twolayernetworkSimulation {AMOUNTAIN} | R Documentation |
Simulate a two-layer weighted network
twolayernetworkSimulation(n1, k1, theta1, n2, k2, theta2)
n1 |
number of nodes in the network1 |
k1 |
number of nodes in the module1, n1 < k1 |
theta1 |
module1 node score follow the uniform distribution in range [theta1,1] |
n2 |
number of nodes in the network2 |
k2 |
number of nodes in the module2, n2 < k2 |
theta2 |
module2 node score follow the uniform distribution in range [theta2,1] |
a list containing network1, network2 and a inter-layer links matrix
Dong Li, dxl466@cs.bham.ac.uk
n1=100 k1=20 theta1 = 0.5 n2=80 k2=10 theta2 = 0.5 ppresult <- twolayernetworkSimulation(n1,k1,theta1,n2,k2,theta2) A <- ppresult[[3]] pp <- ppresult[[1]] moduleid <- pp[[3]] netid <- 1:n1 restp<- netid[-moduleid] pp2 <- ppresult[[2]] moduleid2 <- pp2[[3]] netid2 <- 1:n2 restp2<- netid2[-moduleid2] ## labelling the groups groupdesign=list(moduleid,restp,(moduleid2+n1),(restp2+n1)) names(groupdesign)=c('module1','background1','module2','background2') twolayernet<-matrix(0,nrow=(n1+n2),ncol=(n1+n2)) twolayernet[1:n1,1:n1]<-pp[[1]] twolayernet[(n1+1):(n1+n2),(n1+1):(n1+n2)]<-pp2[[1]] twolayernet[1:n1,(n1+1):(n1+n2)] = A twolayernet[(n1+1):(n1+n2),1:n1] = t(A) ## Not run: library(qgraph) g<-qgraph(twolayernet,groups=groupdesign,legend=TRUE) ## End(Not run)