suppressMessages(require(netDx))
suppressMessages(require(GenomicRanges))
# read patient CNVs
phenoFile <- paste(path.package("netDx"), "extdata", "AGP1_CNV.txt",
sep=getFileSep())
pheno <- read.delim(phenoFile,sep="\t",header=TRUE,as.is=TRUE)
# sample metadata table must have ID and STATUS columns
colnames(pheno)[1] <- "ID"
# create GRanges object.
# Must have ID and LOCUS_NAMES in metadata
cnv_GR <- GRanges(pheno$seqnames,
IRanges(pheno$start,pheno$end),
ID=pheno$ID,LOCUS_NAMES=pheno$Gene_symbols)
pheno <- pheno[!duplicated(pheno$ID),]
pathFile <- fetchPathwayDefinitions(
"February",2018,verbose=TRUE)
pathwayList <- readPathways(pathFile)
# get gene coordinates, use hg18
require(BiocFileCache)
geneURL <- paste("http://download.baderlab.org/netDx/",
"supporting_data/refGene.hg18.bed",sep="")
cache <- rappdirs::user_cache_dir(appname = "netDx")
bfc <- BiocFileCache::BiocFileCache(cache,ask=FALSE)
rid_rec <- bfcquery(bfc, "hg18_genes", "rname")
rid <- rid_rec$rid
if (!length(rid)) {
rid <- names(bfcadd(bfc, "hg18_genes", geneURL))
}
if (!isFALSE(bfcneedsupdate(bfc, rid))){
bfcdownload(bfc, rid,ask=FALSE)
}
geneFile <- bfcrpath(bfc,rids=rid)
genes <- read.delim(geneFile,sep="\t",header=FALSE,as.is=TRUE)
genes <- genes[which(genes[,4]!=""),]
gene_GR <- GRanges(genes[,1],
IRanges(genes[,2],genes[,3]),
name=genes[,4]
)
# create GRangesList of pathway ranges
path_GRList <- mapNamedRangesToSets(gene_GR,pathwayList)
outDir <- paste(tempdir(),"ASD",sep=getFileSep())
if (file.exists(outDir)) unlink(outDir,recursive=TRUE); dir.create(outDir)
predictClass <- "case"
out <- suppressMessages(
buildPredictor_sparseGenetic(
pheno, cnv_GR, predictClass,
path_GRList,outDir,
numSplits=3L, featScoreMax=3L,
enrichLabels=TRUE,numPermsEnrich=20L,
numCores=2L)
)
# plot ROC curve. Note that the denominator only includes
# patients with events in networks that are label-enriched
dat <- out$performance_denEnrichedNets
plot(0,0,type="n",xlim=c(0,100),ylim=c(0,100),
las=1, xlab="False Positive Rate (%)",
ylab="True Positive Rate (%)",
bty='n',cex.axis=1.5,cex.lab=1.3,
main="ROC curve - Patients in label-enriched pathways")
points(dat$other_pct,dat$pred_pct,
col="red",type="o",pch=16,cex=1.3,lwd=2)
# calculate AUROC and AUPR
tmp <- data.frame(
score=dat$score,
tp=dat$pred_ol,fp=dat$other_ol,
# tn: "-" that were correctly not called
tn=dat$other_tot - dat$other_ol,
# fn: "+" that were not called
fn=dat$pred_tot - dat$pred_ol)
stats <- netDx::perfCalc(tmp)
tmp <- stats$stats
message(sprintf("PRAUC = %1.2f\n", stats$prauc))
message(sprintf("ROCAUC = %1.2f\n", stats$auc))
# examine pathway-level scores; these are
# cumulative across the splits - here, each of three
# splits has a max feature score of three, so
# a feature can score a max of (3 + 3 + 3) = 9.
print(head(out$cumulativeFeatScores))
netDx natively handles missing data, making it suitable to build predictors with sparse genetic data such as somatic DNA mutations, frequently seen in cancer, and from DNA Copy Number Variations (CNV). This example demonstrates how to use netDx to build a predictor from sparse genetic data. Here we build a case/control classifier for Autism Spectrum Disorder (ASD) diagnosis, starting from rare CNVs. The data is from [Pinto et al. (2014) AJHG 94:677)(https://pubmed.ncbi.nlm.nih.gov/24768552-convergence-of-genes-and-cellular-pathways-dysregulated-in-autism-spectrum-disorders/) .
In this design, we group CNVs by pathways. The logic behind the grouping is prior evidence showing that genetic events in diseases tend to converge on cellular processes of relevance to the pathophysiology of the disease. For example, see the Pinto et al. paper referenced in the previous section.
In this design, similarity is defined as a binary function, a strategy that has advantages and drawbacks. In plain terms, if two patients share a mutation in a pathway, their similarity for that pathway is 1.0 ; otherwise it is zero. This binary definition, while conceptually intuitive, increases the false positive rate in the netDx
feature selection step. That is, networks with even a single case sample will get a high feature score, regardless of whether that network is enriched for case samples.
To counter this problem, we introduce a label-enrichment step in the feature selection. A bias measure is first computed for each network, such that a network with only cases has +1; one with only controls has a score of -1; and one with an equal number of both has a score of zero. Label-enrichment compares the bias in each real network, to the bias in that network in label-permuted data. It then assigns an empirical p-value for the proportion of times a label-permuted network has a bias as high as the real network. Only networks with a p-value below a user-assigned threshold pass label-enrichment, and feature selection is limited to these networks. In netDx
, label-enrichment is enabled by setting enrichLabels=TRUE
in the call to buildPredictor_sparseGenetic()
.
The other difference between this design and those with non-sparse data, is the method of feature scoring. The user specifies a parameter which indicates the number of times to split the data and run feature selection. The algorithm then runs feature selection numSplits
times, each time leaving 1/numSplits
of the samples out. In each split, features are scored between 0 and featScoreMax
, using the same approach
as is used for continuous-valued input. Feature scores are then added across the splits so that a feature can score as high as numSplits*featScoreMax
.
For a given cutoff for features, a patient is called a “case” if they have a genetic event in pathways that pass feature selection at that cutoff; otherwise, at that cutoff, they are labelled a “control”. These calls are used to generate the false positive and true positive rates across the various cutoffs, which ultimately generates an ROC curve.
suppressMessages(require(netDx))
suppressMessages(require(GenomicRanges))
CNV coordinates are read in, and converted into a GRanges
object. As always, the sample metadata table, here the pheno
object, must have ID
and STATUS
columns.
outDir <- paste(tempdir(),"ASD",sep=getFileSep())
if (file.exists(outDir)) unlink(outDir,recursive=TRUE);
dir.create(outDir)
cat("* Setting up sample metadata\n")
## * Setting up sample metadata
phenoFile <- paste(path.package("netDx"), "extdata", "AGP1_CNV.txt",
sep=getFileSep())
pheno <- read.delim(phenoFile,sep="\t",header=TRUE,as.is=TRUE)
colnames(pheno)[1] <- "ID"
head(pheno)
## ID seqnames start end Gene_symbols Pathogenic STATUS
## 3 1020_4 chr3 4110452 4145874 no case
## 4 1030_3 chr10 56265896 56361311 no case
## 5 1030_3 chr7 64316996 64593616 ZNF92,LOC441242 no case
## 7 1045_3 chr3 83206919 83239473 no case
## 11 1050_3 chr6 57021412 57062509 KIAA1586 no case
## 16 1116_4 chr1 30334653 30951250 no case
cnv_GR <- GRanges(pheno$seqnames,IRanges(pheno$start,pheno$end),
ID=pheno$ID,LOCUS_NAMES=pheno$Gene_symbols)
pheno <- pheno[!duplicated(pheno$ID),]
The fetchPathwayDefinitions()
function downloads pathway definitions from baderlab.org
but users may provide custom .gmt
files as well. In the example below, gene coordinates
for the hg18 genome build are automatically fetched from a remote location, and converted to a GRanges
object. The function
mapNamedRangesToSets()
is used to group this GRanges
object into pathway-level sets.
pathFile <- fetchPathwayDefinitions("February",2018,verbose=TRUE)
## Fetching http://download.baderlab.org/EM_Genesets/February_01_2018/Human/symbol/Human_AllPathways_February_01_2018_symbol.gmt
pathwayList <- readPathways(pathFile)
## ---------------------------------------
## File: 44a86c5bc1_Human_AllPathways_February_01_2018_symbol.gmt
## Read 3199 pathways in total, internal list has 3163 entries
## FILTER: sets with num genes in [10, 200]
## => 1044 pathways excluded
## => 2119 left
# get gene coordinates, use hg18
require(BiocFileCache)
## Loading required package: BiocFileCache
## Loading required package: dbplyr
geneURL <- paste("http://download.baderlab.org/netDx/",
"supporting_data/refGene.hg18.bed",sep="")
cache <- rappdirs::user_cache_dir(appname = "netDx")
bfc <- BiocFileCache::BiocFileCache(cache,ask=FALSE)
rid_rec <- bfcquery(bfc, "hg18_genes", "rname")
rid <- rid_rec$rid
if (!length(rid)) {
rid <- names(bfcadd(bfc, "hg18_genes", geneURL))
}
if (!isFALSE(bfcneedsupdate(bfc, rid))){
bfcdownload(bfc, rid,ask=FALSE)
}
geneFile <- bfcrpath(bfc,rids=rid)
genes <- read.delim(geneFile,sep="\t",header=FALSE,as.is=TRUE)
genes <- genes[which(genes[,4]!=""),]
gene_GR <- GRanges(genes[,1],IRanges(genes[,2],genes[,3]),
name=genes[,4])
Group gene extents into pathway-based sets, which effectively creates grouping rules for netDx. The function mapNamedRangesToSets()
does this grouping, generating a GRangesList
object.
path_GRList <- mapNamedRangesToSets(gene_GR,pathwayList)
Once the phenotype matrix and grouping rules are set up, the predictor is called using buildPredictor_sparseGenetic()
. Note that unlike with non-sparse data,
the user does not provide a custom similarity function in this application; currently, the only option available is the binary similarity defined above. As discussed above, setting enrichLabels=TRUE
to enable label-enrichment is highly recommended to reduce false positive rate.
predictClass <- "case"
out <-
buildPredictor_sparseGenetic(pheno, cnv_GR, predictClass,
path_GRList,outDir,
numSplits=3L, featScoreMax=3L,
enrichLabels=TRUE,numPermsEnrich=20L,
numCores=2L)
## making rangesets
## * Preparing patient-locus matrix
## 3291 unique patients, 10417 unique locus symbols
## Time difference of 12.68684 secs
## * Writing networks
## Time difference of 10.32174 secs
## counting patients in net
## updating nets
## * Resampling train/test samples
## (+) case : 582 total ; 388 train, 194 held-out per
## (-) (!case): 647 total ; 432 train, 215 held-out per
## 1 (+): 194 test (1-194);
## 1 (-): 215 test
## 2 (+): 194 test (195-388);
## 2 (-): 215 test
## 3 (+): 194 test (389-582);
## 3 (-): 217 test
## ----------------------------------------
## Resampling round 1
## ----------------------------------------
## TT_STATUS
## STATUS TEST TRAIN
## case 194 388
## control 215 432
## # patients: train only
## [1] 820
## Training only:
## Limiting to 1417 networks
## Limiting to 820 patients
## Running label enrichment
## Got 1417 networks
## Total 820 subjects ; 388 of class case, 432 other
## * Computing real (+,+) (+,-)
## user system elapsed
## 0.870 0.197 13.077
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -1.0000 -0.6364 0.2000 0.1423 1.0000 1.0000
##
## 1417 of 1417 networks have ENR >= -1.0 -> filter
## * Computing shuffled
## .
## .
## [1] 456
## Limiting to 456 networks
## Limiting to 470 patients
## Score features for this train/test split
## Time difference of 9.736745 secs
## ----------------------------------------
## Resampling round 2
## ----------------------------------------
## TT_STATUS
## STATUS TEST TRAIN
## case 194 388
## control 215 432
## # patients: train only
## [1] 820
## Training only:
## Limiting to 1295 networks
## Limiting to 820 patients
## Running label enrichment
## Got 1295 networks
## Total 820 subjects ; 388 of class case, 432 other
## * Computing real (+,+) (+,-)
## user system elapsed
## 0.753 0.161 12.005
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -1.0000 -0.6685 0.0000 0.1035 1.0000 1.0000
##
## 1295 of 1295 networks have ENR >= -1.0 -> filter
## * Computing shuffled
## .
## .
## [1] 308
## Limiting to 308 networks
## Limiting to 340 patients
## Score features for this train/test split
## Time difference of 7.98422 secs
## ----------------------------------------
## Resampling round 3
## ----------------------------------------
## TT_STATUS
## STATUS TEST TRAIN
## case 194 388
## control 217 430
## # patients: train only
## [1] 818
## Training only:
## Limiting to 1340 networks
## Limiting to 818 patients
## Running label enrichment
## Got 1340 networks
## Total 818 subjects ; 388 of class case, 430 other
## * Computing real (+,+) (+,-)
## user system elapsed
## 0.690 0.221 12.760
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -1.0000 -0.6000 0.2000 0.1604 1.0000 1.0000
##
## 1340 of 1340 networks have ENR >= -1.0 -> filter
## * Computing shuffled
## .
## .
## [1] 452
## Limiting to 452 networks
## Limiting to 313 patients
## Score features for this train/test split
## Time difference of 7.680492 secs
Feature selection identifies pathways that are consistently enriched for the label of interest; here, “case” status. From the diagnostic point of view, a patient with a genetic event in a selected feature - here, a CNV in a feature-selected pathway - is labelled a “case”. “True positives” are therefore cases with CNVs in feature-selected pathways, while “false positives” are controls with CNVs in feature-selected pathways. These definitions are used to compute the ROC curve below.
dat <- out$performance_denEnrichedNets
plot(0,0,type="n",xlim=c(0,100),ylim=c(0,100),
las=1, xlab="False Positive Rate (%)",
ylab="True Positive Rate (%)",
bty='n',cex.axis=1.5,cex.lab=1.3,
main="ROC curve - Patients in label-enriched pathways")
points(dat$other_pct,dat$pred_pct,
col="red",type="o",pch=16,cex=1.3,lwd=2)
We can also compute the AUROC and AUPR from scratch.
tmp <- data.frame(
score=dat$score,
tp=dat$pred_ol,fp=dat$other_ol,
# tn: "-" that were correctly not called
tn=dat$other_tot - dat$other_ol,
# fn: "+" that were not called
fn=dat$pred_tot - dat$pred_ol)
stats <- netDx::perfCalc(tmp)
tmp <- stats$stats
message(sprintf("PRAUC = %1.2f\n", stats$prauc))
## PRAUC = 0.65
message(sprintf("ROCAUC = %1.2f\n", stats$auc))
## ROCAUC = 0.69
Pathway scores are also added across the splits, for a total of 9 across the 3 splits (3 + 3 + 3).
# now get pathway score
print(head(out$cumulativeFeatScores))
## PATHWAY_NAME
## NEUROTRANSMITTER_RECEPTORS_AND_POSTSYNAPTIC_SIGNAL_TRANSMISSION_cont.txt NEUROTRANSMITTER_RECEPTORS_AND_POSTSYNAPTIC_SIGNAL_TRANSMISSION
## HALLMARK_PROTEIN_SECRETION_cont.txt HALLMARK_PROTEIN_SECRETION
## PID_CXCR4_PATHWAY_cont.txt PID_CXCR4_PATHWAY
## METABOTROPIC_GLUTAMATE_RECEPTOR_GROUP_III_PATHWAY_cont.txt METABOTROPIC_GLUTAMATE_RECEPTOR_GROUP_III_PATHWAY
## ER_TO_GOLGI_ANTEROGRADE_TRANSPORT_cont.txt ER_TO_GOLGI_ANTEROGRADE_TRANSPORT
## WNT_cont.txt WNT
## SCORE
## NEUROTRANSMITTER_RECEPTORS_AND_POSTSYNAPTIC_SIGNAL_TRANSMISSION_cont.txt 8
## HALLMARK_PROTEIN_SECRETION_cont.txt 7
## PID_CXCR4_PATHWAY_cont.txt 6
## METABOTROPIC_GLUTAMATE_RECEPTOR_GROUP_III_PATHWAY_cont.txt 6
## ER_TO_GOLGI_ANTEROGRADE_TRANSPORT_cont.txt 6
## WNT_cont.txt 6