Contents

1 Introduction

1.1 Load required packages

Load the package with the library function.

library(tidyverse)
library(ggplot2)

library(dce)

set.seed(42)

2 Pathway database overview

We provide access to the following topological pathway databases using graphite (Sales et al. 2012) in a processed format. This format looks as follows:

dce::df_pathway_statistics %>%
  arrange(desc(node_num)) %>%
  head(10) %>%
  knitr::kable()
database pathway_id pathway_name node_num edge_num
reactome R-HSA-162582 Signaling Pathways 2488 62068
reactome R-HSA-1430728 Metabolism 2047 85543
reactome R-HSA-392499 Metabolism of proteins 1894 52807
reactome R-HSA-1643685 Disease 1774 55469
reactome R-HSA-168256 Immune System 1771 58277
panther P00057 Wnt signaling pathway 1644 195344
reactome R-HSA-74160 Gene expression (Transcription) 1472 32493
reactome R-HSA-597592 Post-translational protein modification 1394 26399
kegg hsa:01100 Metabolic pathways 1343 22504
reactome R-HSA-73857 RNA Polymerase II Transcription 1339 25294

Let’s see how many pathways each database provides:

dce::df_pathway_statistics %>%
  count(database, sort = TRUE, name = "pathway_number") %>%
  knitr::kable()
database pathway_number
pathbank 48685
smpdb 48671
reactome 2406
wikipathways 640
kegg 323
panther 94
pharmgkb 90

Next, we can see how the pathway sizes are distributed for each database:

dce::df_pathway_statistics %>%
  ggplot(aes(x = node_num)) +
    geom_histogram(bins = 30) +
    facet_wrap(~ database, scales = "free") +
    theme_minimal()

3 Plotting pathways

It is easily possible to plot pathways:

pathways <- get_pathways(
  pathway_list = list(
    pathbank = c("Lactose Synthesis"),
    kegg = c("Fatty acid biosynthesis")
  )
)

lapply(pathways, function(x) {
  plot_network(
    as(x$graph, "matrix"),
    visualize_edge_weights = FALSE,
    arrow_size = 0.02,
    shadowtext = TRUE
  ) +
    ggtitle(x$pathway_name)
})
## [[1]]

## 
## [[2]]

4 Session information

sessionInfo()
## R version 4.2.1 (2022-06-23)
## Platform: x86_64-apple-darwin17.0 (64-bit)
## Running under: macOS Mojave 10.14.6
## 
## Matrix products: default
## BLAS:   /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib
## 
## locale:
## [1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## attached base packages:
## [1] stats4    stats     graphics  grDevices utils     datasets  methods  
## [8] base     
## 
## other attached packages:
##  [1] dce_1.4.99                  graph_1.74.0               
##  [3] cowplot_1.1.1               forcats_0.5.1              
##  [5] stringr_1.4.0               dplyr_1.0.9                
##  [7] purrr_0.3.4                 readr_2.1.2                
##  [9] tidyr_1.2.0                 tibble_3.1.8               
## [11] tidyverse_1.3.2             TCGAutils_1.16.0           
## [13] curatedTCGAData_1.18.0      MultiAssayExperiment_1.22.0
## [15] SummarizedExperiment_1.26.1 Biobase_2.56.0             
## [17] GenomicRanges_1.48.0        GenomeInfoDb_1.32.2        
## [19] IRanges_2.30.0              S4Vectors_0.34.0           
## [21] BiocGenerics_0.42.0         MatrixGenerics_1.8.1       
## [23] matrixStats_0.62.0          ggraph_2.0.5               
## [25] ggplot2_3.3.6               BiocStyle_2.24.0           
## 
## loaded via a namespace (and not attached):
##   [1] rappdirs_0.3.3                rtracklayer_1.56.1           
##   [3] prabclus_2.3-2                bit64_4.0.5                  
##   [5] knitr_1.39                    multcomp_1.4-19              
##   [7] DelayedArray_0.22.0           data.table_1.14.2            
##   [9] wesanderson_0.3.6             KEGGREST_1.36.3              
##  [11] RCurl_1.98-1.8                generics_0.1.3               
##  [13] snow_0.4-4                    metap_1.8                    
##  [15] GenomicFeatures_1.48.3        TH.data_1.1-1                
##  [17] RSQLite_2.2.15                shadowtext_0.1.2             
##  [19] proxy_0.4-27                  bit_4.0.4                    
##  [21] tzdb_0.3.0                    mutoss_0.1-12                
##  [23] xml2_1.3.3                    lubridate_1.8.0              
##  [25] httpuv_1.6.5                  assertthat_0.2.1             
##  [27] viridis_0.6.2                 gargle_1.2.0                 
##  [29] amap_0.8-18                   xfun_0.31                    
##  [31] hms_1.1.1                     jquerylib_0.1.4              
##  [33] evaluate_0.15                 promises_1.2.0.1             
##  [35] DEoptimR_1.0-11               fansi_1.0.3                  
##  [37] restfulr_0.0.15               progress_1.2.2               
##  [39] dbplyr_2.2.1                  readxl_1.4.0                 
##  [41] Rgraphviz_2.40.0              igraph_1.3.4                 
##  [43] DBI_1.1.3                     apcluster_1.4.10             
##  [45] googledrive_2.0.0             RcppArmadillo_0.11.2.0.0     
##  [47] ellipsis_0.3.2                backports_1.4.1              
##  [49] bookdown_0.27                 permute_0.9-7                
##  [51] harmonicmeanp_3.0             biomaRt_2.52.0               
##  [53] vctrs_0.4.1                   abind_1.4-5                  
##  [55] Linnorm_2.20.0                cachem_1.0.6                 
##  [57] RcppEigen_0.3.3.9.2           withr_2.5.0                  
##  [59] sfsmisc_1.1-13                ggforce_0.3.3                
##  [61] robustbase_0.95-0             bdsmatrix_1.3-6              
##  [63] vegan_2.6-2                   GenomicAlignments_1.32.1     
##  [65] pcalg_2.7-6                   prettyunits_1.1.1            
##  [67] mclust_5.4.10                 mnormt_2.1.0                 
##  [69] cluster_2.1.3                 ExperimentHub_2.4.0          
##  [71] GenomicDataCommons_1.20.1     crayon_1.5.1                 
##  [73] ellipse_0.4.3                 labeling_0.4.2               
##  [75] FMStable_0.1-4                edgeR_3.38.2                 
##  [77] pkgconfig_2.0.3               qqconf_1.2.3                 
##  [79] tweenr_1.0.2                  nlme_3.1-158                 
##  [81] ggm_2.5                       nnet_7.3-17                  
##  [83] rlang_1.0.4                   diptest_0.76-0               
##  [85] lifecycle_1.0.1               sandwich_3.0-2               
##  [87] filelock_1.0.2                BiocFileCache_2.4.0          
##  [89] mathjaxr_1.6-0                modelr_0.1.8                 
##  [91] AnnotationHub_3.4.0           cellranger_1.1.0             
##  [93] polyclip_1.10-0               Matrix_1.4-1                 
##  [95] zoo_1.8-10                    reprex_2.0.1                 
##  [97] googlesheets4_1.0.0           png_0.1-7                    
##  [99] viridisLite_0.4.0             rjson_0.2.21                 
## [101] bitops_1.0-7                  Biostrings_2.64.0            
## [103] blob_1.2.3                    scales_1.2.0                 
## [105] plyr_1.8.7                    memoise_2.0.1                
## [107] graphite_1.42.0               magrittr_2.0.3               
## [109] gdata_2.18.0.1                zlibbioc_1.42.0              
## [111] compiler_4.2.1                BiocIO_1.6.0                 
## [113] clue_0.3-61                   plotrix_3.8-2                
## [115] Rsamtools_2.12.0              cli_3.3.0                    
## [117] XVector_0.36.0                MASS_7.3-58                  
## [119] mgcv_1.8-40                   tidyselect_1.1.2             
## [121] stringi_1.7.8                 highr_0.9                    
## [123] yaml_2.3.5                    locfit_1.5-9.6               
## [125] ggrepel_0.9.1                 grid_4.2.1                   
## [127] sass_0.4.2                    tools_4.2.1                  
## [129] parallel_4.2.1                snowfall_1.84-6.2            
## [131] gridExtra_2.3                 farver_2.1.1                 
## [133] Rtsne_0.16                    digest_0.6.29                
## [135] BiocManager_1.30.18           flexclust_1.4-1              
## [137] shiny_1.7.2                   mnem_1.12.0                  
## [139] fpc_2.2-9                     ppcor_1.1                    
## [141] Rcpp_1.0.9                    broom_1.0.0                  
## [143] BiocVersion_3.15.2            later_1.3.0                  
## [145] org.Hs.eg.db_3.15.0           httr_1.4.3                   
## [147] ggdendro_0.1.23               AnnotationDbi_1.58.0         
## [149] kernlab_0.9-31                naturalsort_0.1.3            
## [151] Rdpack_2.4                    colorspace_2.0-3             
## [153] rvest_1.0.2                   XML_3.99-0.10                
## [155] fs_1.5.2                      splines_4.2.1                
## [157] RBGL_1.72.0                   statmod_1.4.36               
## [159] sn_2.0.2                      expm_0.999-6                 
## [161] graphlayouts_0.8.0            multtest_2.52.0              
## [163] flexmix_2.3-18                xtable_1.8-4                 
## [165] jsonlite_1.8.0                tidygraph_1.2.1              
## [167] corpcor_1.6.10                modeltools_0.2-23            
## [169] R6_2.5.1                      gmodels_2.18.1.1             
## [171] TFisher_0.2.0                 pillar_1.8.0                 
## [173] htmltools_0.5.3               mime_0.12                    
## [175] glue_1.6.2                    fastmap_1.1.0                
## [177] BiocParallel_1.30.3           class_7.3-20                 
## [179] interactiveDisplayBase_1.34.0 codetools_0.2-18             
## [181] tsne_0.1-3.1                  mvtnorm_1.1-3                
## [183] utf8_1.2.2                    lattice_0.20-45              
## [185] bslib_0.4.0                   logger_0.2.2                 
## [187] numDeriv_2016.8-1.1           curl_4.3.2                   
## [189] gtools_3.9.3                  magick_2.7.3                 
## [191] survival_3.3-1                limma_3.52.2                 
## [193] rmarkdown_2.14                fastICA_1.2-3                
## [195] munsell_0.5.0                 e1071_1.7-11                 
## [197] fastcluster_1.2.3             GenomeInfoDbData_1.2.8       
## [199] reshape2_1.4.4                haven_2.5.0                  
## [201] gtable_0.3.0                  rbibutils_2.2.8

References

Sales, Gabriele, Enrica Calura, Duccio Cavalieri, and Chiara Romualdi. 2012. “Graphite-a Bioconductor Package to Convert Pathway Topology to Gene Network.” BMC Bioinformatics 13 (1): 20.