plotDiffHeatmap {CATALYST} | R Documentation |
Heatmaps summarizing differental abundance & differential state testing results.
plotDiffHeatmap( x, y, k = NULL, top_n = 20, fdr = 0.05, lfc = 1, all = FALSE, sort_by = c("padj", "lfc", "none"), y_cols = list(padj = "p_adj", lfc = "logFC", target = "marker_id"), assay = "exprs", fun = c("median", "mean", "sum"), normalize = TRUE, col_anno = TRUE, row_anno = TRUE, hm_pal = NULL, fdr_pal = c("lightgrey", "lightgreen"), lfc_pal = c("blue3", "white", "red3") )
x |
|
y |
a |
k |
character string specifying
the clustering in |
top_n |
numeric. Number of top clusters (if |
fdr |
numeric threshold on adjusted p-values below which results should be retained and considered to be significant. |
lfc |
numeric threshold on logFCs above which to retain results. |
all |
logical specifying whether all |
sort_by |
character string specifying the |
y_cols |
named list specifying columns in |
assay |
character string specifying which assay
data to use; valid values are |
fun |
character string specifying the function to use
as summary statistic for aggregation of |
normalize |
logical specifying whether Z-score normalized values
should be plotted. If |
col_anno |
logical specifying whether to include column annotations
for all non-numeric cell metadata variables; or a character vector
in |
row_anno |
logical specifying whether to include a row annotation indicating whether cluster (DA) or cluster-marker combinations (DS) are significant, labeled with adjusted p-values, as well as logFCs. |
hm_pal |
character vector of colors
to interpolate for the heatmap. Defaults to |
fdr_pal, lfc_pal |
character vector of colors to use for row annotations
|
a Heatmap-class
object.
Lukas M Weber & Helena L Crowell helena.crowell@uzh.ch
# construct SCE & run clustering data(PBMC_fs, PBMC_panel, PBMC_md) sce <- prepData(PBMC_fs, PBMC_panel, PBMC_md) sce <- cluster(sce) ## differential analysis library(diffcyt) # create design & constrast matrix design <- createDesignMatrix(PBMC_md, cols_design=3:4) contrast <- createContrast(c(0, 1, 0, 0, 0)) # test for # - differential abundance (DA) of clusters # - differential states (DS) within clusters da <- diffcyt(sce, design = design, contrast = contrast, analysis_type = "DA", method_DA = "diffcyt-DA-edgeR", clustering_to_use = "meta20") ds <- diffcyt(sce, design = design, contrast = contrast, analysis_type = "DS", method_DS = "diffcyt-DS-limma", clustering_to_use = "meta20") # extract result tables da <- rowData(da$res) ds <- rowData(ds$res) # display test results for # - top DA clusters # - top DS cluster-marker combinations plotDiffHeatmap(sce, da) plotDiffHeatmap(sce, ds) # visualize results for subset of clusters sub <- filterSCE(sce, cluster_id %in% seq_len(5), k = "meta20") plotDiffHeatmap(sub, da, all = TRUE, sort_by = "none") # visualize results for selected feature # & include only selected annotation plotDiffHeatmap(sce["pp38", ], ds, col_anno = "condition", all = TRUE)