Barrat, A. et al. (2004). The architecture of complex weighted networks. Proc. Natl. Acad. Sci. USA, 101, 3747.
Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B, 57, 289-300.
Bonacich, P. (1987). Power and Centrality: A Family of Measures. Am. J. Sociol., 92, 1170-1182.
Freeman, L.C. (1979). Centrality in Social Networks I: Conceptual Clarification. Social Networks, 1, 215-239.
Langfelder, P. and Horvath, S. (2008). WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 9, 559.
Lopez-Fernandez, L. et al. (2004). Applying social network analysis to the information in CVS repositories. Proceedings of the 1st International Workshop on Mining Software Repositories (MSR '04), Edinburgh, Scotland, pp 101–105.
Miller, J. A. et al. (2011). Strategies for aggregating gene expression data: the collapseRows R function. BMC Bioinformatics, 12, 322.
Newman, M. E. J. (2001). Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Phys. Rev. E, 64, 016132.
Newman, M. E. J. et al. (2004). Analysis of weighted networks. Phys. Rev. E, 70, 056131.
Silverman, B. W. (1986). Density Estimation. London: Chapman and Hall.
Sturges, H. A. (1926). The choice of a class interval. J. Amer. Statist. Assoc., 21, 65-66.
Subramanian, A. et al. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA, 102, 15545-50.
Takahashi, D. Y. et al. (2012). Discriminating different classes of biological networks by analyzing the graphs spectra distribution. PLos One, 7, e49949.
Watts, D. J. and Strogatz S. (1998). Collective dynamics of 'small-world' networks. Nature, 393, 440–442.