cnvGWAS {CNVRanger} | R Documentation |
Wraps all the necessary functions to run a CNV-GWAS using the output of
setupCnvGWAS
function
(i) Produces the GDS file containing the genotype information (if produce.gds == TRUE), (ii) Produces the requested inputs for a PLINK analysis, (iii) run a CNV-GWAS analysis using linear model implemented in PLINK (http://zzz.bwh.harvard.edu/plink/gvar.shtml), and (iv) export a QQ-plot displaying the adjusted p-values. In this release only the p-value for the copy number is available (i.e. 'P(CNP)').
cnvGWAS(phen.info, n.cor = 1, min.sim = 0.95, freq.cn = 0.01, snp.matrix = FALSE, method.m.test = "fdr", lo.phe = 1, chr.code.name = NULL, genotype.nodes = "CNVGenotype", coding.translate = "all", path.files = NULL, list.of.files = NULL, produce.gds = TRUE, run.lrr = FALSE, assign.probe = "min.pvalue", correct.inflation = FALSE, both.up.down = FALSE, verbose = FALSE)
phen.info |
Returned by |
n.cor |
Number of cores to be used |
min.sim |
Minimum CNV genotype distribution similarity among subsequent probes. Default is 0.95 (i.e. 95%) |
freq.cn |
Minimum CNV frequency where 1 (i.e. 100%), or all samples deviating from diploid state. Default 0.01 (i.e. 1%) |
snp.matrix |
Only FALSE implemented - If TRUE B allele frequencies (BAF) would be used to reconstruct CNV-SNP genotypes |
method.m.test |
Correction for multiple tests to be used. FDR is default,
see |
lo.phe |
The phenotype to be analyzed in the PhenInfo$phenotypesSam data-frame |
chr.code.name |
A data-frame with the integer name in the first column and the original name for each chromosome |
genotype.nodes |
Expression data type. Nodes with CNV genotypes to be produced in the gds file. |
coding.translate |
For 'CNVgenotypeSNPlike'. If NULL or unrecognized string use only biallelic CNVs. If 'all' code multiallelic CNVs as 0 for loss; 1 for 2n and 2 for gain. |
path.files |
Folder containing the input CNV files used for the CNV calling (i.e. one text file with 5 collumns for each sample). Columns should contain (i) probe name, (ii) Chromosome, (iii) Position, (iv) LRR, and (v) BAF. |
list.of.files |
Data-frame with two columns where the (i) is the file name with signals and (ii) is the correspondent name of the sample in the gds file |
produce.gds |
logical. If TRUE produce a new gds, if FALSE use gds previously created |
run.lrr |
If TRUE use LRR values instead absolute copy numbers in the association |
assign.probe |
‘min.pvalue’ or ‘high.freq’ to represent the CNV segment |
correct.inflation |
logical. Estimate lambda from raw p-values and correct for genomic inflation.
Use with argument |
both.up.down |
Check for CNV genotype similarity in both directions. Default is FALSE (i.e. only downstream) |
verbose |
Show progress in the analysis |
The CNV segments and the representative probes and their respective p-value
Vinicius Henrique da Silva <vinicius.dasilva@wur.nl>
da Silva et al. (2016) Genome-wide detection of CNVs and their association with meat tenderness in Nelore cattle. PLoS One, 11(6):e0157711.
link{setupCnvGWAS}
to setup files needed for the CNV-GWAS.
# Load phenotype-CNV information data.dir <- system.file("extdata", package="CNVRanger") phen.loc <- file.path(data.dir, "Pheno.txt") cnv.out.loc <- file.path(data.dir, "CNVOut.txt") map.loc <- file.path(data.dir, "MapPenn.txt") phen.info <- setupCnvGWAS('Example', phen.loc, cnv.out.loc, map.loc) # Define chr correspondence to numeric, if necessary df <- '16 1A 25 4A 29 25LG1 30 25LG2 31 LGE22' chr.code.name <- read.table(text=df, header=FALSE) segs.pvalue.gr <- cnvGWAS(phen.info, chr.code.name=chr.code.name)