Load the package with the library function.
library(tidyverse)
library(ggplot2)
library(dce)
set.seed(42)
We provide access to the following topological pathway databases using graphite (Sales et al. 2012) in a processed format. This format looks as follows:
dce::df_pathway_statistics %>%
arrange(desc(node_num)) %>%
head(10) %>%
knitr::kable()
database | pathway_id | pathway_name | node_num | edge_num |
---|---|---|---|---|
reactome | R-HSA-162582 | Signaling Pathways | 2488 | 62068 |
reactome | R-HSA-1430728 | Metabolism | 2047 | 85543 |
reactome | R-HSA-392499 | Metabolism of proteins | 1894 | 52807 |
reactome | R-HSA-1643685 | Disease | 1774 | 55469 |
reactome | R-HSA-168256 | Immune System | 1771 | 58277 |
panther | P00057 | Wnt signaling pathway | 1644 | 195344 |
reactome | R-HSA-74160 | Gene expression (Transcription) | 1472 | 32493 |
reactome | R-HSA-597592 | Post-translational protein modification | 1394 | 26399 |
kegg | hsa:01100 | Metabolic pathways | 1343 | 22504 |
reactome | R-HSA-73857 | RNA Polymerase II Transcription | 1339 | 25294 |
Let’s see how many pathways each database provides:
dce::df_pathway_statistics %>%
count(database, sort = TRUE, name = "pathway_number") %>%
knitr::kable()
database | pathway_number |
---|---|
pathbank | 48685 |
smpdb | 48671 |
reactome | 2406 |
wikipathways | 640 |
kegg | 323 |
panther | 94 |
pharmgkb | 90 |
Next, we can see how the pathway sizes are distributed for each database:
dce::df_pathway_statistics %>%
ggplot(aes(x = node_num)) +
geom_histogram(bins = 30) +
facet_wrap(~ database, scales = "free") +
theme_minimal()
It is easily possible to plot pathways:
pathways <- get_pathways(
pathway_list = list(
pathbank = c("Lactose Synthesis"),
kegg = c("Fatty acid biosynthesis")
)
)
lapply(pathways, function(x) {
plot_network(
as(x$graph, "matrix"),
visualize_edge_weights = FALSE,
arrow_size = 0.02,
shadowtext = TRUE
) +
ggtitle(x$pathway_name)
})
## [[1]]
##
## [[2]]
sessionInfo()
## R version 4.2.1 (2022-06-23)
## Platform: x86_64-apple-darwin17.0 (64-bit)
## Running under: macOS Mojave 10.14.6
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib
##
## locale:
## [1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] dce_1.4.99 graph_1.74.0
## [3] cowplot_1.1.1 forcats_0.5.1
## [5] stringr_1.4.0 dplyr_1.0.9
## [7] purrr_0.3.4 readr_2.1.2
## [9] tidyr_1.2.0 tibble_3.1.8
## [11] tidyverse_1.3.2 TCGAutils_1.16.0
## [13] curatedTCGAData_1.18.0 MultiAssayExperiment_1.22.0
## [15] SummarizedExperiment_1.26.1 Biobase_2.56.0
## [17] GenomicRanges_1.48.0 GenomeInfoDb_1.32.2
## [19] IRanges_2.30.0 S4Vectors_0.34.0
## [21] BiocGenerics_0.42.0 MatrixGenerics_1.8.1
## [23] matrixStats_0.62.0 ggraph_2.0.5
## [25] ggplot2_3.3.6 BiocStyle_2.24.0
##
## loaded via a namespace (and not attached):
## [1] rappdirs_0.3.3 rtracklayer_1.56.1
## [3] prabclus_2.3-2 bit64_4.0.5
## [5] knitr_1.39 multcomp_1.4-19
## [7] DelayedArray_0.22.0 data.table_1.14.2
## [9] wesanderson_0.3.6 KEGGREST_1.36.3
## [11] RCurl_1.98-1.8 generics_0.1.3
## [13] snow_0.4-4 metap_1.8
## [15] GenomicFeatures_1.48.3 TH.data_1.1-1
## [17] RSQLite_2.2.15 shadowtext_0.1.2
## [19] proxy_0.4-27 bit_4.0.4
## [21] tzdb_0.3.0 mutoss_0.1-12
## [23] xml2_1.3.3 lubridate_1.8.0
## [25] httpuv_1.6.5 assertthat_0.2.1
## [27] viridis_0.6.2 gargle_1.2.0
## [29] amap_0.8-18 xfun_0.31
## [31] hms_1.1.1 jquerylib_0.1.4
## [33] evaluate_0.15 promises_1.2.0.1
## [35] DEoptimR_1.0-11 fansi_1.0.3
## [37] restfulr_0.0.15 progress_1.2.2
## [39] dbplyr_2.2.1 readxl_1.4.0
## [41] Rgraphviz_2.40.0 igraph_1.3.4
## [43] DBI_1.1.3 apcluster_1.4.10
## [45] googledrive_2.0.0 RcppArmadillo_0.11.2.0.0
## [47] ellipsis_0.3.2 backports_1.4.1
## [49] bookdown_0.27 permute_0.9-7
## [51] harmonicmeanp_3.0 biomaRt_2.52.0
## [53] vctrs_0.4.1 abind_1.4-5
## [55] Linnorm_2.20.0 cachem_1.0.6
## [57] RcppEigen_0.3.3.9.2 withr_2.5.0
## [59] sfsmisc_1.1-13 ggforce_0.3.3
## [61] robustbase_0.95-0 bdsmatrix_1.3-6
## [63] vegan_2.6-2 GenomicAlignments_1.32.1
## [65] pcalg_2.7-6 prettyunits_1.1.1
## [67] mclust_5.4.10 mnormt_2.1.0
## [69] cluster_2.1.3 ExperimentHub_2.4.0
## [71] GenomicDataCommons_1.20.1 crayon_1.5.1
## [73] ellipse_0.4.3 labeling_0.4.2
## [75] FMStable_0.1-4 edgeR_3.38.2
## [77] pkgconfig_2.0.3 qqconf_1.2.3
## [79] tweenr_1.0.2 nlme_3.1-158
## [81] ggm_2.5 nnet_7.3-17
## [83] rlang_1.0.4 diptest_0.76-0
## [85] lifecycle_1.0.1 sandwich_3.0-2
## [87] filelock_1.0.2 BiocFileCache_2.4.0
## [89] mathjaxr_1.6-0 modelr_0.1.8
## [91] AnnotationHub_3.4.0 cellranger_1.1.0
## [93] polyclip_1.10-0 Matrix_1.4-1
## [95] zoo_1.8-10 reprex_2.0.1
## [97] googlesheets4_1.0.0 png_0.1-7
## [99] viridisLite_0.4.0 rjson_0.2.21
## [101] bitops_1.0-7 Biostrings_2.64.0
## [103] blob_1.2.3 scales_1.2.0
## [105] plyr_1.8.7 memoise_2.0.1
## [107] graphite_1.42.0 magrittr_2.0.3
## [109] gdata_2.18.0.1 zlibbioc_1.42.0
## [111] compiler_4.2.1 BiocIO_1.6.0
## [113] clue_0.3-61 plotrix_3.8-2
## [115] Rsamtools_2.12.0 cli_3.3.0
## [117] XVector_0.36.0 MASS_7.3-58
## [119] mgcv_1.8-40 tidyselect_1.1.2
## [121] stringi_1.7.8 highr_0.9
## [123] yaml_2.3.5 locfit_1.5-9.6
## [125] ggrepel_0.9.1 grid_4.2.1
## [127] sass_0.4.2 tools_4.2.1
## [129] parallel_4.2.1 snowfall_1.84-6.2
## [131] gridExtra_2.3 farver_2.1.1
## [133] Rtsne_0.16 digest_0.6.29
## [135] BiocManager_1.30.18 flexclust_1.4-1
## [137] shiny_1.7.2 mnem_1.12.0
## [139] fpc_2.2-9 ppcor_1.1
## [141] Rcpp_1.0.9 broom_1.0.0
## [143] BiocVersion_3.15.2 later_1.3.0
## [145] org.Hs.eg.db_3.15.0 httr_1.4.3
## [147] ggdendro_0.1.23 AnnotationDbi_1.58.0
## [149] kernlab_0.9-31 naturalsort_0.1.3
## [151] Rdpack_2.4 colorspace_2.0-3
## [153] rvest_1.0.2 XML_3.99-0.10
## [155] fs_1.5.2 splines_4.2.1
## [157] RBGL_1.72.0 statmod_1.4.36
## [159] sn_2.0.2 expm_0.999-6
## [161] graphlayouts_0.8.0 multtest_2.52.0
## [163] flexmix_2.3-18 xtable_1.8-4
## [165] jsonlite_1.8.0 tidygraph_1.2.1
## [167] corpcor_1.6.10 modeltools_0.2-23
## [169] R6_2.5.1 gmodels_2.18.1.1
## [171] TFisher_0.2.0 pillar_1.8.0
## [173] htmltools_0.5.3 mime_0.12
## [175] glue_1.6.2 fastmap_1.1.0
## [177] BiocParallel_1.30.3 class_7.3-20
## [179] interactiveDisplayBase_1.34.0 codetools_0.2-18
## [181] tsne_0.1-3.1 mvtnorm_1.1-3
## [183] utf8_1.2.2 lattice_0.20-45
## [185] bslib_0.4.0 logger_0.2.2
## [187] numDeriv_2016.8-1.1 curl_4.3.2
## [189] gtools_3.9.3 magick_2.7.3
## [191] survival_3.3-1 limma_3.52.2
## [193] rmarkdown_2.14 fastICA_1.2-3
## [195] munsell_0.5.0 e1071_1.7-11
## [197] fastcluster_1.2.3 GenomeInfoDbData_1.2.8
## [199] reshape2_1.4.4 haven_2.5.0
## [201] gtable_0.3.0 rbibutils_2.2.8
Sales, Gabriele, Enrica Calura, Duccio Cavalieri, and Chiara Romualdi. 2012. “Graphite-a Bioconductor Package to Convert Pathway Topology to Gene Network.” BMC Bioinformatics 13 (1): 20.