
Package ‘SVG’
February 1, 2026

Type Package

Title Spatially Variable Genes Detection Methods for Spatial
Transcriptomics

Version 1.0.0

Description A unified framework for detecting spatially variable genes (SVGs)
in spatial transcriptomics data. This package integrates multiple
state-of-the-art SVG detection methods including 'MERINGUE' (Moran's I based
spatial autocorrelation), 'Giotto' binSpect (binary spatial enrichment test),
'SPARK-X' (non-parametric kernel-based test), and 'nnSVG' (nearest-neighbor
Gaussian processes). Each method is implemented with optimized performance
through vectorization, parallelization, and 'C++' acceleration where applicable.
Methods are described in Miller et al. (2021) <doi:10.1101/gr.271288.120>,
Dries et al. (2021) <doi:10.1186/s13059-021-02286-2>,
Zhu et al. (2021) <doi:10.1186/s13059-021-02404-0>, and
Weber et al. (2023) <doi:10.1038/s41467-023-39748-z>.

License MIT + file LICENSE

URL https://github.com/Zaoqu-Liu/SVG, https://zaoqu-liu.github.io/SVG/

BugReports https://github.com/Zaoqu-Liu/SVG/issues

Encoding UTF-8

LazyData false

Depends R (>= 4.0.0)

Imports parallel, stats, utils, methods, MASS, Rcpp (>= 1.0.0)

Suggests BRISC, geometry, RANN, CompQuadForm, BiocParallel,
SpatialExperiment, SingleCellExperiment, SummarizedExperiment,
spatstat.geom, spatstat.explore, testthat (>= 3.0.0), knitr,
rmarkdown, covr

LinkingTo Rcpp, RcppArmadillo

RoxygenNote 7.3.3

VignetteBuilder knitr

Config/testthat/edition 3

1

https://doi.org/10.1101/gr.271288.120
https://doi.org/10.1186/s13059-021-02286-2
https://doi.org/10.1186/s13059-021-02404-0
https://doi.org/10.1038/s41467-023-39748-z
https://github.com/Zaoqu-Liu/SVG
https://zaoqu-liu.github.io/SVG/
https://github.com/Zaoqu-Liu/SVG/issues

2 ACAT_combine

NeedsCompilation yes

Author Zaoqu Liu [aut, cre] (ORCID: <https://orcid.org/0000-0002-0452-742X>),
SVGbench Contributors [ctb] (Original method implementations)

Maintainer Zaoqu Liu <liuzaoqu@163.com>

Repository CRAN

Date/Publication 2026-02-01 07:20:07 UTC

Contents
ACAT_combine . 2
binarize_expression . 3
buildSpatialNetwork . 4
CalSVG . 6
CalSVG_binSpect . 8
CalSVG_MarkVario . 11
CalSVG_MERINGUE . 12
CalSVG_nnSVG . 16
CalSVG_Seurat . 19
CalSVG_SPARKX . 21
data_simulation . 24
example_svg_data . 24
getSpatialNeighbors_Delaunay . 25
getSpatialNeighbors_KNN . 26
moranI . 27
moranI_test . 29
simulate_spatial_data . 30
utils_spatial . 32
utils_stats . 32

Index 33

ACAT_combine ACAT: Aggregated Cauchy Association Test

Description

Combines multiple p-values using the Aggregated Cauchy Association Test (ACAT). This method
is robust and maintains correct type I error even with correlated p-values.

Usage

ACAT_combine(pvals, weights = NULL)

Arguments

pvals Numeric vector of p-values to combine.
weights Numeric vector of weights. If NULL (default), equal weights are used.

https://orcid.org/0000-0002-0452-742X

binarize_expression 3

Details

ACAT transforms p-values using the Cauchy distribution and combines them:

T =
∑
i

wi tan(π(0.5− pi))

The combined p-value is then computed from the Cauchy distribution.

This method has several advantages:

• Valid even when p-values are correlated

• Computationally simple

• Handles edge cases (p = 0 or 1) gracefully

Value

A single combined p-value.

References

Liu, Y. et al. (2019) ACAT: A Fast and Powerful P Value Combination Method for Rare-Variant
Analysis in Sequencing Studies. The American Journal of Human Genetics.

Examples

Combine independent p-values
pvals <- c(0.01, 0.05, 0.3)
combined_p <- ACAT_combine(pvals)
print(combined_p)

binarize_expression Binarize Gene Expression

Description

Converts continuous gene expression values to binary (0/1) using various methods. Used by the
binSpect method.

Usage

binarize_expression(
expr_matrix,
method = c("kmeans", "rank", "median", "mean"),
rank_percent = 30,
n_threads = 1L,
verbose = FALSE

)

4 buildSpatialNetwork

Arguments

expr_matrix Numeric matrix of gene expression. Rows are genes, columns are spots/cells.

method Character string specifying binarization method.

• "kmeans" (default): Use k-means clustering (k=2) to separate high and low
expression

• "rank": Binarize based on expression rank percentile
• "median": Values above median are set to 1
• "mean": Values above mean are set to 1

rank_percent Numeric. For method = "rank", the percentile threshold (0-100). Values in the
top rank_percent percent are set to 1. Default is 30.

n_threads Integer. Number of threads for parallel computation. Default is 1.

verbose Logical. Whether to print progress. Default is FALSE.

Details

K-means method: For each gene, k-means clustering with k=2 is applied. The cluster with higher
mean expression is labeled as 1, the other as 0.

Rank method: For each gene, spots are ranked by expression. The top rank_percent percent are
labeled as 1.

Value

Binary matrix with same dimensions as input.

Examples

Create example expression matrix
expr <- matrix(rpois(1000, lambda = 10), nrow = 10, ncol = 100)
rownames(expr) <- paste0("gene_", 1:10)

Binarize using k-means
bin_kmeans <- binarize_expression(expr, method = "kmeans")

Binarize using rank (top 20%)
bin_rank <- binarize_expression(expr, method = "rank", rank_percent = 20)

buildSpatialNetwork Build Spatial Neighborhood Network

Description

Constructs a spatial neighborhood network from spatial coordinates using either Delaunay triangu-
lation or K-nearest neighbors (KNN) approach.

buildSpatialNetwork 5

Usage

buildSpatialNetwork(
coords,
method = c("delaunay", "knn"),
k = 10L,
filter_dist = NA,
binary = TRUE,
verbose = FALSE

)

Arguments

coords Numeric matrix of spatial coordinates. Rows are spatial locations, columns are
coordinate dimensions (typically x, y).

method Character string specifying the network construction method.

• "delaunay": Delaunay triangulation (default). Creates a network where
neighbors are determined by triangulation. Works well for relatively uni-
form spatial distributions.

• "knn": K-nearest neighbors. Each spot is connected to its k nearest neigh-
bors based on Euclidean distance.

k Integer. Number of nearest neighbors for KNN method. Default is 10. Ignored
when method = "delaunay".

filter_dist Numeric or NA. Maximum distance threshold for neighbors. Pairs with distance
> filter_dist are not considered neighbors. Default is NA (no filtering).

binary Logical. If TRUE (default), return binary adjacency matrix (0/1). If FALSE,
return distance-weighted adjacency matrix.

verbose Logical. Whether to print progress messages. Default is FALSE.

Details

Delaunay Triangulation: Creates a network based on Delaunay triangulation, which maximizes
the minimum angle of all triangles. This is a natural way to define neighbors in 2D/3D space.
Requires the geometry package.

K-Nearest Neighbors: Connects each point to its k nearest neighbors based on Euclidean distance.
More robust to irregular spatial distributions but requires choosing k. Requires the RANN package.

Value

A square numeric matrix representing the spatial adjacency/weight matrix. Row and column names
correspond to the spatial locations (from rownames of coords).

• If binary = TRUE: Values are 1 (neighbors) or 0 (non-neighbors)

• If binary = FALSE: Values are Euclidean distances (0 for non-neighbors)

See Also

getSpatialNeighbors_Delaunay, getSpatialNeighbors_KNN

6 CalSVG

Examples

Generate example coordinates
set.seed(42)
coords <- cbind(x = runif(100), y = runif(100))
rownames(coords) <- paste0("spot_", 1:100)

Build network using Delaunay (requires geometry package)
if (requireNamespace("geometry", quietly = TRUE)) {

W_delaunay <- buildSpatialNetwork(coords, method = "delaunay")
}

Build network using KNN (requires RANN package)
if (requireNamespace("RANN", quietly = TRUE)) {

W_knn <- buildSpatialNetwork(coords, method = "knn", k = 6)
}

CalSVG Unified Interface for SVG Detection

Description

A unified interface to run different spatially variable gene (SVG) detection methods. This function
provides a consistent API for all supported methods.

Usage

CalSVG(
expr_matrix,
spatial_coords,
method = c("meringue", "seurat", "binspect", "sparkx", "nnsvg", "markvario"),
n_threads = 1L,
verbose = TRUE,
...

)

Arguments

expr_matrix Numeric matrix of gene expression values. Rows are genes, columns are spatial
locations (spots/cells). Should be normalized (e.g., log-transformed counts).

spatial_coords Numeric matrix of spatial coordinates. Rows are spatial locations, columns are
x and y (and optionally z) coordinates. Row names should match column names
of expr_matrix.

method Character string specifying the SVG detection method. One of: "meringue",
"seurat", "binspect", "sparkx", "nnsvg", "markvario".

CalSVG 7

n_threads Integer. Number of threads for parallel computation. Default is 1. Set to higher
values for faster computation on multi-core systems.

verbose Logical. Whether to print progress messages. Default is TRUE.

... Additional arguments passed to the specific method function.

Details

This function serves as a wrapper around the individual method functions:

• method = "meringue": Calls CalSVG_MERINGUE

• method = "seurat": Calls CalSVG_Seurat

• method = "binspect": Calls CalSVG_binSpect

• method = "sparkx": Calls CalSVG_SPARKX

• method = "nnsvg": Calls CalSVG_nnSVG

• method = "markvario": Calls CalSVG_MarkVario

For method-specific parameters, please refer to the documentation of individual method functions.

Value

A data.frame containing SVG detection results. The exact columns depend on the method used, but
typically include:

• gene: Gene identifiers

• pval or p.value: Raw p-values

• padj or p.adj: Adjusted p-values (multiple testing corrected)

• Method-specific statistics (e.g., Moran’s I, LR statistic, odds ratio)

See Also

CalSVG_MERINGUE, CalSVG_binSpect, CalSVG_SPARKX, CalSVG_nnSVG

Examples

Simulate example data
set.seed(42)
n_genes <- 20
n_spots <- 100
expr_matrix <- matrix(rpois(n_genes * n_spots, lambda = 10),

nrow = n_genes, ncol = n_spots)
rownames(expr_matrix) <- paste0("gene_", seq_len(n_genes))
colnames(expr_matrix) <- paste0("spot_", seq_len(n_spots))

spatial_coords <- cbind(x = runif(n_spots, 0, 100),
y = runif(n_spots, 0, 100))

rownames(spatial_coords) <- colnames(expr_matrix)

Run SPARK-X method (no external dependencies)
results <- CalSVG(expr_matrix, spatial_coords, method = "sparkx",

8 CalSVG_binSpect

kernel_option = "single", verbose = FALSE)
head(results)

CalSVG_binSpect binSpect: Binary Spatial Enrichment Test for SVG Detection

Description

Detect spatially variable genes using the binSpect approach from Giotto. This method binarizes
gene expression and tests for spatial enrichment of high-expressing cells using Fisher’s exact test.

Identifies spatially variable genes by: 1. Binarizing gene expression (high/low) 2. Building a spatial
neighborhood network 3. Testing whether high-expressing cells tend to be neighbors of other high-
expressing cells more than expected by chance

Usage

CalSVG_binSpect(
expr_matrix,
spatial_coords,
bin_method = c("kmeans", "rank"),
rank_percent = 30,
network_method = c("delaunay", "knn"),
k = 10L,
do_fisher_test = TRUE,
adjust_method = "fdr",
n_threads = 1L,
verbose = TRUE

)

Arguments

expr_matrix Numeric matrix of gene expression values.

• Rows: genes
• Columns: spatial locations (spots/cells)
• Values: normalized expression (e.g., log counts or normalized counts)

spatial_coords Numeric matrix of spatial coordinates.

• Rows: spatial locations (must match columns of expr_matrix)
• Columns: x, y (and optionally z) coordinates

bin_method Character string specifying binarization method.

• "kmeans" (default): K-means clustering with k=2. Automatically separates
high and low expression groups. Robust to different expression distribu-
tions.

CalSVG_binSpect 9

• "rank": Top percentage by expression rank. More consistent across genes
with different distributions. Controlled by rank_percent parameter.

rank_percent Numeric (0-100). For bin_method = "rank", the percentage of cells to classify
as "high expressing". Default is 30 (top 30

• Lower values (10-20
• Higher values (40-50

network_method Character string specifying spatial network construction.

• "delaunay" (default): Delaunay triangulation
• "knn": K-nearest neighbors

k Integer. Number of neighbors for KNN network. Default is 10.

do_fisher_test Logical. Whether to perform Fisher’s exact test. Default is TRUE.

• TRUE: Returns p-values from Fisher’s exact test
• FALSE: Returns only odds ratios (faster)

adjust_method Character string for p-value adjustment. Default is "fdr" (Benjamini-Hochberg).
See p.adjust() for options.

n_threads Integer. Number of parallel threads. Default is 1.

verbose Logical. Print progress messages. Default is TRUE.

Details

Method Overview:
binSpect constructs a 2x2 contingency table for each gene based on:

• Cell A expression: High (1) or Low (0)

• Cell B expression: High (1) or Low (0)

For all pairs of neighboring cells (edges in the spatial network):

Cell B Low Cell B High
Cell A Low n_00 n_01
Cell A High n_10 n_11

Statistical Test: Fisher’s exact test is used to test whether n_11 (both neighbors high) is greater
than expected under independence.

Odds Ratio Interpretation:

• OR = 1: No spatial pattern

• OR > 1: High-expressing cells cluster together (positive spatial pattern)

• OR < 1: High-expressing cells avoid each other (negative pattern)

Advantages:

• Fast computation (no covariance matrix inversion)

• Robust to outliers through binarization

10 CalSVG_binSpect

• Interpretable odds ratio statistic

Considerations:

• Binarization threshold affects results

• K-means may produce unstable results for bimodal distributions

• Rank method more stable but arbitrary threshold

Value

A data.frame with SVG detection results, sorted by significance/score. Columns:

• gene: Gene identifier

• estimate: Odds ratio from 2x2 contingency table. OR > 1 indicates spatial clustering of
high-expressing cells.

• p.value: P-value from Fisher’s exact test (if requested)

• p.adj: Adjusted p-value

• score: Combined score = -log10(p.value) * estimate

• high_expr_count: Number of high-expressing cells

References

Dries, R. et al. (2021) Giotto: a toolbox for integrative analysis and visualization of spatial expres-
sion data. Genome Biology.

See Also

CalSVG, binarize_expression, buildSpatialNetwork

Examples

Load example data
data(example_svg_data)
expr <- example_svg_data$logcounts[1:20,]
coords <- example_svg_data$spatial_coords

Basic usage (requires RANN package)
if (requireNamespace("RANN", quietly = TRUE)) {

results <- CalSVG_binSpect(expr, coords,
network_method = "knn", k = 10,
verbose = FALSE)

head(results)
}

CalSVG_MarkVario 11

CalSVG_MarkVario Detect SVGs using Mark Variogram Method

Description

Identifies spatially variable genes using the mark variogram approach, as implemented in Seurat’s
FindSpatiallyVariableFeatures function with selection.method = "markvariogram".

Usage

CalSVG_MarkVario(
expr_matrix,
spatial_coords,
r_metric = 5,
normalize = TRUE,
n_threads = 1L,
verbose = TRUE

)

Arguments

expr_matrix Numeric matrix of gene expression values.

spatial_coords Numeric matrix of spatial coordinates.

r_metric Numeric. Distance at which to evaluate the variogram. Default is 5. Larger
values capture broader spatial patterns.

normalize Logical. Whether to normalize the variogram. Default is TRUE.

n_threads Integer. Number of parallel threads. Default is 1.

verbose Logical. Print progress messages. Default is TRUE.

Details

Method Overview:

The mark variogram measures how the correlation between gene expression values changes with
distance. It is computed using the spatstat package’s markvario function.

Interpretation:

• Lower variogram values indicate stronger spatial autocorrelation

• Values near 1 indicate random spatial distribution

• Values < 1 indicate positive spatial autocorrelation (clustering)

Note: Requires the spatstat package suite to be installed: spatstat.geom and spatstat.explore.

12 CalSVG_MERINGUE

Value

A data.frame with SVG detection results. Columns:

• gene: Gene identifier

• r.metric.X: Variogram value at distance r_metric

• rank: Rank by variogram value (ascending, lower = more spatially variable)

References

Baddeley, A. et al. (2015) Spatial Point Patterns: Methodology and Applications with R. Chapman
and Hall/CRC.

See Also

CalSVG_Seurat

Examples

Load example data
data(example_svg_data)
expr <- example_svg_data$logcounts[1:5,]
coords <- example_svg_data$spatial_coords

Requires spatstat packages
if (requireNamespace("spatstat.geom", quietly = TRUE) &&

requireNamespace("spatstat.explore", quietly = TRUE)) {
results <- CalSVG_MarkVario(expr, coords, verbose = FALSE)
head(results)

}

CalSVG_MERINGUE MERINGUE: Moran’s I based Spatially Variable Gene Detection

Description

Detect spatially variable genes using the MERINGUE approach based on Moran’s I spatial auto-
correlation statistic.

Identifies spatially variable genes by computing Moran’s I spatial autocorrelation statistic for each
gene. Genes with significant positive spatial autocorrelation (similar expression values clustering
together) are identified as SVGs.

CalSVG_MERINGUE 13

Usage

CalSVG_MERINGUE(
expr_matrix,
spatial_coords,
network_method = c("delaunay", "knn"),
k = 10L,
filter_dist = NA,
alternative = c("greater", "less", "two.sided"),
adjust_method = "BH",
min_pct_cells = 0.05,
n_threads = 1L,
use_cpp = TRUE,
verbose = TRUE

)

Arguments

expr_matrix Numeric matrix of gene expression values.

• Rows: genes
• Columns: spatial locations (spots/cells)
• Values: normalized expression (e.g., log-transformed counts)

Row names should be gene identifiers; column names should match row names
of spatial_coords.

spatial_coords Numeric matrix of spatial coordinates.

• Rows: spatial locations (must match columns of expr_matrix)
• Columns: coordinate dimensions (x, y, and optionally z)

network_method Character string specifying how to construct the spatial neighborhood network.

• "delaunay" (default): Delaunay triangulation. Creates natural neighbors
based on geometric triangulation. Good for relatively uniform spatial dis-
tributions.

• "knn": K-nearest neighbors. Each spot connected to its k nearest neighbors.
More robust for irregular distributions.

k Integer. Number of neighbors for KNN method. Default is 10. Ignored when
network_method = "delaunay".

• Smaller k (e.g., 5-6): More local patterns, faster computation
• Larger k (e.g., 15-20): Broader patterns, smoother results

filter_dist Numeric or NA. Maximum Euclidean distance for neighbors. Pairs with dis-
tance > filter_dist are not considered neighbors. Default is NA (no filtering).
Useful for:

• Removing long-range spurious connections
• Focusing on local spatial patterns

alternative Character string specifying the alternative hypothesis for the Moran’s I test.

• "greater" (default): Test for positive autocorrelation (clustering of similar
values). Most appropriate for SVG detection.

14 CalSVG_MERINGUE

• "less": Test for negative autocorrelation (dissimilar values as neighbors).
• "two.sided": Test for any autocorrelation.

adjust_method Character string specifying p-value adjustment method for multiple testing cor-
rection. Passed to p.adjust(). Options include: "BH" (default, Benjamini-
Hochberg), "bonferroni", "holm", "hochberg", "hommel", "BY", "fdr", "none".

min_pct_cells Numeric (0-1). Minimum fraction of cells that must contribute to the spatial
pattern for a gene to be retained as SVG. Default is 0.05 (5 to filter genes driven
by only a few outlier cells. Set to 0 to disable this filter.

n_threads Integer. Number of threads for parallel computation. Default is 1.

• For large datasets: Set to number of available cores
• Uses R’s parallel::mclapply (not available on Windows)

use_cpp Logical. Whether to use C++ implementation for faster computation. Default is
TRUE. Falls back to R if C++ fails.

verbose Logical. Whether to print progress messages. Default is TRUE.

Details

Method Overview:

MERINGUE uses Moran’s I, a classic measure of spatial autocorrelation:

I =
n

W

∑
i

∑
j wij(xi − x̄)(xj − x̄)∑

i(xi − x̄)2

where:

• n = number of spatial locations

• W = sum of all spatial weights

• w_ij = spatial weight between locations i and j

• x_i = expression value at location i

Interpretation:

• I > 0: Positive autocorrelation (similar values cluster)

• I = 0: Random spatial distribution

• I < 0: Negative autocorrelation (checkerboard pattern)

Statistical Testing: P-values are computed using normal approximation based on analytical formu-
las for the expected value and variance of Moran’s I under the null hypothesis of complete spatial
randomness.

Computational Considerations:

• Time complexity: O(n^2) for network construction, O(n*m) for testing (n = spots, m = genes)

• Memory: O(n^2) for storing spatial weights matrix

• For n > 10,000 spots, consider using KNN with small k

CalSVG_MERINGUE 15

Value

A data.frame with SVG detection results, sorted by significance. Columns:

• gene: Gene identifier

• observed: Observed Moran’s I statistic. Range: [-1, 1]. Positive values indicate clustering,
negative indicate dispersion.

• expected: Expected Moran’s I under null (approximately -1/(n-1))

• sd: Standard deviation under null hypothesis

• z_score: Standardized test statistic (observed - expected) / sd

• p.value: Raw p-value from normal approximation

• p.adj: Adjusted p-value (multiple testing corrected)

References

• Miller, B.F. et al. (2021) Characterizing spatial gene expression heterogeneity in spatially re-
solved single-cell transcriptomic data with nonuniform cellular densities. Genome Research.

• Moran, P.A.P. (1950) Notes on Continuous Stochastic Phenomena. Biometrika.

• Cliff, A.D. and Ord, J.K. (1981) Spatial Processes: Models & Applications. Pion.

See Also

CalSVG for unified interface, buildSpatialNetwork for network construction, moranI_test for
individual gene testing

Examples

Load example data
data(example_svg_data)
expr <- example_svg_data$logcounts[1:20,] # Use subset for speed
coords <- example_svg_data$spatial_coords

Basic usage (requires RANN package for KNN)
if (requireNamespace("RANN", quietly = TRUE)) {

results <- CalSVG_MERINGUE(expr, coords,
network_method = "knn", k = 10,
verbose = FALSE)

head(results)

Get significant SVGs
sig_genes <- results$gene[results$p.adj < 0.05]

}

16 CalSVG_nnSVG

CalSVG_nnSVG nnSVG: Nearest-Neighbor Gaussian Process SVG Detection

Description

Detect spatially variable genes using nnSVG, a method based on nearest-neighbor Gaussian pro-
cesses for scalable spatial modeling.

nnSVG uses nearest-neighbor Gaussian processes (NNGP) to model spatial correlation structure
in gene expression. It performs likelihood ratio tests comparing spatial vs. non-spatial models to
identify SVGs.

Usage

CalSVG_nnSVG(
expr_matrix,
spatial_coords,
X = NULL,
n_neighbors = 10L,
order = c("AMMD", "Sum_coords"),
cov_model = c("exponential", "gaussian", "spherical", "matern"),
adjust_method = "BH",
n_threads = 1L,
verbose = FALSE

)

Arguments

expr_matrix Numeric matrix of gene expression values.

• Rows: genes
• Columns: spatial locations (spots/cells)
• Values: log-normalized counts (e.g., from scran::logNormCounts)

spatial_coords Numeric matrix of spatial coordinates.

• Rows: spatial locations (must match columns of expr_matrix)
• Columns: x, y coordinates

X Optional numeric matrix of covariates to regress out.

• Rows: spatial locations (same order as spatial_coords)
• Columns: covariates (e.g., batch, cell type indicators)

Default is NULL (intercept-only model).

n_neighbors Integer. Number of nearest neighbors for NNGP model. Default is 10.

• 5-10: Faster, captures local patterns
• 15-20: Better likelihood estimates, slower

Values > 15 rarely improve results but increase computation time.

order Character string specifying coordinate ordering scheme.

CalSVG_nnSVG 17

• "AMMD" (default): Approximate Maximum Minimum Distance. Better for
most datasets. Requires >= 65 spots.

• "Sum_coords": Order by sum of coordinates. Use for very small datasets
(< 65 spots).

cov_model Character string specifying the covariance function. Default is "exponential".
• "exponential": Most commonly used, computationally stable
• "gaussian": Smoother patterns, requires stabilization
• "spherical": Finite range correlation
• "matern": Flexible smoothness (includes additional nu parameter)

adjust_method Character string for p-value adjustment. Default is "BH" (Benjamini-Hochberg).
n_threads Integer. Number of parallel threads. Default is 1. Set to number of available

cores for faster computation.
verbose Logical. Print progress messages. Default is FALSE.

Details

Method Overview:
nnSVG models gene expression as a Gaussian process:

y = Xβ + ω + ϵ

where:

• y = expression vector
• X = covariate matrix, beta = coefficients
• omega ~ GP(0, sigma^2 * C(phi)) = spatial random effect
• epsilon ~ N(0, tau^2) = non-spatial noise
• C(phi) = covariance function with range phi

Nearest-Neighbor Approximation: Full GP has O(n^3) complexity. NNGP approximates using
only k nearest neighbors, reducing complexity to O(n * k^3) = O(n).

Statistical Test: Likelihood ratio test comparing:

• H0 (null): y = X*beta + epsilon (no spatial effect)
• H1 (alternative): y = X*beta + omega + epsilon (with spatial effect)

LR statistic follows chi-squared with df = 2 (testing sigma.sq and phi).

Effect Size: Proportion of spatial variance (prop_sv) measures effect size:

• prop_sv near 1: Strong spatial pattern
• prop_sv near 0: Little spatial structure

Computational Notes:

• Requires BRISC package for NNGP fitting
• O(n) complexity per gene with NNGP approximation
• Parallelization over genes provides good speedup
• Memory: O(n * k) per gene

18 CalSVG_nnSVG

Value

A data.frame with SVG detection results. Columns:

• gene: Gene identifier

• sigma.sq: Spatial variance estimate (sigma^2)

• tau.sq: Nonspatial variance estimate (tau^2, nugget)

• phi: Range parameter estimate (controls spatial correlation decay)

• prop_sv: Proportion of spatial variance = sigma.sq / (sigma.sq + tau.sq)

• loglik: Log-likelihood of spatial model

• loglik_lm: Log-likelihood of non-spatial model (linear model)

• LR_stat: Likelihood ratio test statistic = -2 * (loglik_lm - loglik)

• rank: Rank by LR statistic (1 = highest)

• p.value: P-value from chi-squared distribution (df = 2)

• p.adj: Adjusted p-value

• runtime: Computation time per gene (seconds)

References

Weber, L.M. et al. (2023) nnSVG for the scalable identification of spatially variable genes using
nearest-neighbor Gaussian processes. Nature Communications.

Datta, A. et al. (2016) Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geosta-
tistical Datasets. JASA.

See Also

CalSVG, BRISC package documentation

Examples

Load example data
data(example_svg_data)
expr <- example_svg_data$logcounts[1:10,] # Small subset
coords <- example_svg_data$spatial_coords

Basic usage (requires BRISC package)
if (requireNamespace("BRISC", quietly = TRUE)) {

results <- CalSVG_nnSVG(expr, coords, verbose = FALSE)
head(results)

}

CalSVG_Seurat 19

CalSVG_Seurat Seurat-style SVG Detection Methods

Description

Detect spatially variable genes using methods implemented in Seurat, including Moran’s I with
inverse distance weights and Mark Variogram.

Identifies spatially variable genes using Moran’s I statistic with inverse distance squared weighting,
as implemented in Seurat’s FindSpatiallyVariableFeatures function.

Usage

CalSVG_Seurat(
expr_matrix,
spatial_coords,
weight_scheme = c("inverse_squared", "inverse", "gaussian"),
bandwidth = NULL,
adjust_method = "BH",
n_threads = 1L,
verbose = TRUE

)

Arguments

expr_matrix Numeric matrix of gene expression values.

• Rows: genes
• Columns: spatial locations (spots/cells)
• Values: scaled/normalized expression (Seurat typically uses scale.data)

spatial_coords Numeric matrix of spatial coordinates.

• Rows: spatial locations (must match columns of expr_matrix)
• Columns: x, y coordinates

weight_scheme Character string specifying the distance-based weighting.

• "inverse_squared" (default): w_ij = 1 / d_ij^2 (Seurat default, empha-
sizes local neighbors)

• "inverse": w_ij = 1 / d_ij (less emphasis on close neighbors)
• "gaussian": w_ij = exp(-d_ij^2 / (2 * bandwidth^2)) (controlled by band-

width parameter)

bandwidth Numeric. Bandwidth for Gaussian weighting. Default is NULL (auto-computed
as median pairwise distance). Only used when weight_scheme = "gaussian".

adjust_method Character string for p-value adjustment. Default is "BH" (Benjamini-Hochberg).

n_threads Integer. Number of parallel threads. Default is 1.

verbose Logical. Print progress messages. Default is TRUE.

20 CalSVG_Seurat

Details

Method Overview:

This function replicates Seurat’s FindSpatiallyVariableFeatures with selection.method =
"moransi". The key difference from other Moran’s I implementations is the weighting scheme:

wij =
1

d2ij

where d_ij is the Euclidean distance between locations i and j.

Interpretation:

• Uses continuous distance-based weights (not binary network)

• Emphasizes local spatial relationships

• Higher weights for closer neighbors

Comparison with MERINGUE:

• MERINGUE: Binary adjacency (neighbors = 1, others = 0)

• Seurat: Continuous weights (1/distance^2)

• Seurat method is more sensitive to local patterns

Value

A data.frame with SVG detection results. Columns:

• gene: Gene identifier

• observed: Observed Moran’s I statistic

• expected: Expected Moran’s I under null

• sd: Standard deviation under null

• p.value: Raw p-value

• p.adj: Adjusted p-value

• rank: Rank by p-value (ascending)

References

Hao, Y. et al. (2021) Integrated analysis of multimodal single-cell data. Cell.

Stuart, T. et al. (2019) Comprehensive Integration of Single-Cell Data. Cell.

See Also

CalSVG, CalSVG_MERINGUE

CalSVG_SPARKX 21

Examples

Load example data
data(example_svg_data)
expr <- example_svg_data$logcounts[1:20,]
coords <- example_svg_data$spatial_coords

Basic usage
results <- CalSVG_Seurat(expr, coords, verbose = FALSE)
head(results)

CalSVG_SPARKX SPARK-X: Non-parametric Kernel-based SVG Detection

Description

Detect spatially variable genes using SPARK-X, a non-parametric method that tests for spatial ex-
pression patterns using multiple kernels.

SPARK-X is a scalable non-parametric method for identifying spatially variable genes. It uses
variance component score tests with multiple spatial kernels (projection, Gaussian, and cosine) to
detect various types of spatial expression patterns.

Usage

CalSVG_SPARKX(
expr_matrix,
spatial_coords,
kernel_option = c("mixture", "single"),
adjust_method = "BY",
n_threads = 1L,
verbose = TRUE

)

Arguments

expr_matrix Numeric matrix of gene expression values.

• Rows: genes
• Columns: spatial locations (spots/cells)
• Values: raw counts or normalized counts (NOT log-transformed)

Note: SPARK-X works best with count data, not log-transformed data.

spatial_coords Numeric matrix of spatial coordinates.

• Rows: spatial locations (must match columns of expr_matrix)
• Columns: x, y coordinates

22 CalSVG_SPARKX

kernel_option Character string specifying which kernels to use.

• "mixture" (default): Test with all 11 kernels: 1 projection + 5 Gaussian
+ 5 cosine. Most comprehensive but slower. Recommended for detecting
diverse spatial patterns.

• "single": Test with projection kernel only. Faster but may miss some
pattern types.

adjust_method Character string for p-value adjustment. Default is "BY" (Benjamini-Yekutieli),
which is more conservative and appropriate when tests may be correlated. Other
options: "BH", "bonferroni", "holm", "none".

n_threads Integer. Number of parallel threads. Default is 1. Higher values significantly
speed up computation for large datasets.

verbose Logical. Print progress messages. Default is TRUE.

Details

Method Overview:
SPARK-X uses a variance component score test framework:

Tg =
n · yTg Kyg

∥yg∥2

where:

• y_g = expression vector for gene g

• K = spatial kernel matrix (derived from coordinates)

• n = number of spatial locations

Kernel Types:

• Projection kernel: Linear kernel based on scaled coordinates. Detects gradients and linear
spatial trends.

• Gaussian kernels: Multiple bandwidth Gaussian RBF kernels. Detect localized hotspots of
different sizes.

• Cosine kernels: Multiple frequency periodic kernels. Detect periodic/oscillating spatial pat-
terns.

P-value Computation:

• Individual kernel p-values: Davies’ method for quadratic forms

• Combined p-value: ACAT (Aggregated Cauchy Association Test)

Advantages:

• Non-parametric: No distributional assumptions

• Scalable: O(n) complexity, handles millions of cells

• Multiple kernels: Detects diverse pattern types

• Robust: ACAT combination handles correlated tests

CalSVG_SPARKX 23

Computational Considerations:

• mixture option: ~11x slower than single

• Memory: O(n) per gene, efficient for large datasets

• Parallelization provides near-linear speedup

Value

A data.frame with SVG detection results. Columns:

• gene: Gene identifier

• p.value: Combined p-value across all kernels (ACAT method)

• p.adj: Multiple testing adjusted p-value

• If kernel_option = "mixture", additional columns for individual kernel statistics and p-
values (stat_*, pval_*)

References

Zhu, J., Sun, S., & Zhou, X. (2021). SPARK-X: non-parametric modeling enables scalable and
robust detection of spatial expression patterns for large spatial transcriptomic studies. Genome
Biology.

See Also

CalSVG, ACAT_combine

Examples

Load example data
data(example_svg_data)
expr <- example_svg_data$counts[1:20,] # Use counts (not log)
coords <- example_svg_data$spatial_coords

Fast mode with single kernel (no extra dependencies)
results <- CalSVG_SPARKX(expr, coords,

kernel_option = "single",
verbose = FALSE)

head(results)

24 example_svg_data

data_simulation Simulate Spatial Transcriptomics Data with Known SVGs

Description

Functions to generate simulated spatial transcriptomics data with known spatially variable genes
(ground truth). Useful for benchmarking and testing.

Value

See individual function documentation for return values.

example_svg_data Example Spatial Transcriptomics Data

Description

A pre-generated example dataset for testing SVG detection methods. Contains 500 spots and 200
genes, with 50 known SVGs.

Format

A list with components:

counts Integer matrix (200 genes × 500 spots) of raw counts

logcounts Numeric matrix of log2(counts + 1)

spatial_coords Numeric matrix (500 spots × 2) of x, y coordinates

gene_info Data.frame with columns: gene, is_svg, pattern_type

Value

A list containing the example dataset (see Format section).

Source

Simulated using simulate_spatial_data

getSpatialNeighbors_Delaunay 25

Examples

data(example_svg_data)
str(example_svg_data)

Run SVG detection (requires RANN package)
if (requireNamespace("RANN", quietly = TRUE)) {

results <- CalSVG_MERINGUE(
example_svg_data$counts,
example_svg_data$spatial_coords,
verbose = FALSE

)

Check accuracy
truth <- example_svg_data$gene_info$is_svg
detected <- results$p.adj < 0.05
print(table(truth, detected))

}

getSpatialNeighbors_Delaunay

Build Spatial Network via Delaunay Triangulation

Description

Constructs a spatial adjacency matrix using Delaunay triangulation. Two points are considered
neighbors if they share an edge in the triangulation.

Usage

getSpatialNeighbors_Delaunay(
coords,
filter_dist = NA,
binary = TRUE,
verbose = FALSE

)

Arguments

coords Numeric matrix of spatial coordinates. Rows are spatial locations, columns are
x, y (and optionally z) coordinates.

filter_dist Numeric or NA. Maximum distance threshold for neighbors. Default is NA (no
filtering).

binary Logical. If TRUE (default), return binary adjacency matrix.

verbose Logical. Whether to print progress messages. Default is FALSE.

26 getSpatialNeighbors_KNN

Details

The function uses Delaunay triangulation from the geometry package. For 2D coordinates, this
creates triangles. For 3D, it creates tetrahedra.

Duplicate coordinates are slightly jittered to avoid computational issues.

Value

Square numeric matrix of spatial adjacency weights.

Examples

set.seed(42)
coords <- cbind(x = runif(50), y = runif(50))
rownames(coords) <- paste0("spot_", 1:50)

if (requireNamespace("geometry", quietly = TRUE)) {
W <- getSpatialNeighbors_Delaunay(coords)

}

getSpatialNeighbors_KNN

Build Spatial Network via K-Nearest Neighbors

Description

Constructs a spatial adjacency matrix using K-nearest neighbors. Each point is connected to its k
nearest neighbors based on Euclidean distance.

Usage

getSpatialNeighbors_KNN(
coords,
k = 10L,
mutual = FALSE,
binary = TRUE,
verbose = FALSE

)

Arguments

coords Numeric matrix of spatial coordinates.

k Integer. Number of nearest neighbors. Default is 10.

mutual Logical. If TRUE, only mutual nearest neighbors are connected (both A->B and
B->A must exist). Default is FALSE.

moranI 27

binary Logical. If TRUE (default), return binary adjacency matrix. If FALSE, return
distance-weighted matrix.

verbose Logical. Whether to print progress messages. Default is FALSE.

Details

Uses the RANN package for efficient nearest neighbor search with KD-trees. The resulting network
may be asymmetric (A is neighbor of B doesn’t mean B is neighbor of A) unless mutual = TRUE.

Value

Square numeric matrix of spatial adjacency weights.

Examples

set.seed(42)
coords <- cbind(x = runif(50), y = runif(50))
rownames(coords) <- paste0("spot_", 1:50)

if (requireNamespace("RANN", quietly = TRUE)) {
W <- getSpatialNeighbors_KNN(coords, k = 6)

}

moranI Calculate Moran’s I Statistic

Description

Computes Moran’s I spatial autocorrelation statistic for a numeric vector given a spatial weights
matrix.

Usage

moranI(x, W, standardize = TRUE)

Arguments

x Numeric vector of values (e.g., gene expression).

W Square numeric matrix of spatial weights. Must have the same dimension as
length(x).

standardize Logical. If TRUE (default), row-standardize the weights matrix.

28 moranI

Details

Moran’s I is defined as:

I =
n

W

∑
i

∑
j wij(xi − x̄)(xj − x̄)∑

i(xi − x̄)2

where n is the number of observations, W is the sum of all weights, and w_ij is the weight between
locations i and j.

Under the null hypothesis of no spatial autocorrelation:

• Expected value: E[I] = -1/(n-1)

• Variance is computed using the analytical formula from Cliff and Ord (1981)

Value

A list containing:

• observed: The observed Moran’s I statistic

• expected: Expected value under null hypothesis of no spatial autocorrelation (typically -1/(n-
1))

• sd: Standard deviation under null hypothesis

References

Cliff, A.D. and Ord, J.K. (1981) Spatial Processes: Models & Applications. Pion.

Examples

Create example data
set.seed(42)
x <- rnorm(100)
coords <- cbind(runif(100), runif(100))

Calculate Moran's I (requires RANN package)
if (requireNamespace("RANN", quietly = TRUE)) {

W <- buildSpatialNetwork(coords, method = "knn", k = 6)
result <- moranI(x, W)
print(result)

}

moranI_test 29

moranI_test Moran’s I Test for Spatial Autocorrelation

Description

Performs a statistical test for spatial autocorrelation using Moran’s I. Returns the test statistic, ex-
pected value, standard deviation, and p-value.

Usage

moranI_test(
x,
W,
alternative = c("greater", "less", "two.sided"),
standardize = TRUE

)

Arguments

x Numeric vector of values.

W Square numeric matrix of spatial weights.

alternative Character string specifying the alternative hypothesis. One of "greater" (de-
fault), "less", or "two.sided".

• "greater": Test for positive spatial autocorrelation (similar values cluster
together)

• "less": Test for negative spatial autocorrelation (dissimilar values are neigh-
bors)

• "two.sided": Test for any spatial autocorrelation

standardize Logical. If TRUE (default), row-standardize weights.

Value

A named numeric vector with components:

• observed: Observed Moran’s I

• expected: Expected Moran’s I under null

• sd: Standard deviation under null

• p.value: P-value from normal approximation

Examples

set.seed(42)
x <- rnorm(100)
coords <- cbind(runif(100), runif(100))

30 simulate_spatial_data

Test for spatial autocorrelation (requires RANN package)
if (requireNamespace("RANN", quietly = TRUE)) {

W <- buildSpatialNetwork(coords, method = "knn", k = 6)
result <- moranI_test(x, W)
print(result)

}

simulate_spatial_data Simulate Spatial Transcriptomics Data

Description

Generates a simulated spatial transcriptomics dataset with a mixture of spatially variable genes
(SVGs) and non-spatially variable genes. Uses scientifically accurate count distributions (Negative
Binomial).

Usage

simulate_spatial_data(
n_spots = 500,
n_genes = 200,
n_svg = 50,
grid_type = c("hexagonal", "square", "random"),
pattern_types = c("gradient", "hotspot", "periodic", "cluster"),
mean_counts = 50,
dispersion = 5

)

Arguments

n_spots Integer. Number of spatial locations. Default is 500.

n_genes Integer. Total number of genes. Default is 200.

n_svg Integer. Number of spatially variable genes. Default is 50.

grid_type Character. Type of spatial layout.

• "hexagonal" (default): Visium-like hexagonal grid
• "square": Square grid
• "random": Random spatial distribution

pattern_types Character vector. Types of spatial patterns for SVGs. Any combination of:

• "gradient": Linear spatial gradient
• "hotspot": Localized expression hotspots
• "periodic": Periodic/oscillating patterns
• "cluster": Clustered expression

Default is all four types.

simulate_spatial_data 31

mean_counts Numeric. Mean expression level for baseline. Default is 50.

dispersion Numeric. Dispersion parameter for Negative Binomial. Smaller values = more
overdispersion. Default is 5.

Details

Spatial Patterns:

• Gradient: Expression increases linearly along x-axis

• Hotspot: High expression in circular regions

• Periodic: Sine wave pattern along x-axis

• Cluster: Expression in spatially defined clusters

Count Distribution: Counts are drawn from Negative Binomial distribution:

X ∼ NB(µ, ϕ)

where mu is the mean (modulated by spatial pattern) and phi is dispersion.

Value

A list containing:

• counts: Matrix of gene counts (genes × spots)

• spatial_coords: Matrix of spatial coordinates (spots × 2)

• gene_info: Data.frame with gene metadata including is_svg (TRUE/FALSE) and pattern_type

• logcounts: Log-normalized counts (log2(counts + 1))

Examples

Set seed for reproducibility before calling
set.seed(42)
sim_data <- simulate_spatial_data(n_spots = 200, n_genes = 50, n_svg = 10)
str(sim_data, max.level = 1)

Use with SVG detection (requires RANN)
if (requireNamespace("RANN", quietly = TRUE)) {

results <- CalSVG_MERINGUE(sim_data$counts, sim_data$spatial_coords,
network_method = "knn", k = 10, verbose = FALSE)

}

32 utils_stats

utils_spatial Spatial Network Utilities

Description

Utility functions for building and manipulating spatial neighborhood networks. These functions are
used by SVG detection methods to define spatial relationships between spots/cells.

Value

See individual function documentation for return values.

utils_stats Statistical Utilities for SVG Detection

Description

Statistical utility functions used by SVG detection methods, including Moran’s I calculation, p-
value computation, and expression binarization.

Value

See individual function documentation for return values.

Index

ACAT_combine, 2, 23

binarize_expression, 3, 10
buildSpatialNetwork, 4, 10, 15

CalSVG, 6, 10, 15, 18, 20, 23
CalSVG_binSpect, 7, 8
CalSVG_MarkVario, 7, 11
CalSVG_MERINGUE, 7, 12, 20
CalSVG_nnSVG, 7, 16
CalSVG_Seurat, 7, 12, 19
CalSVG_SPARKX, 7, 21

data_simulation, 24

example_svg_data, 24

getSpatialNeighbors_Delaunay, 5, 25
getSpatialNeighbors_KNN, 5, 26

moranI, 27
moranI_test, 15, 29

simulate_spatial_data, 24, 30

utils_spatial, 32
utils_stats, 32

33

	ACAT_combine
	binarize_expression
	buildSpatialNetwork
	CalSVG
	CalSVG_binSpect
	CalSVG_MarkVario
	CalSVG_MERINGUE
	CalSVG_nnSVG
	CalSVG_Seurat
	CalSVG_SPARKX
	data_simulation
	example_svg_data
	getSpatialNeighbors_Delaunay
	getSpatialNeighbors_KNN
	moranI
	moranI_test
	simulate_spatial_data
	utils_spatial
	utils_stats
	Index

