Installation

To install and load NBAMSeq

Introduction

High-throughput sequencing experiments followed by differential expression analysis is a widely used approach to detect genomic biomarkers. A fundamental step in differential expression analysis is to model the association between gene counts and covariates of interest. NBAMSeq is a flexible statistical model based on the generalized additive model and allows for information sharing across genes in variance estimation. Specifically, we model the logarithm of mean gene counts as sums of smooth functions with the smoothing parameters and coefficients estimated simultaneously by a nested iteration. The variance is estimated by the Bayesian shrinkage approach to fully exploit the information across all genes.

The workflow of NBAMSeq contains three main steps:

Here we illustrate each of these steps respectively.

Data input

Users are expected to provide three parts of input, i.e. countData, colData, and design.

countData is a matrix of gene counts generated by RNASeq experiments.

      sample1 sample2 sample3 sample4 sample5 sample6 sample7 sample8 sample9
gene1     362      22       2     102       2      25      18      32       3
gene2      23     111      35     255       3       3     292      47     245
gene3      11      43     938       1       7       1      19     637     395
gene4       1      16       6       3       7       2     263       7       1
gene5       2      34      62       1      24       9       4       1       2
gene6       1     413     129     190     179       3       4       1       1
      sample10 sample11 sample12 sample13 sample14 sample15 sample16 sample17
gene1        6       63      196        1      280        2        1       75
gene2       46        7      126      120       83        2        1        1
gene3       23      446       61      187        1      703        2       11
gene4       89       29        3        1       67       73      158       97
gene5      125        1       52       55        1      230       60       42
gene6       69        1        1      431        7       88      383       19
      sample18 sample19 sample20
gene1      193      519       53
gene2       40       78      109
gene3       33       58       83
gene4      133       90      160
gene5      176        7      604
gene6        4      265        2

colData is a data frame which contains the covariates of samples. The sample order in colData should match the sample order in countData.

           pheno        var1       var2       var3 var4
sample1 22.53383 -1.13496381 -1.3265657 -0.8699502    0
sample2 41.17227  0.24465137  1.7666600  0.2145658    1
sample3 47.41689 -1.95575612 -0.8706489 -0.9562638    2
sample4 73.81356 -0.94301605  1.3900854  1.5009264    1
sample5 56.76245  0.07314511  0.4986531  0.8311680    1
sample6 44.41126 -0.48479663 -1.3003933 -0.5657210    2

design is a formula which specifies how to model the samples. Compared with other packages performing DE analysis including DESeq2 (Love, Huber, and Anders 2014), edgeR (Robinson, McCarthy, and Smyth 2010), NBPSeq (Di et al. 2015) and BBSeq (Zhou, Xia, and Wright 2011), NBAMSeq supports the nonlinear model of covariates via mgcv (Wood and Wood 2015). To indicate the nonlinear covariate in the model, users are expected to use s(variable_name) in the design formula. In our example, if we would like to model pheno as a nonlinear covariate, the design formula should be:

Several notes should be made regarding the design formula:

We then construct the NBAMSeqDataSet using countData, colData, and design:

class: NBAMSeqDataSet 
dim: 50 20 
metadata(1): fitted
assays(1): counts
rownames(50): gene1 gene2 ... gene49 gene50
rowData names(0):
colnames(20): sample1 sample2 ... sample19 sample20
colData names(5): pheno var1 var2 var3 var4

Differential expression analysis

Differential expression analysis can be performed by NBAMSeq function:

Several other arguments in NBAMSeq function are available for users to customize the analysis.

Pulling out DE results

Results of DE analysis can be pulled out by results function. For continuous covariates, the name argument should be specified indicating the covariate of interest. For nonlinear continuous covariates, base mean, effective degrees of freedom (edf), test statistics, p-value, and adjusted p-value will be returned.

DataFrame with 6 rows and 7 columns
       baseMean       edf       stat     pvalue      padj       AIC       BIC
      <numeric> <numeric>  <numeric>  <numeric> <numeric> <numeric> <numeric>
gene1   72.9835   1.00006 0.00929685 0.92346851 0.9368683   215.815   222.785
gene2   74.4635   1.00085 0.39278767 0.53081425 0.8561520   222.171   229.142
gene3  130.6823   1.00008 2.83444991 0.09229638 0.3549861   229.096   236.066
gene4   57.2213   1.00009 5.81672777 0.01588883 0.1324069   206.776   213.746
gene5   53.5951   1.00013 3.59743618 0.05792601 0.2633000   207.822   214.792
gene6   87.3457   1.00010 8.64469375 0.00328379 0.0820947   210.879   217.849

For linear continuous covariates, base mean, estimated coefficient, standard error, test statistics, p-value, and adjusted p-value will be returned.

DataFrame with 6 rows and 8 columns
       baseMean       coef        SE      stat    pvalue      padj       AIC
      <numeric>  <numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
gene1   72.9835 -0.6508942  0.373364 -1.743325 0.0812769  0.457957   215.815
gene2   74.4635  0.4362013  0.360640  1.209519 0.2264635  0.598371   222.171
gene3  130.6823  0.1487532  0.364913  0.407640 0.6835378  0.840860   229.096
gene4   57.2213  0.3962301  0.383663  1.032755 0.3017187  0.647779   206.776
gene5   53.5951  0.2219396  0.409085  0.542527 0.5874557  0.793859   207.822
gene6   87.3457 -0.0688273  0.418123 -0.164610 0.8692511  0.912010   210.879
            BIC
      <numeric>
gene1   222.785
gene2   229.142
gene3   236.066
gene4   213.746
gene5   214.792
gene6   217.849

For discrete covariates, the contrast argument should be specified. e.g. contrast = c("var4", "2", "0") means comparing level 2 vs. level 0 in var4.

DataFrame with 6 rows and 8 columns
       baseMean        coef        SE        stat    pvalue      padj       AIC
      <numeric>   <numeric> <numeric>   <numeric> <numeric> <numeric> <numeric>
gene1   72.9835 -1.80469224   1.19684 -1.50787938 0.1315854  0.442904   215.815
gene2   74.4635  0.12352581   1.16460  0.10606677 0.9155294  0.973967   222.171
gene3  130.6823  2.50858362   1.17397  2.13684051 0.0326110  0.375964   229.096
gene4   57.2213  0.00246681   1.24221  0.00198583 0.9984155  0.998416   206.776
gene5   53.5951  1.54516743   1.33611  1.15646996 0.2474890  0.591590   207.822
gene6   87.3457  2.75056692   1.48706  1.84966890 0.0643613  0.375964   210.879
            BIC
      <numeric>
gene1   222.785
gene2   229.142
gene3   236.066
gene4   213.746
gene5   214.792
gene6   217.849

Visualization

We suggest two approaches to visualize the nonlinear associations. The first approach is to plot the smooth components of a fitted negative binomial additive model by plot.gam function in mgcv (Wood and Wood 2015). This can be done by calling makeplot function and passing in NBAMSeqDataSet object. Users are expected to provide the phenotype of interest in phenoname argument and gene of interest in genename argument.

In addition, to explore the nonlinear association of covariates, it is also instructive to look at log normalized counts vs. variable scatter plot. Below we show how to produce such plot.

DataFrame with 6 rows and 7 columns
        baseMean       edf      stat     pvalue      padj       AIC       BIC
       <numeric> <numeric> <numeric>  <numeric> <numeric> <numeric> <numeric>
gene30   73.6596   1.00007   8.79316 0.00302563 0.0820947   208.532   215.502
gene6    87.3457   1.00010   8.64469 0.00328379 0.0820947   210.879   217.849
gene41   52.3455   1.00007   7.64398 0.00569988 0.0949980   213.637   220.608
gene39   90.6803   1.00011   6.99513 0.00818142 0.1022678   224.591   231.562
gene45   59.4118   1.00014   6.08315 0.01366168 0.1324069   210.065   217.035
gene4    57.2213   1.00009   5.81673 0.01588883 0.1324069   206.776   213.746

Session info

R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.5 LTS

Matrix products: default
BLAS:   /home/biocbuild/bbs-3.12-bioc/R/lib/libRblas.so
LAPACK: /home/biocbuild/bbs-3.12-bioc/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=C              
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] ggplot2_3.3.2               BiocParallel_1.24.0        
 [3] NBAMSeq_1.6.0               SummarizedExperiment_1.20.0
 [5] Biobase_2.50.0              GenomicRanges_1.42.0       
 [7] GenomeInfoDb_1.26.0         IRanges_2.24.0             
 [9] S4Vectors_0.28.0            BiocGenerics_0.36.0        
[11] MatrixGenerics_1.2.0        matrixStats_0.57.0         

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.5             locfit_1.5-9.4         lattice_0.20-41       
 [4] digest_0.6.27          R6_2.4.1               RSQLite_2.2.1         
 [7] evaluate_0.14          httr_1.4.2             pillar_1.4.6          
[10] zlibbioc_1.36.0        rlang_0.4.8            annotate_1.68.0       
[13] blob_1.2.1             Matrix_1.2-18          rmarkdown_2.5         
[16] labeling_0.4.2         splines_4.0.3          geneplotter_1.68.0    
[19] stringr_1.4.0          RCurl_1.98-1.2         bit_4.0.4             
[22] munsell_0.5.0          DelayedArray_0.16.0    compiler_4.0.3        
[25] xfun_0.18              pkgconfig_2.0.3        mgcv_1.8-33           
[28] htmltools_0.5.0        tidyselect_1.1.0       tibble_3.0.4          
[31] GenomeInfoDbData_1.2.4 XML_3.99-0.5           withr_2.3.0           
[34] crayon_1.3.4           dplyr_1.0.2            bitops_1.0-6          
[37] grid_4.0.3             nlme_3.1-150           xtable_1.8-4          
[40] gtable_0.3.0           lifecycle_0.2.0        DBI_1.1.0             
[43] magrittr_1.5           scales_1.1.1           stringi_1.5.3         
[46] farver_2.0.3           XVector_0.30.0         genefilter_1.72.0     
[49] ellipsis_0.3.1         vctrs_0.3.4            generics_0.0.2        
[52] RColorBrewer_1.1-2     tools_4.0.3            bit64_4.0.5           
[55] glue_1.4.2             DESeq2_1.30.0          purrr_0.3.4           
[58] survival_3.2-7         yaml_2.2.1             AnnotationDbi_1.52.0  
[61] colorspace_1.4-1       memoise_1.1.0          knitr_1.30            

References

Di, Y, DW Schafer, JS Cumbie, and JH Chang. 2015. “NBPSeq: Negative Binomial Models for Rna-Sequencing Data.” R Package Version 0.3. 0, URL Http://CRAN. R-Project. Org/Package= NBPSeq.

Love, Michael I, Wolfgang Huber, and Simon Anders. 2014. “Moderated Estimation of Fold Change and Dispersion for Rna-Seq Data with Deseq2.” Genome Biology 15 (12). BioMed Central:550.

Robinson, Mark D, Davis J McCarthy, and Gordon K Smyth. 2010. “EdgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data.” Bioinformatics 26 (1). Oxford University Press:139–40.

Wood, Simon, and Maintainer Simon Wood. 2015. “Package ’Mgcv’.” R Package Version 1:29.

Zhou, Yi-Hui, Kai Xia, and Fred A Wright. 2011. “A Powerful and Flexible Approach to the Analysis of Rna Sequence Count Data.” Bioinformatics 27 (19). Oxford University Press:2672–8.