less', 'greater' or 'two-sided'

t truncation threshold for truncated-Pearsons' test ('t=0.05' by default). t is ignored if 'common.effect = TRUE'.

confidence Confidence level used in the computaion of the lower bound(s) u_{max}^L and\or u_{max}^R .

common.effect Use common.effect = FALSE (default) for replicability-analysis combining with no assumptions (Pearson or truncated-Pearson test).

Value

An object of class list reporting the bounds on the number of studies with a positive or negative effect, as follows:

worst.case A charachter vector of the names of $n-u_{max}+1$ studies at which the the $r(u_{max})$ -value is computed.

side The direction of the replicated signal in the 'worst.case' studies. 'less' if the effect is negative, 'greater' if positive.

u_max The bound on the number of studies with either a positive or a negative effect.

r-value The 'u-out-of-n' $r(u)$ -value calculated with $u=u_{max}$.

Replicability_Analysis

Report of the replicability lower bounds on the number of studies with negative effect and with positive effect.

Examples

```

n.i.1 <- c( 20, 208, 24, 190, 58, 36, 51)
a.i <- c( 2,79,0,98,15,34,9)
n.i.2 <- c( 20, 119, 22, 185, 29, 51, 47)
c.i <- c(9,106,14,98,12,49,9)
m1 <- metabin( event.e = a.i,n.e = n.i.1,
                 event.c = c.i,n.c = n.i.2,
                 studlab = paste('Study',1:7), sm = 'OR',
                 common = FALSE, random = TRUE )
find_umax(m1 , common.effect = FALSE, alternative = 'two-sided',
          t = 0.05 , confidence = 0.95 )

```

forest.metarep

Forest plot to display the result of a meta-analysis with replicability analysis results

Description

Draws a forest plot in the active graphics window (using grid graphics system).

Usage

```
## S3 method for class 'metarep'
forest(x, ...)
```

Arguments

<code>x</code>	An object of class 'metarep'.
<code>...</code>	Arguments to be passed to methods, see <code>forest.meta</code>

Value

No return value, called for side effects

See Also

[forest.meta](#), [metarep](#),

Examples

```

n.i.1 <- c( 20, 208, 24, 190, 58, 36, 51)
a.i <- c( 2,79,0,98,15,34,9)
n.i.2 <- c( 20, 119, 22, 185, 29, 51, 47)
c.i <- c(9,106,14,98,12,49,9)
m1 <- metabin( event.e = a.i,n.e = n.i.1,event.c = c.i,n.c = n.i.2,
                 studlab = paste0('Study ' , 1:7) , sm = 'OR' ,
                 common = FALSE, random = TRUE )
mr1 <- metarep( m1 , u = 2, common.effect = FALSE , t = 0.05 ,

```

```

    alternative = 'two-sided', report.u.max = TRUE)
forest(mr1, layout = "RevMan5", common = FALSE,
       label.right = "Favours control", col.label.right = "red",
       label.left = "Favours experimental", col.label.left = "green",
       prediction = TRUE)

```

metarep

Replicability-analysis of a meta-analysis

Description

Add results of replicability-analysis to a meta-analysis, whether common- or random-effects.

Usage

```

metarep(
  x,
  u = 2,
  t = 0.05,
  alternative = "two-sided",
  report.u.max = FALSE,
  confidence = 0.95,
  common.effect = FALSE
)

```

Arguments

<code>x</code>	object of class 'meta'
<code>u</code>	replicability requirement. <code>u</code> must be an integer between 2 and <code>n</code> (number of studies in the meta-analysis).
<code>t</code>	truncation threshold for truncated-Pearson's test (' <code>t=0.05</code> ' by default). <code>t</code> is ignored if 'common.effect = TRUE'.
<code>alternative</code>	use 'less', 'greater' or 'two-sided'
<code>report.u.max</code>	use TRUE to report the lower bounds on number of studies with replicated effect.
<code>confidence</code>	Confidence level used in the computation of the lower bound(s) u_{max}^L and/or u_{max}^R .
<code>common.effect</code>	Use <code>common.effect = FALSE</code> (default) for replicability-analysis combining with no assumptions (Pearson or truncated-Pearson test). Replicability-analysis based on the test-statistic of common-effects model can be applied using <code>common.effect = TRUE</code> .

Value

An object of class list containing meta-analysis and replicability analysis results, as follows:

worst.case.studies	A character vector of the names of $n-u+1$ studies at which the $r(u)$ -value is computed.
r.value	$r(u)$ -value for the specified u .
side	The direction of the effect with the lower one-sided $r(u)$ -value
u_L, u_R	Lower bounds of the number of studies with decreased or increased effect, respectively. Both bounds are reported simultaneously only when performing replicability analysis for two-sided alternative with no assumptions

Examples

```

n.i.1 <- c( 20, 208, 24, 190, 58, 36, 51)
a.i <- c( 2,79,0,98,15,34,9)
n.i.2 <- c( 20, 119, 22, 185, 29, 51, 47)
c.i <- c(9,106,14,98,12,49,9)
m1 <- metabin( event.e = a.i, n.e = n.i.1, event.c = c.i, n.c = n.i.2,
                 studlab = paste0('Study ', 1:7), sm = 'OR',
                 common = FALSE, random = TRUE )
mr1 <- metarep( m1, u = 2, common.effect = FALSE, t = 0.05,
                 alternative = 'two-sided', report.u.max = TRUE)
forest(mr1, layout='revman5', digits.pval = 4, test.overall = TRUE )

```

metaRvalue.onesided.U *One-sided replicability analysis*

Description

One-sided replicability analysis

Usage

```

metaRvalue.onesided.U(
  x,
  u = 2,
  common = FALSE,
  random = TRUE,
  alternative = "less",
  do.truncated.umax = TRUE,
  alpha.tilde = 0.05
)

```

Arguments

x	object of class 'meta'
u	integer between 2-n
common	logical
random	logical
alternative	'less' or 'greater' only.
do.truncated.umax	logical.
alpha.tilde	between (0,1)

Value

No return value, called for internal use only.

print.metarep

Print meta-analysis with replicability-analysis results

Description

Print method for objects of class 'metarep'.

Usage

```
## S3 method for class 'metarep'
print(x, details.methods = TRUE, ...)
```

Arguments

x	An object of class 'metarep'
details.methods	A logical specifying whether details on statistical methods should be printed
...	Arguments to be passed to methods, see <code>print.meta</code>

Value

No return value, called for side effects.

Examples

```

n.i.1 <- c( 20, 208, 24, 190, 58, 36, 51)
a.i <- c( 2,79,0,98,15,34,9)
n.i.2 <- c( 20, 119, 22, 185, 29, 51, 47)
c.i <- c(9,106,14,98,12,49,9)
m1 <- metabin( event.e = a.i,n.e = n.i.1,event.c = c.i,n.c = n.i.2,
                 studlab = paste0('Study ' , 1:7) , sm = 'OR' ,
                 common = FALSE, random = TRUE )
mr1 <- metarep( m1 , u = 2, common.effect = FALSE , t = 0.05 ,
                 alternative = 'two-sided', report.u.max = TRUE)
print(mr1, digits = 2)

```

`print.summary.metarep` *Print detailed meta-analysis with replicability-analysis results*

Description

Print method for objects of class 'summary.metarep'.

Usage

```
## S3 method for class 'summary.metarep'
print(x, details.methods = TRUE, ...)
```

Arguments

<code>x</code>	An object of class 'summary.metarep'
<code>details.methods</code>	A logical specifying whether details on statistical methods should be printed
<code>...</code>	Arguments to be passed to methods, see <code>print.summary.meta</code>

Value

No return value, called for side effects.

Examples

```

n.i.1 <- c( 20, 208, 24, 190, 58, 36, 51)
a.i <- c( 2,79,0,98,15,34,9)
n.i.2 <- c( 20, 119, 22, 185, 29, 51, 47)
c.i <- c(9,106,14,98,12,49,9)
m1 <- metabin( event.e = a.i,n.e = n.i.1,event.c = c.i,n.c = n.i.2,
                 studlab = paste0('Study ' , 1:7) , sm = 'OR' ,
                 common = FALSE, random = TRUE )
mr1 <- metarep( m1 , u = 2, common.effect = FALSE , t = 0.05 ,
                 alternative = 'two-sided', report.u.max = TRUE)
print(summary(mr1), digits = 2)

```

summary.metarep*Summary of meta-analysis with replicability-analysis results*

Description

Summary method for objects of class 'metarep'.

Usage

```
## S3 method for class 'metarep'
summary(object, ...)
```

Arguments

object	An object of class 'metarep'.
...	Arguments to be passed to methods, see <code>summary.meta</code>

Value

A list of the quantities for replicability analysis, as follows:

meta-analysis results:	Summary of the supplied 'meta' object.
r.value:	r-value of the tested alternative.
u.increased:	Maximal number of studies at which replicability of increasing effect can be claimed. It will be reported unless the alternative is 'less'.
u.decreased:	Maximal number of studies at which replicability of increasing effect can be claimed. It will be reported unless the alternative is 'greater'.

Examples

```
n.i.1 <- c( 20, 208, 24, 190, 58, 36, 51)
a.i <- c( 2,79,0,98,15,34,9)
n.i.2 <- c( 20, 119, 22, 185, 29, 51, 47)
c.i <- c(9,106,14,98,12,49,9)
m1 <- metabin( event.e = a.i, n.e = n.i.1, event.c = c.i, n.c = n.i.2,
                 studlab = paste0('Study ' , 1:7) , sm = 'OR' ,
                 common = FALSE, random = TRUE )
mr1 <- metarep( m1 , u = 2, common.effect = FALSE , t = 0.05 ,
                 alternative = 'two-sided', report.u.max = TRUE)
summary(mr1)
```

truncatedPearson	<i>Truncated-Pearson's test</i>
------------------	---------------------------------

Description

Apply Truncated-Pearson's test or ordinary Pearson's test on one-sided p-values.

Usage

```
truncatedPearson(p, alpha.tilde = 1)
```

Arguments

p one-sided p-values of the individual studies for testing one-sided alternative based on z-test.

alpha.tilde truncation threshold for truncated-Pearson test. Use alpha.tilde = 1 for ordinary Pearson's test for combining p-values.

Value

A 'list' containing the following quantities:

chisq: Pearson test statistic

df: degrees of freedom of truncated-Pearson statistic

rvalue: p-value of the test

validp: p-values used in the test.

Examples

```
truncatedPearson( p = c( 0.001 , 0.01 , 0.1 ) , alpha.tilde = 1 )
truncatedPearson( p = c( 0.001 , 0.01 , 0.1 ) , alpha.tilde = 0.05 )
```

Index

* datasets

CD002943_CMP001, [2](#)
CD003366_CMP005, [3](#)
CD006823_CMP001, [4](#)
CD007077_CMP001, [5](#)

CD002943_CMP001, [2](#)
CD003366_CMP005, [3](#)
CD006823_CMP001, [4](#)
CD007077_CMP001, [5](#)

find_umax, [6](#)
forest (forest.metarep), [7](#)
forest.meta, [7](#)
forest.metarep, [7](#)

metarep, [7](#), [8](#)
metaRvalue.onesided.U, [9](#)

print.metarep, [10](#)
print.summary.metarep, [11](#)

summary.metarep, [12](#)

truncatedPearson, [13](#)