Installation

To install and load NBAMSeq

Introduction

High-throughput sequencing experiments followed by differential expression analysis is a widely used approach to detect genomic biomarkers. A fundamental step in differential expression analysis is to model the association between gene counts and covariates of interest. NBAMSeq is a flexible statistical model based on the generalized additive model and allows for information sharing across genes in variance estimation. Specifically, we model the logarithm of mean gene counts as sums of smooth functions with the smoothing parameters and coefficients estimated simultaneously by a nested iteration. The variance is estimated by the Bayesian shrinkage approach to fully exploit the information across all genes.

The workflow of NBAMSeq contains three main steps:

Here we illustrate each of these steps respectively.

Data input

Users are expected to provide three parts of input, i.e. countData, colData, and design.

countData is a matrix of gene counts generated by RNASeq experiments.

      sample1 sample2 sample3 sample4 sample5 sample6 sample7 sample8 sample9
gene1     179     235       1      14      18      69      64     355       1
gene2       1       3      21       6       1       1       4      26      71
gene3     148      44       3     273       5       1       1       8     115
gene4     113       2      29       7       2      53       2     193      24
gene5       6      17      21      29     366      13       1      64     195
gene6       5       5     135     130       1       5     127     216      34
      sample10 sample11 sample12 sample13 sample14 sample15 sample16 sample17
gene1       10        3     1848      187        1       37       35       14
gene2       10        4        7      127       42       46      271        2
gene3       11        7      168        3       12       36       22        1
gene4        1        1        6        5      121       71       52      171
gene5      184        2        4     1210       54       56      201        3
gene6       22      224        2        1        8      198        9      382
      sample18 sample19 sample20
gene1      516       72       22
gene2       24      117       23
gene3       72        3        1
gene4       46      221       11
gene5       14        1      359
gene6      548      148      109

colData is a data frame which contains the covariates of samples. The sample order in colData should match the sample order in countData.

           pheno        var1       var2       var3 var4
sample1 45.80454 -0.67696702  0.4757105  1.3805930    1
sample2 71.56170  1.48223037  0.2018922  1.7711097    2
sample3 49.11499  1.50332834  0.4788836  1.9331688    2
sample4 31.76184  0.16693000  1.1395186 -0.4399929    2
sample5 44.76679 -0.45921695 -0.7049107  0.8112379    1
sample6 47.78797 -0.03322722  1.0789435  0.2366181    2

design is a formula which specifies how to model the samples. Compared with other packages performing DE analysis including DESeq2 (Love, Huber, and Anders 2014), edgeR (Robinson, McCarthy, and Smyth 2010), NBPSeq (Di et al. 2015) and BBSeq (Zhou, Xia, and Wright 2011), NBAMSeq supports the nonlinear model of covariates via mgcv (Wood and Wood 2015). To indicate the nonlinear covariate in the model, users are expected to use s(variable_name) in the design formula. In our example, if we would like to model pheno as a nonlinear covariate, the design formula should be:

Several notes should be made regarding the design formula:

We then construct the NBAMSeqDataSet using countData, colData, and design:

class: NBAMSeqDataSet 
dim: 50 20 
metadata(1): fitted
assays(1): counts
rownames(50): gene1 gene2 ... gene49 gene50
rowData names(0):
colnames(20): sample1 sample2 ... sample19 sample20
colData names(5): pheno var1 var2 var3 var4

Differential expression analysis

Differential expression analysis can be performed by NBAMSeq function:

Several other arguments in NBAMSeq function are available for users to customize the analysis.

Pulling out DE results

Results of DE analysis can be pulled out by results function. For continuous covariates, the name argument should be specified indicating the covariate of interest. For nonlinear continuous covariates, base mean, effective degrees of freedom (edf), test statistics, p-value, and adjusted p-value will be returned.

DataFrame with 6 rows and 7 columns
       baseMean       edf      stat    pvalue      padj       AIC       BIC
      <numeric> <numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
gene1  188.6805   1.00008 1.5950891  0.206655  0.555178   238.635   245.605
gene2   30.8274   1.00023 1.8920351  0.169150  0.555178   189.735   196.705
gene3   41.4709   1.00007 1.0808716  0.298541  0.670205   186.922   193.893
gene4   39.0263   1.00003 0.0937343  0.759489  0.914050   204.336   211.306
gene5  127.8197   1.00021 0.5871080  0.443764  0.700151   231.732   238.703
gene6   79.1836   1.00004 0.7559089  0.384640  0.670205   225.594   232.564

For linear continuous covariates, base mean, estimated coefficient, standard error, test statistics, p-value, and adjusted p-value will be returned.

DataFrame with 6 rows and 8 columns
       baseMean      coef        SE      stat     pvalue      padj       AIC
      <numeric> <numeric> <numeric> <numeric>  <numeric> <numeric> <numeric>
gene1  188.6805 -1.507719  0.531022 -2.839278 0.00452158 0.0781025   238.635
gene2   30.8274 -0.175435  0.463920 -0.378157 0.70531365 0.9320979   189.735
gene3   41.4709 -0.586886  0.458774 -1.279248 0.20080959 0.4943794   186.922
gene4   39.0263 -0.130285  0.457165 -0.284984 0.77565675 0.9320979   204.336
gene5  127.8197 -0.727705  0.528057 -1.378080 0.16817846 0.4943794   231.732
gene6   79.1836  0.332173  0.459880  0.722304 0.47010737 0.7345428   225.594
            BIC
      <numeric>
gene1   245.605
gene2   196.705
gene3   193.893
gene4   211.306
gene5   238.703
gene6   232.564

For discrete covariates, the contrast argument should be specified. e.g. contrast = c("var4", "2", "0") means comparing level 2 vs. level 0 in var4.

DataFrame with 6 rows and 8 columns
       baseMean      coef        SE      stat    pvalue      padj       AIC
      <numeric> <numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
gene1  188.6805  0.666759  0.937727  0.711037 0.4770613  0.713606   238.635
gene2   30.8274 -0.380198  0.822878 -0.462035 0.6440563  0.806486   189.735
gene3   41.4709  1.966042  0.825753  2.380906 0.0172701  0.123358   186.922
gene4   39.0263 -0.786089  0.814745 -0.964829 0.3346307  0.713606   204.336
gene5  127.8197 -1.390521  0.941052 -1.477624 0.1395084  0.435964   231.732
gene6   79.1836 -0.454915  0.810959 -0.560959 0.5748252  0.792756   225.594
            BIC
      <numeric>
gene1   245.605
gene2   196.705
gene3   193.893
gene4   211.306
gene5   238.703
gene6   232.564

Visualization

We suggest two approaches to visualize the nonlinear associations. The first approach is to plot the smooth components of a fitted negative binomial additive model by plot.gam function in mgcv (Wood and Wood 2015). This can be done by calling makeplot function and passing in NBAMSeqDataSet object. Users are expected to provide the phenotype of interest in phenoname argument and gene of interest in genename argument.

In addition, to explore the nonlinear association of covariates, it is also instructive to look at log normalized counts vs. variable scatter plot. Below we show how to produce such plot.

DataFrame with 6 rows and 7 columns
        baseMean       edf      stat     pvalue      padj       AIC       BIC
       <numeric> <numeric> <numeric>  <numeric> <numeric> <numeric> <numeric>
gene17   57.6754   1.00006   9.41217 0.00215656  0.107828   198.040   205.010
gene20   56.0031   1.00003   5.69467 0.01701744  0.425436   208.624   215.594
gene27  118.0769   1.00016   3.77179 0.05214581  0.555178   219.430   226.400
gene41   82.9474   1.00005   3.46694 0.06261088  0.555178   220.155   227.125
gene21   80.1475   1.00017   3.37522 0.06620346  0.555178   212.547   219.518
gene32   93.0541   1.00005   3.30090 0.06924209  0.555178   221.615   228.585

Session info

R version 4.0.0 (2020-04-24)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.4 LTS

Matrix products: default
BLAS:   /home/biocbuild/bbs-3.11-bioc/R/lib/libRblas.so
LAPACK: /home/biocbuild/bbs-3.11-bioc/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=C              
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] ggplot2_3.3.0               BiocParallel_1.22.0        
 [3] NBAMSeq_1.4.0               SummarizedExperiment_1.18.0
 [5] DelayedArray_0.14.0         matrixStats_0.56.0         
 [7] Biobase_2.48.0              GenomicRanges_1.40.0       
 [9] GenomeInfoDb_1.24.0         IRanges_2.22.0             
[11] S4Vectors_0.26.0            BiocGenerics_0.34.0        

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.4.6           locfit_1.5-9.4         lattice_0.20-41       
 [4] assertthat_0.2.1       digest_0.6.25          R6_2.4.1              
 [7] RSQLite_2.2.0          evaluate_0.14          pillar_1.4.3          
[10] zlibbioc_1.34.0        rlang_0.4.5            annotate_1.66.0       
[13] blob_1.2.1             Matrix_1.2-18          rmarkdown_2.1         
[16] labeling_0.3           splines_4.0.0          geneplotter_1.66.0    
[19] stringr_1.4.0          RCurl_1.98-1.2         bit_1.1-15.2          
[22] munsell_0.5.0          compiler_4.0.0         xfun_0.13             
[25] pkgconfig_2.0.3        mgcv_1.8-31            htmltools_0.4.0       
[28] tidyselect_1.0.0       tibble_3.0.1           GenomeInfoDbData_1.2.3
[31] XML_3.99-0.3           withr_2.2.0            crayon_1.3.4          
[34] dplyr_0.8.5            bitops_1.0-6           grid_4.0.0            
[37] nlme_3.1-147           xtable_1.8-4           gtable_0.3.0          
[40] lifecycle_0.2.0        DBI_1.1.0              magrittr_1.5          
[43] scales_1.1.0           stringi_1.4.6          farver_2.0.3          
[46] XVector_0.28.0         genefilter_1.70.0      ellipsis_0.3.0        
[49] vctrs_0.2.4            RColorBrewer_1.1-2     tools_4.0.0           
[52] bit64_0.9-7            glue_1.4.0             DESeq2_1.28.0         
[55] purrr_0.3.4            survival_3.1-12        yaml_2.2.1            
[58] AnnotationDbi_1.50.0   colorspace_1.4-1       memoise_1.1.0         
[61] knitr_1.28            

References

Di, Y, DW Schafer, JS Cumbie, and JH Chang. 2015. “NBPSeq: Negative Binomial Models for Rna-Sequencing Data.” R Package Version 0.3. 0, URL Http://CRAN. R-Project. Org/Package= NBPSeq.

Love, Michael I, Wolfgang Huber, and Simon Anders. 2014. “Moderated Estimation of Fold Change and Dispersion for Rna-Seq Data with Deseq2.” Genome Biology 15 (12). BioMed Central:550.

Robinson, Mark D, Davis J McCarthy, and Gordon K Smyth. 2010. “EdgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data.” Bioinformatics 26 (1). Oxford University Press:139–40.

Wood, Simon, and Maintainer Simon Wood. 2015. “Package ’Mgcv’.” R Package Version 1:29.

Zhou, Yi-Hui, Kai Xia, and Fred A Wright. 2011. “A Powerful and Flexible Approach to the Analysis of Rna Sequence Count Data.” Bioinformatics 27 (19). Oxford University Press:2672–8.