Package 'FBFsearch'

October 26, 2025

Type Package
Title Algorithm for Searching the Space of Gaussian Directed Acyclic Graph Models Through Moment Fractional Bayes Factors
Version 1.3
Date 2025-10-26
Description We propose an objective Bayesian algorithm for searching the space of Gaussian directed acyclic graph (DAG) models. The algorithm uses moment fractional Bayes factors (MFBF) and is suitable for learning sparse graphs. The algorithm is implemented using Armadillo, an open-source C++ linear algebra library.
License GPL (>= 2)
Imports Rcpp (>= 0.12.7)
LinkingTo Rcpp, RcppArmadillo
Encoding UTF-8
NeedsCompilation yes
Author Davide Altomare [aut, cre], Guido Consonni [aut], Luca La Rocca [aut]
Maintainer Davide Altomare <davide.altomare@gmail.com></davide.altomare@gmail.com>
Repository CRAN
Date/Publication 2025-10-26 19:40:08 UTC
Contents
dataHuman 2 dataPub 3 dataSim100 3 dataSim200 4 dataSim50 5 dataSim6 5 dataSimHuman 6

2 dataHuman

	FBF_GS	 	 							 									7
	FBF_LS	 	 							 									8
	FBF_RS	 	 							 									9
Index																		1	12

dataHuman

Cell signalling pathway data

Description

Data on a set of flow cytometry experiments on signaling networks of human immune system cells. The dataset includes p=11 proteins and n=7466 samples.

Usage

data(HumanPw)

Format

dataHuman contains the following objects:

Obs Matrix (7466x11) with the observations.

Perms List of 5 matrices (1x11) each of which with a permutation of the nodes.

TDag Matrix (11x11) with the adjacency matrix of the known regulatory network.

Source

Sachs, K., Perez, O., Pe'er, D., Lauffenburger, D., and Nolan, G. (2003). Casual protein-signaling networks derived from multiparameter single-cell data. *Science* 308, 504-6.

References

D. Altomare, G. Consonni and L. La Rocca (2012). Objective Bayesian search of Gaussian directed acyclic graphical models for ordered variables with non-local priors. *Article submitted to Biometric Methodology*.

Shojaie, A. and Michailidis, G. (2010). Penalized likelihood methods for estimation of sparse high-dimensional directed acyclic graphs. *Biometrika* 97, 519-538.

dataPub 3

dataPub

Publishing productivity data

Description

Data on publishing productivity among academics.

Usage

data(PubProd)

Format

dataPub contains the following objects:

Corr Matrix (7x7) with the correlation matrix of the variables.

nobs Scalar with the number of observations.

Source

Spirtes, P., Glymour, C., and Scheines, R. (2000). Causation, prediction and search (2nd edition). *Cambridge, MA: The MIT Press.* pages 1-16.

References

Drton, M. and Perlman, M. D. (2008). A SINful approach to Gaussian graphical model selection. *J. Statist. Plann. Inference* 138, 1179-1200.

D. Altomare, G. Consonni and L. La Rocca (2012). Objective Bayesian search of Gaussian directed acyclic graphical models for ordered variables with non-local priors. *Article submitted to Biometric Methodology*.

dataSim100

DAG model with 100 nodes and 100 edges

Description

dataSim100 is a list with the adjacency matrix of a randomly generated DAG with 100 nodes and 100 edges, 10 samples generated from the DAG and 5 permutations of the nodes.

Usage

data(SimDag100)

4 dataSim200

Format

dataSim100 contains the following objects:

Obs List of 10 matrices (100x100) each of which with 100 observations generated from the DAG. Perms List of 5 matrices (1x100) each of which with a permutation of the nodes.

TDag Matrix (100x100) with the adjacency matrix of the DAG.

Source

D. Altomare, G. Consonni and L. La Rocca (2012). Objective Bayesian search of Gaussian directed acyclic graphical models for ordered variables with non-local priors. *Article submitted to Biometric Methodology*.

References

Shojaie, A. and Michailidis, G. (2010). Penalized likelihood methods for estimation of sparse high-dimensional directed acyclic graphs. *Biometrika* 97, 519-538.

dataSim200

DAG model with 200 nodes and 100 edges

Description

dataSim200 is a list with the adjacency matrix of a randomly generated DAG with 200 nodes and 100 edges, 10 samples generated from the DAG and 5 permutations of the nodes.

Usage

data(SimDag200)

Format

dataSim200 contains the following objects:

Obs List of 10 matrices (100x200) each of which with 100 observations simulated from the DAG. Perms List of 5 matrices (1x200) each of which with a permutation of the nodes.

TDag Matrix (200x200) with the adjacency matrix of the DAG.

Source

D. Altomare, G. Consonni and L. La Rocca (2012). Objective Bayesian search of gaussian directed acyclic graphical models for ordered variables with non-local priors. *Article submitted to Biometric Methodology*.

References

Shojaie, A. and Michailidis, G. (2010). Penalized likelihood methods for estimation of sparse high-dimensional directed acyclic graphs. *Biometrika* 97, 519-538.

dataSim50 5

dataSim50	DAG model with 50 nodes and 100 edges

Description

dataSim50 is a list with the adjacency matrix of a randomly generated DAG with 50 nodes and 100 edges, 10 samples generated from the DAG and 5 permutations of the nodes.

Usage

data(SimDag50)

Format

dataSim50 contains the following objects:

Obs List of 10 matrices (100x50) each of which with 100 observations simulated from the DAG.

Perms List of 5 matrices (1x50) each of which with a permutation of the nodes.

TDag Matrix (50x50) with the adjacency matrix of the DAG.

Source

D. Altomare, G. Consonni and L. La Rocca (2012). Objective Bayesian search of Gaussian directed acyclic graphical models for ordered variables with non-local priors. *Article submitted to Biometric Methodology*.

References

Shojaie, A. and Michailidis, G. (2010). Penalized likelihood methods for estimation of sparse high-dimensional directed acyclic graphs. *Biometrika* 97, 519-538.

Description

dataSim6 is a list with the adjacency matrix of a randomly generated DAG with 6 nodes and 5 edges and 100 correlation matrices generated from the DAG.

Usage

data(SimDag6)

6 dataSimHuman

Format

dataSim6 contains the following objects:

Corr List of 100 matrices (6x6) each of which with a correlation matrix generated from the DAG. TDag Matrix (6x6) with the adjacency matrix of the DAG.

References

D. Altomare, G. Consonni and L. La Rocca (2012). Objective Bayesian search of Gaussian directed acyclic graphical models for ordered variables with non-local priors. *Article submitted to Biometric Methodology*.

dataSimHuman

Simulated cell signalling pathway data

Description

Data generated from the known regulatory network of human cell signalling data.

Usage

data(SimHumanPw)

Format

dataSimHuman contains the following objects:

Obs List of 100 matrices (100x11) each of which with 100 observations simulated from the known regulatory network.

Perms List of 5 matrices (1x11) each of which with a permutation of the nodes.

TDag Matrix (11x11) with the adjacency matrix of the known regulatory network.

Source

D. Altomare, G. Consonni and L. La Rocca (2012). Objective Bayesian search of Gaussian directed acyclic graphical models for ordered variables with non-local priors. *Article submitted to Biometric Methodology*.

References

Sachs, K., Perez, O., Pe'er, D., Lauffenburger, D., and Nolan, G. (2003). Casual protein-signaling networks derived from multiparameter single-cell data. *Science* 308, 504-6.

Shojaie, A. and Michailidis, G. (2010). Penalized likelihood methods for estimation of sparse high-dimensional directed acyclic graphs. *Biometrika* 97, 519-538.

FBF_GS 7

FBF GS	Moment Fractional Bayes Factor Stochastic Search with Global Prior
1 DI _03	for Gaussian DAG Models
	· ·

Description

Estimate the edge inclusion probabilities for a Gaussian DAG with q nodes from observational data, using the moment fractional Bayes factor approach with global prior.

Usage

```
FBF_GS(Corr, nobs, G_base, h, C, n_tot_mod, n_hpp)
```

Arguments

Corr	qxq correlation matrix.
nobs	Number of observations.
G_base	Base DAG.
h	Parameter prior.
С	Costant who keeps the probability of all local moves bounded away from 0 and 1.
n_tot_mod	Maximum number of different models which will be visited by the algorithm, for each equation.
n_hpp	Number of the highest posterior probability models which will be returned by the procedure.

Value

An object of class list with:

- M_q Matrix (qxq) with the estimated edge inclusion probabilities.
- M_G Matrix (n*n_hpp)xq with the n_hpp highest posterior probability models returned by the procedure.
- M_P Vector (n_hpp) with the n_hpp posterior probabilities of the models in M_G.

Author(s)

Davide Altomare (<davide.altomare@gmail.com>).

References

D. Altomare, G. Consonni and L. La Rocca (2012). Objective Bayesian search of Gaussian directed acyclic graphical models for ordered variables with non-local priors. *Article submitted to Biometric Methodology*.

8 FBF_LS

Examples

```
data(SimDag6)
Corr=dataSim6$SimCorr[[1]]
nobs=50
q=ncol(Corr)
Gt=dataSim6$TDag
Res_search=FBF_GS(Corr, nobs, matrix(0,q,q), 1, 0.01, 1000, 10)
M_q=Res_search$M_q
M_G=Res_search$M_G
M_P=Res_search$M_P
G_med=M_q
G_{med[M_q>=0.5]=1}
G_{med}[M_q<0.5]=0 #median probability DAG
G_high=M_G[1:q,1:q] #Highest Posterior Probability DAG (HPP)
pp_high=M_P[1] #Posterior Probability of the HPP
#Structural Hamming Distance between the true DAG and the median probability DAG
sum(sum(abs(G_med-Gt)))
#Structural Hamming Distance between the true DAG and the highest probability DAG
sum(sum(abs(G_high-Gt)))
```

FBF_LS

Moment Fractional Bayes Factor Stochastic Search with Local Prior for DAG Models

Description

Estimate the edge inclusion probabilities for a directed acyclic graph (DAG) from observational data, using the moment fractional Bayes factor approach with local prior.

Usage

```
FBF_LS(Corr, nobs, G_base, h, C, n_tot_mod)
```

Arguments

Corr qxq correlation matrix.

nobs Number of observations.

G_base Base DAG.
h Parameter prior.

FBF_RS 9

C Costant who keeps the probability of all local moves bounded away from 0 and

Ι.

n_tot_mod Maximum number of different models which will be visited by the algorithm,

for each equation.

Value

An object of class matrix with the estimated edge inclusion probabilities.

Author(s)

Davide Altomare (<davide.altomare@gmail.com>).

References

D. Altomare, G. Consonni and L. LaRocca (2012). Objective Bayesian search of Gaussian directed acyclic graphical models for ordered variables with non-local priors. *Article submitted to Biometric Methodology*.

Examples

```
data(SimDag6)

Corr=dataSim6$SimCorr[[1]]
nobs=50
q=ncol(Corr)
Gt=dataSim6$TDag

M_q=FBF_LS(Corr, nobs, matrix(0,q,q), 0, 0.01, 1000)

G_med=M_q
G_med[M_q>=0.5]=1
G_med[M_q<0.5]=0 #median probability DAG

#Structural Hamming Distance between the true DAG and the median probability DAG
sum(sum(abs(G_med-Gt)))</pre>
```

FBF_RS	Moment Fractional Bayes Factor Stochastic Search for Regi	ression
	Models	

Description

Estimate the edge inclusion probabilities for a regression model (Y(q) on Y(q-1),...,Y(1)) with q variables from observational data, using the moment fractional Bayes factor approach.

10 FBF_RS

Usage

```
FBF_RS(Corr, nobs, G_base, h, C, n_tot_mod, n_hpp)
```

Arguments

Corr qxq correlation matrix.

nobs Number of observations.

G_base Base model. h Parameter prior.

C Costant who keeps the probability of all local moves bounded away from 0 and

1.

n_tot_mod Maximum number of different models which will be visited by the algorithm,

for each equation.

n_hpp Number of the highest posterior probability models which will be returned by

the procedure.

Value

An object of class list with:

M_q Matrix (qxq) with the estimated edge inclusion probabilities.

M_G Matrix (n*n_hpp)xq with the n_hpp highest posterior probability models returned by the procedure.

M_P Vector (n_hpp) with the n_hpp posterior probabilities of the models in M_G.

Author(s)

Davide Altomare (<davide.altomare@gmail.com>).

References

D. Altomare, G. Consonni and L. LaRocca (2012). Objective Bayesian search of Gaussian directed acyclic graphical models for ordered variables with non-local priors. *Article submitted to Biometric Methodology*.

Examples

```
data(SimDag6)

Corr=dataSim6$SimCorr[[1]]
nobs=50
q=ncol(Corr)
Gt=dataSim6$TDag

Res_search=FBF_RS(Corr, nobs, matrix(0,1,(q-1)), 1, 0.01, 1000, 10)
M_q=Res_search$M_q
M_G=Res_search$M_G
M_P=Res_search$M_P
```

FBF_RS 11

```
Mt=rev(matrix(Gt[1:(q-1),q],1,(q-1))) #True Model

M_med=M_q
M_med[M_q>=0.5]=1
M_med[M_q<0.5]=0 #median probability model

#Structural Hamming Distance between the true DAG and the median probability DAG
sum(sum(abs(M_med-Mt)))</pre>
```

Index

```
* dag
    FBF_GS, 7
    FBF_LS, 8
    FBF_RS, 9
* datasets
    dataHuman, 2
    dataPub, 3
    dataSim100, 3
    dataSim200,4
    dataSim50, 5
    dataSim6, 5
    dataSimHuman, 6
* models
    FBF_GS, 7
    FBF_LS, 8
    FBF_RS, 9
* multivariate
    FBF_GS, 7
    FBF_LS, 8
    FBF_RS, 9
* stochastic search
    FBF_GS, 7
    FBF_LS, 8
    FBF_RS, 9
dataHuman, 2
dataPub, 3
dataSim100, 3
dataSim200,4
dataSim50, 5
dataSim6, 5
dataSimHuman, 6
FBF_GS, 7
FBF_LS, 8
FBF_RS, 9
```