K-nearest neighbors:

We read in input.scone.csv, which is our file modified (and renamed) from the get.marker.names() function. The K-nearest neighbor generation is derived from the Fast Nearest Neighbors (FNN) R package, within our function Fnn(), which takes as input the “input markers” to be used, along with the concatenated data previously generated, and the desired k. We advise the default selection to the total number of cells in the dataset divided by 100, as has been optimized on existing mass cytometry datasets. The output of this function is a matrix of each cell and the identity of its k-nearest neighbors, in terms of its row number in the dataset used here as input.

library(Sconify)
# Markers from the user-generated excel file
marker.file <- system.file('extdata', 'markers.csv', package = "Sconify")
markers <- ParseMarkers(marker.file)

# How to convert your excel sheet into vector of static and functional markers
markers
## $input
##  [1] "CD3(Cd110)Di"           "CD3(Cd111)Di"           "CD3(Cd112)Di"          
##  [4] "CD235-61-7-15(In113)Di" "CD3(Cd114)Di"           "CD45(In115)Di"         
##  [7] "CD19(Nd142)Di"          "CD22(Nd143)Di"          "IgD(Nd145)Di"          
## [10] "CD79b(Nd146)Di"         "CD20(Sm147)Di"          "CD34(Nd148)Di"         
## [13] "CD179a(Sm149)Di"        "CD72(Eu151)Di"          "IgM(Eu153)Di"          
## [16] "Kappa(Sm154)Di"         "CD10(Gd156)Di"          "Lambda(Gd157)Di"       
## [19] "CD24(Dy161)Di"          "TdT(Dy163)Di"           "Rag1(Dy164)Di"         
## [22] "PreBCR(Ho165)Di"        "CD43(Er167)Di"          "CD38(Er168)Di"         
## [25] "CD40(Er170)Di"          "CD33(Yb173)Di"          "HLA-DR(Yb174)Di"       
## 
## $functional
##  [1] "pCrkL(Lu175)Di"  "pCREB(Yb176)Di"  "pBTK(Yb171)Di"   "pS6(Yb172)Di"   
##  [5] "cPARP(La139)Di"  "pPLCg2(Pr141)Di" "pSrc(Nd144)Di"   "Ki67(Sm152)Di"  
##  [9] "pErk12(Gd155)Di" "pSTAT3(Gd158)Di" "pAKT(Tb159)Di"   "pBLNK(Gd160)Di" 
## [13] "pP38(Tm169)Di"   "pSTAT5(Nd150)Di" "pSyk(Dy162)Di"   "tIkBa(Er166)Di"
# Get the particular markers to be used as knn and knn statistics input
input.markers <- markers[[1]]
funct.markers <- markers[[2]]

# Selection of the k. See "Finding Ideal K" vignette
k <- 30

# The built-in scone functions
wand.nn <- Fnn(cell.df = wand.combined, input.markers = input.markers, k = k)
# Cell identity is in rows, k-nearest neighbors are columns
# List of 2 includes the cell identity of each nn, 
#   and the euclidean distance between
#   itself and the cell of interest

# Indices
str(wand.nn[[1]])
##  int [1:1000, 1:30] 335 283 316 63 411 494 686 95 862 422 ...
wand.nn[[1]][1:20, 1:10]
##       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
##  [1,]  335  561  113   86  757  687    8  798  345   686
##  [2,]  283  323  799  892  370  570  460  427  759   318
##  [3,]  316  753  648  599  706  760  847  494  555   635
##  [4,]   63  988  924  446  546  461  507  206  254   725
##  [5,]  411  735  949  352  126  269  865  420  830   810
##  [6,]  494  183  763  374  343  875  716  515  861   414
##  [7,]  686  113  880  870  711  609  684  605  580   353
##  [8,]   95  259  614  519  683  889  501  907  714   375
##  [9,]  862  180  208  772  238  543  132  580  476    64
## [10,]  422  193  841  111  898  224  508  759   67    77
## [11,]  391  805  256  400  733  117   29  262  412   868
## [12,]  825  144  881   67  224  377  384  422  980    54
## [13,]   36  286  663  855  551  235  604   35  134   127
## [14,]  173  503  531   51   61  537  858  265  641   802
## [15,]  518  956  596  625  519  375  779  889  173   591
## [16,]  905  287  888  378  605  880  164  133  580    30
## [17,]  979  999  316  351  762  129  132  114  829   462
## [18,]  398  574  135  809  873  539  461  250  651   546
## [19,]  169  133  312  627  532  291  394  887  770   976
## [20,]  931  888  472  248  862  231  133  933  760   114
# Distance
str(wand.nn[[2]])
##  num [1:1000, 1:30] 4.52 3.42 3.41 2.8 2.33 ...
wand.nn[[2]][1:20, 1:10]
##           [,1]     [,2]     [,3]     [,4]     [,5]     [,6]     [,7]     [,8]
##  [1,] 4.518016 5.976489 6.336659 6.362762 6.381264 6.464346 6.506224 6.558309
##  [2,] 3.422646 3.647824 3.733845 3.747977 4.009889 4.012787 4.170238 4.258487
##  [3,] 3.408781 3.583994 3.698748 3.718052 3.739959 3.770411 3.835693 4.010090
##  [4,] 2.803685 3.180609 3.336644 3.337072 3.575070 3.641495 3.749763 3.893021
##  [5,] 2.326419 2.620280 2.731706 2.734650 2.776866 2.779366 2.977156 2.990896
##  [6,] 3.482264 3.572148 3.582993 3.602643 3.623902 3.627003 3.633833 3.726887
##  [7,] 4.386751 4.700618 5.111118 5.219471 5.517923 5.525519 5.564380 5.578774
##  [8,] 4.778674 5.206551 5.392086 5.445631 5.461972 5.480027 5.566109 5.636048
##  [9,] 3.754273 4.023260 4.188502 4.243499 4.598457 4.735384 4.761092 4.779272
## [10,] 3.466023 3.659268 3.853933 3.943375 3.955120 3.986126 4.013946 4.018560
## [11,] 3.531208 3.552976 3.591812 3.684393 3.686622 3.833688 3.884142 4.070449
## [12,] 3.831873 4.472985 4.587128 4.805073 4.881974 4.893539 4.900333 4.915724
## [13,] 2.317429 2.623359 3.258614 3.578623 3.589798 3.668870 3.749202 3.761407
## [14,] 3.736748 3.999497 4.026252 4.364343 4.392323 4.487633 4.643523 4.658434
## [15,] 4.089461 4.091291 4.095246 4.231604 4.256208 4.382126 4.465774 4.475564
## [16,] 3.026220 3.118686 3.164888 3.368979 3.408749 3.574098 3.633856 3.646836
## [17,] 3.647291 3.780412 3.784215 3.798833 3.800394 3.808936 3.837787 3.838603
## [18,] 3.440584 3.464503 3.467530 3.620408 3.860991 3.889541 3.914558 3.933328
## [19,] 3.154017 3.527210 3.707808 3.810819 3.846423 3.857591 3.907548 3.917244
## [20,] 3.252701 3.333899 3.507925 3.597923 3.632416 3.636694 3.679354 3.696364
##           [,9]    [,10]
##  [1,] 6.590326 6.638444
##  [2,] 4.444663 4.538928
##  [3,] 4.021221 4.042208
##  [4,] 4.079641 4.090389
##  [5,] 3.069281 3.128062
##  [6,] 3.760918 3.766559
##  [7,] 5.594992 5.607769
##  [8,] 5.668140 5.682244
##  [9,] 4.831119 4.838182
## [10,] 4.033475 4.083185
## [11,] 4.082297 4.096203
## [12,] 4.999745 5.157341
## [13,] 3.942074 4.054187
## [14,] 4.740319 4.758214
## [15,] 4.512959 4.555739
## [16,] 3.659967 3.735694
## [17,] 3.882623 3.894779
## [18,] 4.009392 4.047670
## [19,] 3.979883 3.980366
## [20,] 3.730862 3.734410

Finding scone values:

This function iterates through each KNN, and performs a series of calculations. The first is fold change values for each maker per KNN, where the user chooses whether this will be based on medians or means. The second is a statistical test, where the user chooses t test or Mann-Whitney U test. I prefer the latter, because it does not assume any properties of the distributions. Of note, the p values are adjusted for false discovery rate, and therefore are called q values in the output of this function. The user also inputs a threshold parameter (default 0.05), where the fold change values will only be shown if the corresponding statistical test returns a q value below said threshold. Finally, the “multiple.donor.compare” option, if set to TRUE will perform a t test based on the mean per-marker values of each donor. This is to allow the user to make comparisons across replicates or multiple donors if that is relevant to the user’s biological questions. This function returns a matrix of cells by computed values (change and statistical test results, labeled either marker.change or marker.qvalue). This matrix is intermediate, as it gets concatenated with the original input matrix in the post-processing step (see the relevant vignette). We show the code and the output below. See the post-processing vignette, where we show how this gets combined with the input data, and additional analysis is performed.

wand.scone <- SconeValues(nn.matrix = wand.nn, 
                      cell.data = wand.combined, 
                      scone.markers = funct.markers, 
                      unstim = "basal")

wand.scone
## # A tibble: 1,000 × 34
##    `pCrkL(Lu175)Di.IL7.qval…` `pCREB(Yb176)D…` `pBTK(Yb171)Di…` `pS6(Yb172)Di.…`
##                         <dbl>            <dbl>            <dbl>            <dbl>
##  1                      0.998            0.953            1                0.956
##  2                      0.776            1                1                1    
##  3                      0.901            0.784            0.888            1    
##  4                      0.901            1                0.945            0.862
##  5                      0.773            0.886            1                1    
##  6                      0.678            1.00             0.909            1    
##  7                      0.934            0.651            1                1    
##  8                      0.932            0.887            1                0.666
##  9                      0.887            0.922            1                1    
## 10                      0.773            0.651            1                1    
## # … with 990 more rows, and 30 more variables:
## #   `cPARP(La139)Di.IL7.qvalue` <dbl>, `pPLCg2(Pr141)Di.IL7.qvalue` <dbl>,
## #   `pSrc(Nd144)Di.IL7.qvalue` <dbl>, `Ki67(Sm152)Di.IL7.qvalue` <dbl>,
## #   `pErk12(Gd155)Di.IL7.qvalue` <dbl>, `pSTAT3(Gd158)Di.IL7.qvalue` <dbl>,
## #   `pAKT(Tb159)Di.IL7.qvalue` <dbl>, `pBLNK(Gd160)Di.IL7.qvalue` <dbl>,
## #   `pP38(Tm169)Di.IL7.qvalue` <dbl>, `pSTAT5(Nd150)Di.IL7.qvalue` <dbl>,
## #   `pSyk(Dy162)Di.IL7.qvalue` <dbl>, `tIkBa(Er166)Di.IL7.qvalue` <dbl>, …

For programmers: performing additional per-KNN statistics

If one wants to export KNN data to perform other statistics not available in this package, then I provide a function that produces a list of each cell identity in the original input data matrix, and a matrix of all cells x features of its KNN.

I also provide a function to find the KNN density estimation independently of the rest of the “scone.values” analysis, to save time if density is all the user wants. With this density estimation, one can perform interesting analysis, ranging from understanding phenotypic density changes along a developmental progression (see post-processing vignette for an example), to trying out density-based binning methods (eg. X-shift). Of note, this density is specifically one divided by the aveage distance to k-nearest neighbors. This specific measure is related to the Shannon Entropy estimate of that point on the manifold (https://hal.archives-ouvertes.fr/hal-01068081/document).

I use this metric to avoid the unusual properties of the volume of a sphere as it increases in dimensions (https://en.wikipedia.org/wiki/Volume_of_an_n-ball). This being said, one can modify this vector to be such a density estimation (example http://www.cs.haifa.ac.il/~rita/ml_course/lectures_old/KNN.pdf), by treating the distance to knn as the radius of a n-dimensional sphere and incoroprating said volume accordingly.

An individual with basic programming skills can iterate through these elements to perform the statistics of one’s choosing. Examples would include per-KNN regression and classification, or feature imputation. The additional functionality is shown below, with the example knn.list in the package being the first ten instances:

# Constructs KNN list, computes KNN density estimation
wand.knn.list <- MakeKnnList(cell.data = wand.combined, nn.matrix = wand.nn)
wand.knn.list[[8]]
## # A tibble: 30 × 51
##    `CD3(Cd110)Di` `CD3(Cd111)Di` `CD3(Cd112)Di` `CD235-61-7-15(…` `CD3(Cd114)Di`
##             <dbl>          <dbl>          <dbl>             <dbl>          <dbl>
##  1         0.419         -0.114          1.17              -0.824          0.398
##  2         0.122         -0.0340         0.123             -0.593          1.43 
##  3        -0.0130        -0.0100        -0.412             -0.347          1.73 
##  4        -0.102          0.551          0.358             -0.566         -0.230
##  5        -0.180          0.0896         0.521             -0.551          0.346
##  6        -0.0664        -0.184         -0.0623            -0.262         -0.124
##  7        -0.306          1.61           0.211             -2.20           1.18 
##  8        -0.111          0.498          1.64              -0.768         -0.397
##  9         0.0602         0.854          0.0326             0.563         -0.182
## 10        -0.0323        -0.335         -0.476             -0.855          1.19 
## # … with 20 more rows, and 46 more variables: `CD45(In115)Di` <dbl>,
## #   `CD19(Nd142)Di` <dbl>, `CD22(Nd143)Di` <dbl>, `IgD(Nd145)Di` <dbl>,
## #   `CD79b(Nd146)Di` <dbl>, `CD20(Sm147)Di` <dbl>, `CD34(Nd148)Di` <dbl>,
## #   `CD179a(Sm149)Di` <dbl>, `CD72(Eu151)Di` <dbl>, `IgM(Eu153)Di` <dbl>,
## #   `Kappa(Sm154)Di` <dbl>, `CD10(Gd156)Di` <dbl>, `Lambda(Gd157)Di` <dbl>,
## #   `CD24(Dy161)Di` <dbl>, `TdT(Dy163)Di` <dbl>, `Rag1(Dy164)Di` <dbl>,
## #   `PreBCR(Ho165)Di` <dbl>, `CD43(Er167)Di` <dbl>, `CD38(Er168)Di` <dbl>, …
# Finds the KNN density estimation for each cell, ordered by column, in the 
# original data matrix
wand.knn.density <- GetKnnDe(nn.matrix = wand.nn)
str(wand.knn.density)
##  num [1:1000] 0.151 0.224 0.247 0.245 0.314 ...