Introduction

As a SingleCellExperiment-derived package, MAST can easily be inserted into workflows with packages such as scran, scater, zinbwave, SCnorm and others. The main gotcha is packages that assume integer counts vs log-transformed, or log-transformed, approximately scale-normalized data. We find that MAST performs best with log-transformed, scale-normalized data that has been thresholded, such as \(\log_2(\text{transcripts per million} + 1)\).

We address this by:

  • testing for log-like data for objects constructed in MAST
  • explicitly naming the slot of the assay containing such putatively log-like data
  • by default operating on the slot with such log-like data

In objects that were constructed in other packages, we …

In what follows, we show an example of using scater to plot some QC metrics, SCnorm to normalize data, and, and conversion to a Seurat object.

From MAST to Scater

Scater (citation) is a package that …

## Loading required package: SingleCellExperiment
## Loading required package: SummarizedExperiment
## Loading required package: GenomicRanges
## Loading required package: stats4
## Loading required package: BiocGenerics
## Loading required package: parallel
## 
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:parallel':
## 
##     clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
##     clusterExport, clusterMap, parApply, parCapply, parLapply,
##     parLapplyLB, parRapply, parSapply, parSapplyLB
## The following objects are masked from 'package:stats':
## 
##     IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
## 
##     anyDuplicated, append, as.data.frame, basename, cbind,
##     colMeans, colnames, colSums, dirname, do.call, duplicated,
##     eval, evalq, Filter, Find, get, grep, grepl, intersect,
##     is.unsorted, lapply, Map, mapply, match, mget, order, paste,
##     pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce,
##     rowMeans, rownames, rowSums, sapply, setdiff, sort, table,
##     tapply, union, unique, unsplit, which, which.max, which.min
## Loading required package: S4Vectors
## 
## Attaching package: 'S4Vectors'
## The following object is masked from 'package:base':
## 
##     expand.grid
## Loading required package: IRanges
## Loading required package: GenomeInfoDb
## Loading required package: Biobase
## Welcome to Bioconductor
## 
##     Vignettes contain introductory material; view with
##     'browseVignettes()'. To cite Bioconductor, see
##     'citation("Biobase")', and for packages 'citation("pkgname")'.
## Loading required package: DelayedArray
## Loading required package: matrixStats
## 
## Attaching package: 'matrixStats'
## The following objects are masked from 'package:Biobase':
## 
##     anyMissing, rowMedians
## Loading required package: BiocParallel
## 
## Attaching package: 'DelayedArray'
## The following objects are masked from 'package:matrixStats':
## 
##     colMaxs, colMins, colRanges, rowMaxs, rowMins, rowRanges
## The following objects are masked from 'package:base':
## 
##     aperm, apply
## Registered S3 methods overwritten by 'ggplot2':
##   method         from 
##   [.quosures     rlang
##   c.quosures     rlang
##   print.quosures rlang
## Registered S3 method overwritten by 'dplyr':
##   method               from  
##   as.data.frame.tbl_df tibble
## 
## Attaching package: 'MAST'
## The following object is masked from 'package:stats':
## 
##     filter
## Assuming data assay in position 1, with name et is log-transformed.

Here we make an object with assays counts and et. By default, MAST will operate on the et assay, but scran wants count-like data for some of its QC. The et data are log2 + 1 transcripts per million (TPM), as output by RSEM.

We could specify the assay name at creation with sca_raw = FromMatrix(list(logTPM = t(maits$expressionmat)), maits$cdat, maits$fdat) or rename an object that contains appropriately transformed data with assayNames(sca_raw) = c('logTPM', 'counts').

Before calling scater functionality, you might pause to consider if some features should belong in special control sets, such as mitochrondial genes, or spike-ins.

library(scater)
sca_raw = calculateQCMetrics(sca_raw)
plotRowData(sca_raw, x = 'log10_mean_counts', 'pct_dropout_by_counts')

plotColData(sca_raw, y="total_features_by_counts", x="total_counts")

Evidently some features were filtered, so not all cells contain 1 million counts. We can tell these were rare features based on the inverse relationship between total_counts and total_features_by_counts: the most complex libraries (with the greatest numer of features) are missing the most counts.

sca_raw <- runPCA(sca_raw, ncomponents=5, exprs_values = 'et')
plotReducedDim(sca_raw, use_dimred = 'PCA', colour_by = 'condition')

We can also run a PCA.

From scater to MAST

WIP: From MAST to ZINB-wave