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1 Introduction

The package made4 facilitates multivariate analysis of microarray gene expression data.
The package provides a set of functions that utilise and extend multivariate statistical
and graphical functions available in ade4, (1). made4 accepts gene expression data is
a wide variety of input formats, including Bioconductor formats, AffyBatch, exprSet,
marrayRaw, and data.frame or matrix.

1.1 Installation

made4 requires that ade4 is installed. made4 also calls scatterplot3d. These can be
installed, using install.packages(). To install made4

install.packages("made4",

contriburl = "http://bioinf.ucd.ie/people/aedin/R/current")
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1.2 Further help

More information about made4 is available at http://bioinf.ucd.ie/people/aedin/
R. This document provides an overview of made4 functions. These are described in
more detail in the other vingettes that accompany this package.

Extensive tutorials, examples and documentation on multivariate statistical methods
are available from the ade4 website http://pbil.univ-lyon1.fr/ADE-4 and ade4 user
support is available through the ADE4 mailing list. The ade4 homepage is http://

pbil.univ-lyon1.fr/ADE-4.
This tutorial assumes a basic knowledge of R, but we have found that Emmanuel

Paradis’s R for Beginners is a very good guide to those unfamiliar with R. This is
available at http://cran.r-project.org/doc/contrib/rdebuts_en.pdf.

This documents assumes that data is normalised and preprocessed. Please refer to the
Bioconductor packages affy, arrayMagic and limma, for input and initial pre-processing
of microarray data. The Bioconductor project website is http://www.bioconductor.

org.

2 Quickstart

We will very briefly demonstrate some of the functions in made4. To do this we will
use a small dataset that is available in the Bioconductor package factDesign. This is
a dataset of gene expression levels for 500 genes from Affymetrix HGU95av2 chips for
eight samples from a breast cancer cell line. Load the necessary R packages and estrogen
dataset.

> library(affy)

> library(factDesign)

> library(made4)

> library(ade4)

> data(estrogen)

This experiment studied the effect of estrogen on the gene expression in estrogen
receptor positive breast cancer cells over time. After serum starvation, samples were
exposed to estrogen, and mRNA was harvested at two time points (10 or 48 hours).
The control samples were not exposed to estrogen and were harvested at the same time
points. Table 1 shows the experiemental design, and corresponding samples names. The
full data set (12,625 probes, 32 samples) and its analysis are discussed in Scholtens,
et al. Analyzing Factorial Designed Microarray Experiments. Journal of Multivariate
Analysis. (To appear). The gene expression values were calculated using the robust
multichip average rma method (7) after quantile normalization using the affy package.
The expression values are reported in log base 2 scale.
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Table 1: Experimental Conditions for estrogen dataset available in factDesign

time estrogen
absent present

10 hours et1 Et1

et2 Et2

48 hours eT1 ET1

eT2 ET2

> estrogen

Expression Set (exprSet) with

500 genes

8 samples

phenoData object with 2 variables and 8 cases

varLabels

ES: presence or absence of estrogen

TIME: length of exposure to treatment (hours)

> pData(estrogen)

ES TIME

et1.CEL A 10h

et2.CEL A 10h

Et1.CEL P 10h

Et2.CEL P 10h

eT1.CEL A 48h

eT2.CEL A 48h

ET1.CEL P 48h

ET2.CEL P 48h

2.1 Overview

The made4 function overview() provides a quick way to get an overview or feel for
data. overview() will draw a boxplot, histogram and dendrogram of a hierarchical
analysis. Hierarchical clustering is produced using average linkage clustering with a
Pearson correlation measure of similarity (5) This gives a quick first glance at the data.

> overview(estrogen)

Often labelling the samples using a covariate of interest, in this case, the presence of
estrogen (ES) or timepoint (TIME) is useful.
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> overview(estrogen, label = estrogen$TIME)
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Figure 1: Overview of estrogen data. A) dendrogram showing results of average linkage
clustering, B) boxplot and C) histrogram.

2.2 Correspondence Analysis

The function ord simplifies the running of ordination methods such as principal compo-
nent, correspondence or non-symmetric correspondence analysis. It provides a wrapper
which can call each of these methods in ade4. To run a correspondence analysis (6) on
this dataset.

> estrogen.coa <- ord(estrogen, type = "coa")

Output from ord is a list of length 2, containing the ordination results ($ord) and a
factor ($fac) if input. The ordination results (estrogen.coa$ord) contain a list of results
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(of length 12) which includes the eigenvalues ($eig), and the projected coordinations of
the variables ($li, 500 genes) and cases ($co, 8 microarray samples).

> names(estrogen.coa)

[1] "ord" "fac"

> estrogen.coa$ord

Duality diagramm

class: coa dudi

$call: dudi.coa(df = data.tr, scannf = FALSE, nf = ord.nf)

$nf: 7 axis-components saved

$rank: 7

eigen values: 0.0007448 0.0003107 0.000109 6.419e-05 4.691e-05 ...

vector length mode content

1 $cw 500 numeric column weights

2 $lw 8 numeric row weights

3 $eig 7 numeric eigen values

data.frame nrow ncol content

1 $tab 8 500 modified array

2 $li 8 7 row coordinates

3 $l1 8 7 row normed scores

4 $co 500 7 column coordinates

5 $c1 500 7 column normed scores

other elements: N

2.3 Visualising Results

There are many functions in ade4 and made4 for visualising results from ordination anal-
ysis. The simplest way to view the results produced by ord is to use plot. plot(estrogen.ord)
will draw a plot of the eigenvalues, along with plots of the variables (genes) and a plot
of the cases (microarray samples). In this example Microarray samples are colour-coded
using the classvec estrogen$ES.
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> plot(estrogen.coa, classvec = estrogen$ES, arraycol = c("green",

+ "blue"), genecol = "pink")
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Figure 2: Correspondence analysis of estrogen dataset. A. plot of the eigenvalues,
B. projection of microarray samples in which samples incubated in the absence (green
squares) or presence (blue squares) of estrogen, C. projection of genes (pink filled cir-
cles) and D. biplot showing both genes and samples. Samples and genes with a strong
associated are projected in the same direction from the origin. The greater the distance
from the origin the stronger the association

Equally, samples could be coloured by time.

> plot(estrogen.coa, classvec = estrogen$TIME)

Genes and array projections can also be plotted using s.var and s.groups. The
function s.groups required a class vector (classvec), and allowed groups to be coloured
in different colours. For example, to plot microarray samples (cases),
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> s.var(estrogen.coa$ord$li)

To plot microarray samples, colour by group (estrogen presence) as specified by
estrogen$ES

> s.groups(estrogen.coa$ord$li, estrogen$ES)

Plot gene projections without labels (clab=0). Typically there are a large number of
genes, thus it is not feasible to label all of these. The function plotgenes is more useful
to use if you wish to add labels when there are lots of variables (genes)

> s.var(estrogen.coa$ord$co, clab = 0)

The gene projections can be also visualised with plotgenes. The number of genes
that are labelled at the end of the axis can be defined. The default is 10.

> plotgenes(estrogen.coa$ord$co, n = 5, col = "red")

By default the variables (genes) are labelled with the rownames of the matrix. Typ-
ically these are spot IDs or Affymetrix accession numbers which are not very easy to
interpret. But these can be easily labeled by gene symbols, using the annaffy annotation
package. To retrieve the gene symbols for all of the affymetrix features on the HGU95av2
chip and label genes by gene symbol:

> library(annaffy)

> symbs <- aafSymbol(geneNames(estrogen), "hgu95av2")

> gene.symbs <- getText(symbs)

> plotgenes(estrogen.coa$ord$co, n = 10, col = "red",

+ varlabels = gene.symbs)

To get a list of variables at the end of an axes, use topgenes. For example, to get a
list of the 5 genes at the negative and postive end of axes 1.

> topgenes(estrogen.coa$ord$co, axis = 1, n = 5)

To only the a list of the genes (default 10 genes) at the negative end of the first axes

> topgenes(estrogen.coa$ord$co, labels = gene.symbs,

+ end = "neg")

[1] "SLC39A8" "" "ME1" "KPNA2" "FDPS"

[6] "HNRPR" "FBXW11" "PEX7" "" "PJA2"

Two lists can be compares using comparelists.
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> plotgenes(estrogen.coa$ord$co, n = 10, col = "red",

+ varlabels = gene.symbs)

 d = 0.05 
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Figure 3: Projection of genes (filled circles) in Correspondence analysis of estrogen
dataset. The genes at the ends of each of the axes are labelled with HUGO gene symbols.
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To visualise the arrays (or genes) in 3D either use do3d or html3d. do3d is a wrapper
for scatterplot3d, but is modified so that groups can be coloured. html3d produces
a ”pdb” output which can be visualised using rasmol or chime. Rasmol provides a free
and very useful interface for colour, rotating, zooming 3D graphs.

> do3d(estrogen.coa$ord$li, classvec = estrogen$TIME,

+ cex.symbols = 3)

> html3D(estrogen.coa$ord$li, estrogen$TIME, writehtml = TRUE)

2.4 Classification and Class Prediction using Between Group
Analysis

Between Group Analysis (BGA) is a supervised classification method (3). The basis
of BGA is to ordinate the groups rather than the individual samples. In tests on two
microarray gene expression datasets, BGA performed comparably to supervised classi-
fication methods, including support vector machines and artifical neural networks (2).
To train a dataset, use bga, the projection of test data can be assessed using suppl.
One leave out cross validation can be performed using bga.jackknife. See the BGA
vignette for more details on this method.

> estrogen.bga <- bga(estrogen, type = "coa", estrogen$TIME)

2.5 Meta-analysis of microarray gene expression

Coinertia analysis cia (4) has been successfully applied to the cross-platform comparison
(meta-analysis) of microarray gene expression datasets (8). CIA is a multivariate method
that identifies trends or co-relationships in multiple datasets which contain the same
samples. That is either the rows or the columns of a matrix must be ”matchable”. CIA
can be applied to datasets where the number of variables (genes) far exceeds the number
of samples (arrays) such is the case with microarray analyses. cia calls coinertia in
the ade4 package. See the CIA vignette for more details on this method.

> data(NCI60)

> coin <- cia(NCI60$Ross, NCI60$Affy)

> names(coin)

[1] "call" "coinertia" "coa1" "coa2"

> coin$coinertia$RV

[1] 0.7859656

The RV coefficient $RV which is 0.786 in this instance, is a measure of global simi-
larity between the datasets. The greater (scale 0-1) the better.
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Figure 4: Output from html3D, which can be rotated and visualised on web browsers
that can support chime (IE or Netscape on MS Windows or Mac).
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> plot(estrogen.bga, genelabels = gene.symbs)

[1] 4 67 173 238 240 279 286 296 306 314 325 372 406 411

[15] 412 415 445 455 464 470
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Figure 5: Between group analysis of Estrogen dataset. A. Between.graph of the mi-
croarray samples, showing their separation on the discriminating BGA axes, B. graph1D
of microarray samples, coloured by their class, C. graph of positions of genes on the same
axis. Genes at the ends of the axis are most discriminating for that group
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> plot(coin, classvec = NCI60$classes[, 2], clab = 0,

+ cpoint = 3)

 d = 1 

 CIA of df1 NCI60$Ross and df2 NCI60$Affy 
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Figure 6: Coinertia analysis of NCI 60 cell line Spotted and Affymetrix gene expression
dataset. The same 60 cell lines were analysed by two different labs on a spotted cDNA
array (Ross) and an affymetrix array (Affy). The Ross dataset contains 1375 genes,
and the affy dataset contains 1517. There is little overlap betwen the genes represented
on these platforms. CIA allows visualisation of genes with similar expression patterns
across platforms. A) shows a plot of the 60 microarray samples projected onto the one
space. The 60 circles represent dataset 1 (Ross) and the 60 arrows represent dataset 2
(affy). Each circle and arrow are joined by a line, the length of which is proportional
to the divergence between that samples in the two datasets. The samples are coloured
by cell type. B)The gene projections from datasets 1 (Ross), C) the gene projections
from dataset 2 (Affy). Genes and samples projected in the same direction from the
origin show genes that are expressed in those samples. See vingette for more help on
interpreting these plots.
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3 Functions in made4

Data Input

array2ade4 Converts matrix, data.frame, exprSet, marrayRaw microarray gene
expression data input data into a data frame suitable for analysis in
ADE4. The rows and columns are expected to contain the variables
(genes) and cases (array samples)

overview Draw boxplot, histogram and hierarchical tree of gene expression
data. This is useful only for a brief first glance at data.

Example datasets provides with made4

khan Microarray gene expression dataset from Khan et al., 2001
NCI60 Microarray gene expression profiles of the NCI 60 cell lines

Classification and class prediction using Between Group Analysis

bga Between group analysis
bga.jackknife Jackknife between group analysis
randomiser Randomly reassign training and test samples
bga.suppl Between group analysis with supplementary data projection
suppl Projection of supplementary data onto axes from a between group

analysis
plot.bga Plot results of between group analysis
between.graph Plot 1D graph of results from between group analysis

Meta analysis of two or more datasets using Coinertia Analysis

cia Coinertia analysis: Explore the covariance between two datasets
plot.cia Plot results of coinertia analysis

Graphical Visualisation of results: 1D Visualisation

graph1D Plot 1D graph of axis from multivariate analysis
between.graph Plot 1D graph of results from between group analysis
commonMap Highlight common points between two 1D plots
heatplot Draws heatmap with dendrograms (of eigenvalues)
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Graphical Visualisation of results: 2D Visualisation

plotgenes Graph xy plot of variable (gene) projections from PCA or COA.
Only label variables at ends of axes

s.var Graph xy plot of variables (genes or arrays). Derived from ADE4
graphics module s.label.

s.groups Graph xy plot of groups of variables (genes or arrays) and colour
by group. Derived from ADE4 graphics module s.class

s.match.col Graph xy plot of 2 sets of variables (normally genes) from CIA.
Derived from ADE4 graphics module s.match

plot.bga Plot results of between group analysis using plotgenes, s.groups and
s.var

plot.cia Plot results of coinertia analysis showing s.match.col, and plotgenes

Graphical Visualisation of results: 3D Visualisation

do3d Generate a 3D xyz graph using scatterplot3d
rotate3d Generate multiple 3D graphs using do3d in which each graph is

rotated
html3D Produce web page with a 3D graph that can be viewed using Chime

web browser plug-in, and/or a pdb file that can be viewed using
Rasmol

Interpretation of results

topgenes Returns a list of variables at the ends (positive, negative or both)
of an axis

sumstats Summary statistics on xy co-ordinates, returns the slopes and dis-
tance from origin of each co-ordinate

comparelists Return the intersect, difference and union between 2 vectors
print.comparelists Prints the results of comparelists
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