Comprehensive and Interactive Analysis of Single Cell RNA-Seq Data


[Up] [Top]

Documentation for package ‘singleCellTK’ version 2.6.0

Help Pages

C D E F G I L M P Q R S T misc

-- C --

calcEffectSizes Finds the effect sizes for all genes in the original dataset, regardless of significance.
combineSCE Combine a list of SingleCellExperiment objects as one SingleCellExperiment object
computeHeatmap computeHeatmap The computeHeatmap method computes the heatmap visualization for a set of features against a set of dimensionality reduction components. This method uses the heatmap computation algorithm code from 'Seurat' but plots the heatmap using 'ComplexHeatmap' and 'cowplot' libraries.
computeZScore Compute Z-Score
constructSCE Create SingleCellExperiment object from csv or txt input
convertSCEToSeurat convertSCEToSeurat Converts sce object to seurat while retaining all assays and metadata
convertSeuratToSCE convertSeuratToSCE Converts the input seurat object to a sce object

-- D --

dataAnnotationColor Generate distinct colors for all categorical col/rowData entries. Character columns will be considered as well as all-integer columns. Any column with all-distinct values will be excluded.
dedupRowNames Deduplicate the rownames of a matrix or SingleCellExperiment object Adds '-1', '-2', ... '-i' to multiple duplicated rownames, and in place replace the unique rownames, store unique rownames in 'rowData', or return the unique rownames as character vecetor.
detectCellOutlier Detecting outliers within the SingleCellExperiment object.
diffAbundanceFET Calculate Differential Abundance with FET
discreteColorPalette Generate given number of color codes
distinctColors Generate a distinct palette for coloring different clusters
downSampleCells Estimate numbers of detected genes, significantly differentially expressed genes, and median significant effect size
downSampleDepth Estimate numbers of detected genes, significantly differentially expressed genes, and median significant effect size

-- E --

expData expData Get data item from an input 'SingleCellExperiment' object. The data item can be an 'assay', 'altExp' (subset) or a 'reducedDim', which is retrieved based on the name of the data item.
expData-method expData Get data item from an input 'SingleCellExperiment' object. The data item can be an 'assay', 'altExp' (subset) or a 'reducedDim', which is retrieved based on the name of the data item.
expData<- expData Store data items using tags to identify the type of data item stored. To be used as a replacement for assay<- setter function but with additional parameter to set a tag to a data item.
expData<--method expData Store data items using tags to identify the type of data item stored. To be used as a replacement for assay<- setter function but with additional parameter to set a tag to a data item.
expDataNames expDataNames Get names of all the data items in the input 'SingleCellExperiment' object including assays, altExps and reducedDims.
expDataNames-method expDataNames Get names of all the data items in the input 'SingleCellExperiment' object including assays, altExps and reducedDims.
expDeleteDataTag expDeleteDataTag Remove tag against an input data from the stored tag information in the metadata of the input object.
exportSCE Export data in SingleCellExperiment object
exportSCEtoAnnData Export a SingleCellExperiment R object as Python annData object
exportSCEtoFlatFile Export a SingleCellExperiment object to flat text files
exportSCEToSeurat Export data in Seurat object
expSetDataTag expSetDataTag Set tag to an assay or a data item in the input SCE object.
expTaggedData expTaggedData Returns a list of names of data items from the input 'SingleCellExperiment' object based upon the input parameters.

-- F --

featureIndex Retrieve row index for a set of features
findMarkerDiffExp Find the marker gene set for each cluster With an input SingleCellExperiment object and specifying the clustering labels, this function iteratively call the differential expression analysis on each cluster against all the others.
findMarkerTopTable Fetch the table of top markers that pass the filtering

-- G --

generateHTANMeta Generate HTAN manifest file for droplet and cell count data
generateMeta Generate HTAN manifest file for droplet and cell count data
generateSimulatedData Generates a single simulated dataset, bootstrapping from the input counts matrix.
getBiomarker Given a list of genes and a SingleCellExperiment object, return the binary or continuous expression of the genes.
getDEGTopTable Get Top Table of a DEG analysis
getDiffAbundanceResults Get/Set diffAbundanceFET result table
getDiffAbundanceResults-method Get/Set diffAbundanceFET result table
getDiffAbundanceResults<- Get/Set diffAbundanceFET result table
getDiffAbundanceResults<--method Get/Set diffAbundanceFET result table
getEnrichRResult Get or Set EnrichR Result
getEnrichRResult-method Get or Set EnrichR Result
getEnrichRResult<- Get or Set EnrichR Result
getEnrichRResult<--method Get or Set EnrichR Result
getGenesetNamesFromCollection List geneset names from geneSetCollection
getMSigDBTable Shows MSigDB categories
getPathwayResultNames List pathway analysis result names
getSampleSummaryStatsTable Stores and returns table of SCTK QC outputs to metadata.
getSampleSummaryStatsTable-method Stores and returns table of SCTK QC outputs to metadata.
getSceParams Extract QC parameters from the SingleCellExperiment object
getSeuratVariableFeatures Get variable feature names after running runSeuratFindHVG function
getSoupX Get or Set SoupX Result
getSoupX-method Get or Set SoupX Result
getSoupX<- Get or Set SoupX Result
getSoupX<--method Get or Set SoupX Result
getTopHVG getTopHVG Extracts the top variable genes from an input 'SingleCellExperiment' object. Note that the variability metrics must be computed using the 'runFeatureSelection' method before extracting the feature names of the top variable features. If 'altExp' parameter is a 'character' value, this function will return the input 'SingleCellExperiment' object with the subset containing only the top variable features stored as an 'altExp' slot in returned object. However, if this parameter is set to 'NULL', only the names of the top variable features will be returned as a 'character' vector.
getTSCANResults getTSCANResults accessor function
getTSCANResults-method getTSCANResults accessor function
getTSCANResults<- getTSCANResults accessor function
getTSCANResults<--method getTSCANResults accessor function
getTSNE Run t-SNE dimensionality reduction method on a SingleCellExperiment Object
getUMAP Uniform Manifold Approximation and Projection(UMAP) algorithm for dimension reduction.

-- I --

importAlevin Construct SCE object from Salmon-Alevin output
importAnnData Create a SingleCellExperiment Object from Python AnnData .h5ad files
importBUStools Construct SCE object from BUStools output
importCellRanger Construct SCE object from Cell Ranger output
importCellRangerV2 Construct SCE object from Cell Ranger output
importCellRangerV2Sample Construct SCE object from Cell Ranger V2 output for a single sample
importCellRangerV3 Construct SCE object from Cell Ranger output
importCellRangerV3Sample Construct SCE object from Cell Ranger V3 output for a single sample
importDropEst Create a SingleCellExperiment Object from DropEst output
importExampleData Retrieve example datasets
importFromFiles Create a SingleCellExperiment object from files
importGeneSetsFromCollection Imports gene sets from a GeneSetCollection object
importGeneSetsFromGMT Imports gene sets from a GMT file
importGeneSetsFromList Imports gene sets from a list
importGeneSetsFromMSigDB Imports gene sets from MSigDB
importMitoGeneSet Import mitochondrial gene sets
importMultipleSources Imports samples from different sources and compiles them into a list of SCE objects
importOptimus Construct SCE object from Optimus output
importSEQC Construct SCE object from seqc output
importSTARsolo Construct SCE object from STARsolo outputs
iterateSimulations Returns significance data from a snapshot.

-- L --

listSampleSummaryStatsTables Lists the table of SCTK QC outputs stored within the metadata.
listSampleSummaryStatsTables-method Lists the table of SCTK QC outputs stored within the metadata.
listTSCANResults getTSCANResults accessor function
listTSCANResults-method getTSCANResults accessor function

-- M --

mergeSCEColData Merging colData from two singleCellExperiment objects
MitoGenes List of mitochondrial genes of multiple reference
mouseBrainSubsetSCE Example Single Cell RNA-Seq data in SingleCellExperiment Object, GSE60361 subset
msigdb_table MSigDB gene get Category table

-- P --

plotBarcodeRankDropsResults Plots for runEmptyDrops outputs.
plotBarcodeRankScatter Plots for runBarcodeRankDrops outputs.
plotBatchCorrCompare Plot comparison of batch corrected result against original assay
plotBatchVariance Plot the percent of the variation that is explained by batch and condition in the data
plotBcdsResults Plots for runBcds outputs.
plotClusterAbundance Plot the differential Abundance
plotClusterPseudo Run plotClusterPseudo function to plot TSCAN-derived pseudotimes around cluster in the dataset.
plotCxdsResults Plots for runCxds outputs.
plotDecontXResults Plots for runDecontX outputs.
plotDEGHeatmap Heatmap visualization of DEG result
plotDEGRegression Create linear regression plot to show the expression the of top DEGs
plotDEGViolin Generate violin plot to show the expression of top DEGs
plotDEGVolcano Generate volcano plot for DEGs
plotDimRed Plot dimensionality reduction from computed metrics including PCA, ICA, tSNE and UMAP
plotDoubletFinderResults Plots for runDoubletFinder outputs.
plotEmptyDropsResults Plots for runEmptyDrops outputs.
plotEmptyDropsScatter Plots for runEmptyDrops outputs.
plotMarkerDiffExp Plot a heatmap to visualize the result of 'findMarkerDiffExp'
plotMASTThresholdGenes MAST Identify adaptive thresholds
plotPathway Generate violin plots for pathway analysis results
plotPCA Plot PCA run data from its components.
plotRunPerCellQCResults Plots for runPerCellQC outputs.
plotScDblFinderResults Plots for runScDblFinder outputs.
plotScdsHybridResults Plots for runCxdsBcdsHybrid outputs.
plotSCEBarAssayData Bar plot of assay data.
plotSCEBarColData Bar plot of colData.
plotSCEBatchFeatureMean Plot mean feature value in each batch of a SingleCellExperiment object
plotSCEDensity Density plot of any data stored in the SingleCellExperiment object.
plotSCEDensityAssayData Density plot of assay data.
plotSCEDensityColData Density plot of colData.
plotSCEDimReduceColData Dimension reduction plot tool for colData
plotSCEDimReduceFeatures Dimension reduction plot tool for assay data
plotSCEDimReduceHeatmap Plot heatmap of using data stored in SingleCellExperiment Object
plotSCEHeatmap Plot heatmap of using data stored in SingleCellExperiment Object
plotSCEScatter Dimension reduction plot tool for all types of data
plotSCEViolin Violin plot of any data stored in the SingleCellExperiment object.
plotSCEViolinAssayData Violin plot of assay data.
plotSCEViolinColData Violin plot of colData.
plotScrubletResults Plots for runScrublet outputs.
plotSeuratElbow plotSeuratElbow Computes the plot object for elbow plot from the pca slot in the input sce object
plotSeuratGenes Compute and plot visualizations for marker genes
plotSeuratHeatmap plotSeuratHeatmap Modifies the heatmap plot object so it contains specified number of heatmaps in a single plot
plotSeuratHVG plotSeuratHVG Plot highly variable genes from input sce object (must have highly variable genes computations stored)
plotSeuratJackStraw plotSeuratJackStraw Computes the plot object for jackstraw plot from the pca slot in the input sce object
plotSeuratReduction plotSeuratReduction Plots the selected dimensionality reduction method
plotSoupXResults Plot SoupX Result
plotTopHVG Plot highly variable genes
plotTSCANDEgenes Run plotTSCANDEgenes function to plot cells colored by the expression of a gene of interest
plotTSCANPseudotimeGenes Run plotTSCANPseudotimeGenes function to plot genes with significant changes
plotTSCANPseudotimeHeatmap Run plotTSCANPseudotimeHeatmap function to plot heatmap for top genes
plotTSCANResults Plot MST pseudotime values for cells
plotTSNE Plot t-SNE plot on dimensionality reduction data run from t-SNE method.
plotUMAP Plot UMAP results either on already run results or run first and then plot.

-- Q --

qcInputProcess Create SingleCellExperiment object from command line input arguments

-- R --

readSingleCellMatrix Read single cell expression matrix
reportCellQC Get runCellQC .html report
reportClusterAbundance Get plotClusterAbundance .html report
reportDiffAbundanceFET Get diffAbundanceFET .html report
reportDiffExp Get runDEAnalysis .html report
reportDropletQC Get runDropletQC .html report
reportFindMarker Get findMarkerDiffExp .html report
reportQCTool Get .html report of the output of the selected QC algorithm
reportSeurat Generates an HTML report for the complete Seurat workflow and returns the SCE object with the results computed and stored inside the object.
reportSeuratClustering Generates an HTML report for Seurat Clustering and returns the SCE object with the results computed and stored inside the object.
reportSeuratDimRed Generates an HTML report for Seurat Dimensionality Reduction and returns the SCE object with the results computed and stored inside the object.
reportSeuratFeatureSelection Generates an HTML report for Seurat Feature Selection and returns the SCE object with the results computed and stored inside the object.
reportSeuratMarkerSelection Generates an HTML report for Seurat Results (including Clustering & Marker Selection) and returns the SCE object with the results computed and stored inside the object.
reportSeuratNormalization Generates an HTML report for Seurat Normalization and returns the SCE object with the results computed and stored inside the object.
reportSeuratResults Generates an HTML report for Seurat Results (including Clustering & Marker Selection) and returns the SCE object with the results computed and stored inside the object.
reportSeuratRun Generates an HTML report for Seurat Run (including Normalization, Feature Selection, Dimensionality Reduction & Clustering) and returns the SCE object with the results computed and stored inside the object.
reportSeuratScaling Generates an HTML report for Seurat Scaling and returns the SCE object with the results computed and stored inside the object.
retrieveSCEIndex Retrieve cell/feature index by giving identifiers saved in col/rowData
runANOVA Perform differential expression analysis on SCE object
runBarcodeRankDrops Identify empty droplets using barcodeRanks.
runBBKNN Apply BBKNN batch effect correction method to SingleCellExperiment object
runBcds Find doublets/multiplets using bcds.
runCellQC Perform comprehensive single cell QC
runComBatSeq Apply ComBat-Seq batch effect correction method to SingleCellExperiment object
runCxds Find doublets/multiplets using cxds.
runCxdsBcdsHybrid Find doublets/multiplets using cxds_bcds_hybrid.
runDEAnalysis Perform differential expression analysis on SCE object
runDecontX Detecting contamination with DecontX.
runDESeq2 Perform differential expression analysis on SCE object
runDimReduce Generic Wrapper function for running dimensionality reduction
runDoubletFinder Generates a doublet score for each cell via doubletFinder
runDropletQC Perform comprehensive droplet QC
runEmptyDrops Identify empty droplets using emptyDrops.
runEnrichR Run EnrichR on SCE object
runFastMNN Apply a fast version of the mutual nearest neighbors (MNN) batch effect correction method to SingleCellExperiment object
runFeatureSelection Wrapper function to run all of the feature selection methods integrated within the singleCellTK package including three methods from Seurat ('vst', 'mean.var.plot' or 'dispersion') and the Scran 'modelGeneVar' method.
runGSVA Run GSVA analysis on a SingleCellExperiment object
runKMeans Get clustering with KMeans
runLimmaBC Apply Limma's batch effect correction method to SingleCellExperiment object
runLimmaDE Perform differential expression analysis on SCE object
runMAST Perform differential expression analysis on SCE object
runMNNCorrect Apply the mutual nearest neighbors (MNN) batch effect correction method to SingleCellExperiment object
runNormalization Wrapper function to run any of the integrated normalization/transformation methods in the singleCellTK. The available methods include 'LogNormalize', 'CLR', 'RC' and 'SCTransform' from Seurat, 'logNormCounts and 'CPM' from Scater. Additionally, users can 'scale' using Z.Score, 'transform' using log, log1p and sqrt, add 'pseudocounts' and trim the final matrices between a range of values.
runPerCellQC Wrapper for calculating QC metrics with scater.
runSCANORAMA Apply the mutual nearest neighbors (MNN) batch effect correction method to SingleCellExperiment object
runScDblFinder Detect doublet cells using scDblFinder.
runSCMerge Apply scMerge batch effect correction method to SingleCellExperiment object
runScranSNN Get clustering with SNN graph
runScrublet Find doublets using 'scrublet'.
runSeuratFindClusters runSeuratFindClusters Computes the clusters from the input sce object and stores them back in sce object
runSeuratFindHVG runSeuratFindHVG Find highly variable genes and store in the input sce object
runSeuratFindMarkers runSeuratFindMarkers
runSeuratHeatmap runSeuratHeatmap Computes the heatmap plot object from the pca slot in the input sce object
runSeuratICA runSeuratICA Computes ICA on the input sce object and stores the calculated independent components within the sce object
runSeuratIntegration runSeuratIntegration A wrapper function to Seurat Batch-Correction/Integration workflow.
runSeuratJackStraw runSeuratJackStraw Compute jackstraw plot and store the computations in the input sce object
runSeuratNormalizeData runSeuratNormalizeData Wrapper for NormalizeData() function from seurat library Normalizes the sce object according to the input parameters
runSeuratPCA runSeuratPCA Computes PCA on the input sce object and stores the calculated principal components within the sce object
runSeuratScaleData runSeuratScaleData Scales the input sce object according to the input parameters
runSeuratSCTransform runSeuratSCTransform Runs the SCTransform function to transform/normalize the input data
runSeuratTSNE runSeuratTSNE Computes tSNE from the given sce object and stores the tSNE computations back into the sce object
runSeuratUMAP runSeuratUMAP Computes UMAP from the given sce object and stores the UMAP computations back into the sce object
runSingleR Label cell types with SingleR
runSoupX Detecting and correct contamination with SoupX
runTSCAN Run runTSCAN function to obtain pseudotime values for cells
runTSCANClusterDEAnalysis Run runTSCANClusterDEAnalysis function to observe changes between paths and to obtain DE genes
runTSCANDEG Run runTSCANDEG function to obtain changes along a trajectory
runVAM Run VAM to score gene sets in single cell data
runWilcox Perform differential expression analysis on SCE object
runZINBWaVE Apply ZINBWaVE Batch effect correction method to SingleCellExperiment object

-- S --

sampleSummaryStats Generate table of SCTK QC outputs.
scaterCPM scaterCPM Uses CPM from scater library to compute counts-per-million.
scaterlogNormCounts scaterlogNormCounts Uses logNormCounts to log normalize input data
scaterPCA Perform PCA on a SingleCellExperiment Object A wrapper to runPCA function to compute principal component analysis (PCA) from a given SingleCellExperiment object.
sce Example Single Cell RNA-Seq data in SingleCellExperiment Object, subset of 10x public dataset https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/pbmc4k A subset of 390 barcodes and top 200 genes were included in this example. Within 390 barcodes, 195 barcodes are empty droplet, 150 barcodes are cell barcode and 45 barcodes are doublets predicted by scrublet and doubletFinder package. This example only serves as a proof of concept and a tutoriol on how to run the functions in this package. The results should not be used for drawing scientific conclusions.
sceBatches Example Single Cell RNA-Seq data in SingleCellExperiment object, with different batches annotated
scranModelGeneVar scranModelGeneVar Generates and stores variability data from scran::modelGeneVar in the input singleCellExperiment object
sctkListGeneSetCollections Lists imported GeneSetCollections
sctkPythonInstallConda Installs Python packages into a Conda environment
sctkPythonInstallVirtualEnv Installs Python packages into a virtual environment
SEG Stably Expressed Gene (SEG) list obect, with SEG sets for human and mouse.
selectSCTKConda Selects a Conda environment
selectSCTKVirtualEnvironment Selects a virtual environment
setRowNames Set rownames of SCE with a character vector or a rowData column
setSampleSummaryStatsTable<- Setter function which stores table of SCTK QC outputs to metadata.
setSCTKDisplayRow Indicates which rowData to use for visualization
simpleLog A decorator that prints the arguments to the decorated function
singleCellTK Run the single cell analysis app
subDiffEx Passes the output of generateSimulatedData() to differential expression tests, picking either t-tests or ANOVA for data with only two conditions or multiple conditions, respectively.
subDiffExANOVA Passes the output of generateSimulatedData() to differential expression tests, picking either t-tests or ANOVA for data with only two conditions or multiple conditions, respectively.
subDiffExttest Passes the output of generateSimulatedData() to differential expression tests, picking either t-tests or ANOVA for data with only two conditions or multiple conditions, respectively.
subsetSCECols Subset a SingleCellExperiment object by columns
subsetSCERows Subset a SingleCellExperiment object by rows
summarizeSCE Summarize an assay in a SingleCellExperiment

-- T --

trimCounts Trim Counts

-- misc --

.addSeuratToMetaDataSCE .addSeuratToMetaDataSCE Adds the input seurat object to the metadata slot of the input sce object (after removing the data matrices)
.checkDiffExpResultExists Check if the specified MAST result in SingleCellExperiment object is complete. But does not garantee the biological correctness.
.computeSignificantPC .computeSignificantPC Computes the significant principal components from an input sce object (must contain pca slot) using stdev
.extractSCEAnnotation Extract columns from row/colData and transfer to factors
.formatDEAList Helper function for differential expression analysis methods that accepts multiple ways of conditional subsetting and returns stable index format. Meanwhile it does all the input checkings.
.getComponentNames .getComponentNames Creates a list of PC/IC components to populate the picker for PC/IC heatmap generation
.ggBar Bar plot plotting tool.
.ggDensity Density plot plotting tool.
.ggScatter Plot results of reduced dimensions data.
.ggViolin Violin plot plotting tool.
.sce2adata Coverts SingleCellExperiment object from R to anndata.AnnData object in Python
.seuratGetVariableFeatures .seuratGetVariableFeatures Retrieves the requested number of variable feature names
.seuratInvalidate .seuratInvalidate Removes seurat data from the input SingleCellExperiment object specified by the task in the Seurat workflow.
.updateAssaySCE .updateAssaySCE Update/Modify/Add an assay in the provided SingleCellExperiment object from a Seurat object