Design Pattern Name: Isolation Layer

Copyright 1997 Thomas J. Mowbray (The MITRE Corporation)

Most Applicable Scale: Enterprise

Solution Type: Software

Solution Name: Isolation Layer

Intent: To provide isolation and portability from underlying middleware and platform-specific interfaces.

Primal Forces: Management of IT Resources, Management of Change

Diagram

� EMBED Word.Picture.6 ���

Applicability at This Scale

1. Isolation of application software from lower-level infrastructure is needed. This infrastructure may include middleware, operating systems, security mechanisms, or other low-level mechanisms.

2. Changes to the underlying infrastructure are anticipated within the life cycle of the affected software. For example , new product releases or planned migration to new infrastructure.

3. A more convenient programming interface is useful or necessary. The level of abstraction provided by the infrastructure is too primitive or flexible for the intended applications and systems.

4. It is desired to provide consistent handling of the infrastructure across many systems. Some heavyweight conventions for default handling of infrastructure interfaces must be provided.

5. Multiple infrastructures must be supported, either during the life cycle or concurrently.

Solution Summary

Create a layer of software that abstracts the underlying infrastructure. This layer provides an application interface which completely isolates the application software from the underlying infrastructure. The application interface should provide a convenient language-specific interface to desired capabilities. The layering software should provide default handling of some infrastructure calls and parameters, but exposes other details when appropriate.

	Utilize this isolation layer across multiple system development projects to assure interoperability, consistency, and isolation. Migrate the isolation to new infrastructures as necessary. Also update the isolation layer when the infrastructure is updated. In all cases, maintain the same application software interface, regardless of infrastructure changes.

	Provide gateways between multiple infrastructures which must be supported concurrently. See Gateway pattern [Malveau 97]. Provide forward and reverse gateways during infrastructure migration. [Brodie 95]

Benefits

• Mitigates the risks and costs of infrastructure migration.

• Avoids obsolescence due to infrastructure changes.

• Reduces the risk and cost of software upgrades due to infrastructure changes.

• Provides a less labor intensive and inexpensive programming interface to most application programmers.

• Supports the concurrent use of multiple infrastructures. Does so transparently.

• Enforces coordinated default handling of flexible interfaces and parameters.

• Separates knowledge of infrastructure from application knowledge. Allows a small team of infrastructure developers to maintain the isolation layer, while the majority of programmers have a customized interface to the layering software.

Other Consequences

• Isolation layer must be migrated and maintained , potentially on multiple platforms and infrastructures.

• Coordination of developers required to define initial isolation layer interfaces.

• Coordination required to make changes to the application interfaces.

Rescaling This Solution to Other Levels

This solution is often used at the global level in commercial products and technologies . Typically the Isolation Layer enables the vendor to provide a convenient language-specific interface to a lower-level technology. Some convenience can be provided through default handling of lower-level interfaces which are more flexible than necessary for most applications.

	For example, the HP Objec t-Oriented Distributed Computing Environment (OO DCE) product comprises an isolation layer. The product presents C++-interface to application developers. Underlying this interface is an isolation layer of software that is built upon the C-language DCE environment. Calls to the C++ APIs can invoke several underlying DCE procedure calls. In particular, just two calls are needed to initialize OO DCE security service interfaces. The underlying isolation layer, in turn, makes over 50 calls to DCE APIs in order to achieve this initialization with the legacy DCE security service.

	The Isolation Layer solution is most applicable at the enterprise level. However, individual systems have applied this solution in order to provide middleware isolation. For example, the Paragon Electronic Light Table (ELT) product uses an isolation layer above the Common Desktop Environment (CDE) middleware infrastructure, called ToolTalk. By providing ToolTalk isolation, Paragon may easily migrate their product to a CORBA infrastructure and support both CORBA and ToolTalk infrastructures.

Related Solutions

This pattern is related to the Object Wrapper pattern [Malveau 97]. The object wrapper pattern provides isolation to and from a single application to a single object infrastructure. The Isolation Layer pattern provides insulation of multiple applications from multiple infrastructures.

This pattern is related to the Profile pattern [Malveau 97]. An Isolation Layer can be viewed as a particular enterprise profile for the use of middleware.

The Isolation Layer can be thought of as one the layers in a layered architecture. [Malveau 97] In contrast to most layers, this is a very thin layer that does not contain application objects. Typically, an isolation layer only proxies for integrating clients and services with one or more infrastructures. The Proxy pattern is described in [Buschmann 96].

Example

The following examples are three known uses of the Isolation Layer pattern.

1. The ORBlite framework provides isolation of application software from multiple language mappings and network protocols. [Moore 97] ORBlite is based upon HP ORBplus. ORBlite was able to support multiple language mappings for C++ given the evolution of the OMG mappings during the adoption and revision process. [Moore 97]

2. The OpenDoc Parts Framework (OPF) provides a higher level C++ programming interface to the OpenDoc compound document interface, defined in ISO IDL. OPF includes interfaces to operating system functions (including display graphics) as well as OpenDoc functions. In doing so, OPF provides a complete source code portability interface from both middleware and operating system. Compound document parts written using OPF can be ported via recompilation and linking to OS/2, MacOS, and Windows95. 	A testing capability called LiveObjects is in initial availability from the Component Integration Labs , the consortium responsible for OpenDoc. The LiveObjects testing approach will assure component portability and interoperability.

3. EOSDIS (Earth Observation System) is a large-scale information retrieval project funded by NASA. The EOSDIS middleware abstraction layer was used to provide isolation between application software and evolving middleware. Initial prototypes used a beta-test CORBA product. These prototyping efforts proved unsuccessful; largely due to difficulties in using the beta test product. Although program management acknowledged the need for future CORBA support, a proprietary Object-Oriented DCE extension was chosen for short term implementations. Management also did not want to rely entirely on proprietary interfaces. The situation was resolved through the addition of a middleware abstraction layer the masked the choice of middleware from EOSDIS application software. The abstraction layer hid differences in object creation, object activation, and object invocation.

Additional Information

[Moore 97] K. E. Moore and E. R. Kirschenbaum, “Building Evolvable Systems: The ORBlite Project,” Hewlett-Packard Journal, February 1997.

[Malveau 97] T. J. Mowbray and R. C. Malveau, CORBA Design Patterns, John Wiley & Sons, 1997.

[OpenDoc URL] This is the URL for CI Labs, the consortium organization responsible for OpenDoc: http://www.cilabs.org

[EOSDIS URL] This is the main URL for the EOSDIS project’s WWW index: http://spsosun.gsfc.nasa.gov//New_Index.html

Pattern Initially Drafted: February 26, 1997

Reviewed by the Greater Washington DC Design Patterns Study Group: 2/26/97

	[Study Group URL] http://www.serve.com/discus/circle.html

DRAFT	Page � PAGE �4�	� DATE \l �2/26/97�

