

Package ‘SppTrend’

February 7, 2026

Title Analyzing Linear Trends in Species Occurrence Data

Version 0.4

Description Provides a methodology to analyze how species occurrences change over time, particularly in relation to spatial and thermal factors. It facilitates the development of explanatory hypotheses about the impact of environmental shifts on species by analyzing historical presence data that includes temporal and geographic information. Approach described in Lobo et al., 2023 <[doi:10.1002/ece3.10674](https://doi.org/10.1002/ece3.10674)>.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.3

Suggests testthat (>= 3.0.0), devtools

Imports dplyr, tidyr, terra, stats, stringr, tidyselect, ggplot2,
patchwork, sf

Config/testthat/edition 3

NeedsCompilation no

Author Mario Mingarro [aut, cre] (ORCID:
<<https://orcid.org/0000-0003-3977-7944>>),
Emilio García-Roselló [aut] (ORCID:
<<https://orcid.org/0000-0003-0305-770X>>),
Jorge M. Lobo [aut] (ORCID: <<https://orcid.org/0000-0002-3152-4769>>)

Maintainer Mario Mingarro <mario_mingarro@mncn.csic.es>

Repository CRAN

Date/Publication 2026-02-07 12:50:02 UTC

Contents

get_elevation	2
get_era5_tme	2
get_fast_info	3
overall_trend	3
spp_strategy	5
spp_trend	7

Index	10
--------------	-----------

get_elevation	<i>Extract elevation from DEM</i>
---------------	-----------------------------------

Description

This function retrieves elevation values from a Digital Elevation Model (DEM) based on their geographic coordinates (lon/lat).

Usage

```
get_elevation(data, dem_file)
```

Arguments

data	A data frame containing species records. Must include lon, lat, year, and month columns.
dem_file	Full character path to the downloaded DEM raster file.

Value

The input data frame data with a new column (ele) containing the extracted elevation values.

get_era5_tme	<i>Extract temperature data from ERA5 NetCDF file</i>
--------------	---

Description

This function retrieves mean monthly air temperature values associated with species occurrence records based on their geographic coordinates (lon/lat) and sampling date (year/month).

Usage

```
get_era5_tme(data, nc_file)
```

Arguments

data	A data frame containing species records. Must include lon, lat, year, and month columns.
nc_file	Full character path to the downloaded ERA5-Land raster (.nc) file.

Value

The input data frame data with a new column named (tme), containing the temperature values.

get_fast_info	<i>Quick visual diagnostic of the input data</i>
---------------	--

Description

This function provides a quick visual diagnostic of the input data. It generates a map showing the spatial distribution of occurrence records together with a time-series plot derived from a NetCDF environmental dataset, including a linear trend analysis. Using the geographic coordinates of the occurrence records, the function extracts the complete climate time-series (from the earliest to the latest year represented in the data) for the corresponding occupied cells. All temperature values from occupied cells are then added annually to estimate and visualise the overall temperature trend (including slope and associated p-value). This diagnostic step allows users to quickly assess the climate trajectory of the regions where the species have been recorded and to evaluate whether sufficient temporal and environmental variation is present for subsequent analyses.

Usage

```
get_fast_info(data, nc_file)
```

Arguments

data	A data frame containing species records. Must include lon, lat, year, and month columns.
nc_file	Full character path to the downloaded ERA5-Land raster (.nc) file.

Value

Invisibly returns a composite plot. Displays a composite plot showing the geographic distribution and the thermal trend with its corresponding global slope and p-value.

overall_trend	<i>Overall trend analysis</i>
---------------	-------------------------------

Description

Calculates the overall temporal trend (OT) of selected response variables across the entire dataset. This trend integrates both environmental change and the cumulative effects of sampling bias, and serves as a neutral reference against which species-specific temporal trends are evaluated.

Usage

```
overall_trend(data, predictor, responses)
```

Arguments

data	A data frame containing the variables for the model, including species, year, month, lon, lat, tme and ele.
predictor	A character vector of predictor variable names representing a temporal variable (year_month).
responses	A character vector of response variable names to analyze.

Details

Longitude (lon) values are transformed to a 0-360 range to ensure statistical consistency near the antimeridian. A key feature of this function is its specialized handling of latitude. Because the Equator is set at 0, latitude values in the Southern Hemisphere are negative. To ensure that a direction shift is interpreted consistently across the globe (where a negative increase in the South corresponds to a positive increase in the North), the function employs two complementary approaches: Hemispheric split: It divides the records based on their location (lat < 0 for South and lat > 0 for North) and performs separate analyses for each. Global analysis: It performs an analysis using the complete dataset (Global) by transforming all latitudes into absolute values (abs(lat)). This allows for a unified global trend estimation. Note that this hemispheric division and absolute transformation logic is applied exclusively to the latitude (lat) variable.

Value

A data frame with trend statistics, including:

- responses: The name of the variable analyzed.
- trend: Slope of the linear model (rate of change over time).
- t: t-statistic of the model.
- pvalue: Statistical significance of the overall trend.
- ci_95_max, ci_95_min: 95%
- n: Sample size for the specific species/hemisphere subset
- hemisphere: Geographic context (North, South, or Both for global comparison).

Examples

```
data <- data.frame(
  species = sample(paste0("spp_", 1:10), 500, replace = TRUE),
  year = sample(1950:2020, 500, replace = TRUE),
  month = sample(1:12, 500, replace = TRUE),
  lon = runif(500, -10, 20),
  lat = runif(500, 30, 70),
  tme = rnorm(500, 15, 10)
)
data$year_month <- data$year + data$month * 0.075

predictor <- "year_month"
responses <- c("lat", "lon", "tme")
```

```
overall_trend_result <- overall_trend(data, predictor, responses)
print(overall_trend_result)
```

spp_strategy

Classify species ecological strategies

Description

This function analyses the outputs of spp_trend() to classify species into distinct spatial or thermal response categories based on the direction and statistical significance of their species-specific trends relative to the overall trend. The function incorporates hemisphere-specific logic to correctly interpret poleward shifts in latitude and can also be applied to classify elevational trends.

Usage

```
spp_strategy(spp_trend_result, sig_level = 0.05, responses = responses)
```

Arguments

spp_trend_result

A data frame containing trend indicators per species, typically generated by the spp_trend function. It should include columns such as:

- **species**: Name of the analyzed species.
- **responses**: Name of the analyzed variable.
- **trend**: Estimated slope of the linear model.
- **t**: t-statistic for the species-specific trend.
- **pvalue**: Statistical significance of the species-specific trend.
- **dif_t**: t-statistic of the interaction term, indicating the magnitude of the difference between the species trend and the Overall Trend (OT).
- **dif_pvalue**: p-values of the interaction term. A low value indicates a significant deviation from the general trend.
- **n**: Total number of occurrence records (sample size) for the specific species.
- **hemisphere**: Geographical subset (North, South, or Global) used to ensure latitudinal symmetry in the analysis.

sig_level

The numeric significance level to use for classifying trends as significant. Defaults to 0.05. See Bonferroni correction 0.05/length(species).

responses

A character vector of response variable names to analyze (c("lat", "lon", "tme", "ele")). The function will create classification columns for responses present in this vector and in the responses column of spp_trend_result.

Details

This function takes the trend analysis results from spp_trend and classifies each species' response based on the significance of its trend and how it differs from the general trend. Applied Bonferroni correction to avoid false positives (Type I errors) due to multiple comparisons when analyzing many species. The classification identifying three possible spatial responses and three thermal responses:

- **Spatial Responses:**

- **Spatial Adaptation (SA):** A significant positive temporal trend in the spatial position of species occurrences. In the context of climate change, this pattern is commonly associated with a poleward shift, corresponding to a northward displacement (towards higher latitude values) in the Northern Hemisphere and southward displacement (towards lower latitude values) in the Southern Hemisphere, as species expand into newly suitable areas.
- **Spatial Discordance (SD):** A significant negative temporal trend in the spatial position of species occurrences. In the context of climate change, this pattern is often associated with an equatorward shift and may arise when other ecological and anthropogenic factors influence species distributions independently of, or in opposition to, climate-driven range shifts.
- **Spatial Conformity (SC):** A spatial response pattern in which the species-specific temporal trend does not differ significantly from the overall trend. Species showing spatial conformance share the same bias structure as the complete dataset, preventing the inference of a distinct, species-specific response to climate change at the scale of analysis.

- **Thermal Responses:**

- **Thermal Tolerance (TT):** A thermal response pattern characterised by a significant positive temporal trend in the temperature conditions under which species are observed, relative to the overall trend. This pattern suggest an increased likelihood of occurrence under warmer conditions and an apparent capacity to tolerate rising temperatures through physiological, behavioural, and evolutionary mechanisms.
- **Thermal Adjustment (TA):** A thermal response characterised by a significant negative temporal trend in the temperature conditions associated with species occurrences, relative to the overall trend. This indicates and increasing association with cooler temperature conditions over time, potentially reflecting microevolutionary change or phenotypic adjustment.
- **Thermal Conformity (TC):** A thermal response pattern in which species-specific temperature trends do not differ significantly from the overall trend. Species showing thermal conformance share the same background thermal signal as the complete dataset, preventing the formulation of specific hypotheses regarding climate-driven thermal responses.

Note: The interpretation of longitude trends assumes that if transformation was applied in spp_trend, it used the Antimeridian as 0.

Value

A data frame summarizing the ecological strategy of each species for each analyzed response variable. The table includes:

- Species name
- Hemisphere

- Sample size
- Classification columns for:
 - Spatial (latitude, longitude and elevation if present) responses. Spatial Adaptation SA, Spatial Discordance SD, Spatial Conformity SC
 - Thermal (temperature if present) responses. Thermal Tolerance TT, Thermal Adjustment TA, Thermal Conformity TC

Classification for spatial responses (lat, lon, ele) are classified as Spatial_lat, Spatial_lon and Spatial_ele. Thermal responses (tme) are classified as Thermal_tme.

Examples

```
# Assuming spp_trends_results is a data frame generated by spp_trend()

spp_trends_results <- data.frame(
  species = paste0("spp_", 1:10),
  responses = rep(c("lat", "lon", "tme"), length.out = 30),
  trend = runif(30, -0.5, 0.5),
  t = runif(30, -2, 2),
  pvalue = runif(30, 0, 1),
  dif_t = runif(30, -1, 1.5),
  dif_pvalue = runif(30, 0.001, 0.9),
  n = round(runif(30, 40, 60)),
  hemisphere = sample(c("North", "South", "Global"), 30, replace = TRUE)
)

spp <- unique(spp_trends_results$species)
sig_level <- 0.05 / length(spp) # Bonferroni correction
responses_to_analyze <- c("lat", "lon", "tme")

spp_strategy_results <- spp_strategy(spp_trends_results,
                                       sig_level = sig_level,
                                       responses = responses_to_analyze)

print(spp_strategy_results)
```

spp_trend

Individual trend analysis

Description

Estimates the species-specific temporal trends for each selected response variable and statistically compares them with the overall temporal trend derived from the complete dataset. It compares individual species' trajectories against the OT using the interaction term of the `lm()`.

Usage

```
spp_trend(data, spp, predictor, responses, n_min = 50)
```

Arguments

data	A data frame containing the variables for the model, including species, year, month, lon, lat, tme and/or ele.
spp	A character vector of unique species names.
predictor	A character vector of predictor variable names representing a temporal variable (year_month).
responses	A character vector of response variable names to analyze.
n_min	Minimum numeric number of presences required for a species in each hemisphere (or globally for species in both hemispheres) to perform the analysis.

Details

The function fits linear models for each species and compares them to the general trend using an interaction model (response ~ predictor * group). Longitude (lon) values are transformed to a 0-360 range to ensure statistical consistency near the antimeridian. A key feature of this function is its specialized handling of latitude. Because the Equator is set at 0, latitude values in the Southern Hemisphere are negative. To ensure that a direction shift is interpreted consistently across the globe (where a negative increase in the South corresponds to a positive increase in the North), the function employs two complementary approaches: Hemispheric split: It divides the records based on their location (lat < 0 for South and lat > 0 for North) and performs separate analyses for each. Global analysis: It performs an analysis using the complete dataset (Global) by transforming all latitudes into absolute values (abs(lat)). This allows for a unified global trend estimation. Note that this hemispheric division and absolute transformation logic is applied exclusively to the latitude (lat) variable.

Value

A data frame with trend statistics, including:

- species: Name of the analyzed species.
- responses: Name of the variable analyzed.
- trend: Slope of the linear model (rate of change over time).
- t: t-statistic for the species-specific trend.
- pvalue: Statistical significance of the species trend.
- ci_95_max, ci_95_min: 95% confidence interval bounds for the slope.
- dif_t: t-statistic of the interaction term (species vs. baseline).
- dif_pvalue: p-values of the interaction term. A low value indicates a significant deviation from the general trend.
- n: Sample size for the specific species/hemisphere subset
- hemisphere: Geographic context (North, South, or Global for global comparison).

Examples

```
data <- data.frame(  
  species = sample(paste0("spp_", 1:10), 500, replace = TRUE),  
  year = sample(1950:2020, 500, replace = TRUE),  
  month = sample(1:12, 500, replace = TRUE),  
  lon = runif(500, -10, 20),  
  lat = runif(500, 30, 70),  
  tme = rnorm(500, 15, 10)  
)  
  
data$year_month <- data$year + data$month * 0.075  
  
predictor <- "year_month"  
responses <- c("lat", "lon", "tme")  
  
spp <- unique(data$species)  
  
spp_trend_result <- spp_trend(data, spp, predictor, responses, n_min = 50)  
  
print(spp_trend_result)
```

Index

get_elevation, 2

get_era5_tme, 2

get_fast_info, 3

overall_trend, 3

spp_strategy, 5

spp_trend, 7