geary.test {spdep}R Documentation

Geary's C test for spatial autocorrelation

Description

Geary's test for spatial autocorrelation using a spatial weights matrix in weights list form. The assumptions underlying the test are sensitive to the form of the graph of neighbour relationships and other factors, and results may be checked against those of geary.mc permutations.

Usage

geary.test(x, listw, randomisation=TRUE, zero.policy=FALSE,
    alternative="less", spChk=NULL)

Arguments

x a numeric vector the same length as the neighbours list in listw
listw a listw object created for example by nb2listw
randomisation variance of I calculated under the assumption of randomisation, if FALSE normality
zero.policy if TRUE assign zero to the lagged value of zones without neighbours, if FALSE assign NA
alternative a character string specifying the alternative hypothesis, must be one of "less" (default), "greater" or "two.sided".
spChk should the data vector names be checked against the spatial objects for identity integrity, TRUE, or FALSE, default NULL to use get.spChkOption()

Value

A list with class htest containing the following components:

statistic the value of the standard deviate of Geary's C.
p.value the p-value of the test.
estimate the value of the observed Geary's C, its expectation and variance under the method assumption.
alternative a character string describing the alternative hypothesis.
method a character string giving the assumption used for calculating the standard deviate.
data.name a character string giving the name(s) of the data.

Note

The derivation of the test (Cliff and Ord, 1981, p. 18) assumes that the weights matrix is symmetric. For inherently non-symmetric matrices, such as k-nearest neighbour matrices, listw2U() can be used to make the matrix symmetric. In non-symmetric weights matrix cases, the variance of the test statistic may be negative (thanks to Franz Munoz I for a well documented bug report). Geary's C is affected by non-symmetric weights under normality much more than Moran's I.

Author(s)

Roger Bivand Roger.Bivand@nhh.no

References

Cliff, A. D., Ord, J. K. 1981 Spatial processes, Pion, p. 21.

See Also

geary, geary.mc, listw2U

Examples

data(oldcol)
geary.test(spNamedVec("CRIME", COL.OLD), nb2listw(COL.nb, style="W"))
geary.test(spNamedVec("CRIME", COL.OLD), nb2listw(COL.nb, style="W"),
 randomisation=FALSE)
colold.lags <- nblag(COL.nb, 3)
geary.test(spNamedVec("CRIME", COL.OLD), nb2listw(colold.lags[[2]],
 style="W"))
geary.test(spNamedVec("CRIME", COL.OLD), nb2listw(colold.lags[[3]],
 style="W"), alternative="greater")
print(is.symmetric.nb(COL.nb))
COL.k4.nb <- knn2nb(knearneigh(coords.OLD, 4))
print(is.symmetric.nb(COL.k4.nb))
geary.test(spNamedVec("CRIME", COL.OLD), nb2listw(COL.k4.nb, style="W"))
geary.test(spNamedVec("CRIME", COL.OLD), nb2listw(COL.k4.nb, style="W"),
 randomisation=FALSE)
cat("Note non-symmetric weights matrix - use listw2U()\n")
geary.test(spNamedVec("CRIME", COL.OLD), listw2U(nb2listw(COL.k4.nb,
 style="W")))
geary.test(spNamedVec("CRIME", COL.OLD), listw2U(nb2listw(COL.k4.nb,
 style="W")), randomisation=FALSE)

[Package spdep version 0.3-12 Index]