
GNU MDK
GNU MIX Development Kit

Edition 1.2.2, for GNU mdk Version 1.2.3
August, 2006

by Jose Antonio Ortega Ruiz (jao@gnu.org)

mailto:jao@gnu.org

This manual is for GNU MDK (version 1.2.3, August, 2006), a set of utilities for devel-
oping programs using Donald Knuth’s MIX mythical computer and MIXAL, its assembly
language.
Copyright c© 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with the Invariant Sections
being “GNU General Public License”, with the Front-Cover Texts being “A
GNU Manual,” and with the Back-Cover Texts as in (a) below. A copy of the
license is included in the section entitled “GNU Free Documentation License”.
(a) The FSF’s Back-Cover Text is: “You are free to copy and modify this GNU
Manual. Buying copies from GNU Press supports the FSF in developing GNU
and promoting software freedom.”

i

Short Contents

Introduction . 1

Acknowledgements . 3

1 Installing mdk . 5

2 MIX and MIXAL tutorial . 9

3 Getting started . 27

4 Emacs tools . 43

5 mixasm, the MIXAL assembler . 45

6 mixvm, the MIX computer simulator. 47

7 gmixvm, the GTK virtual machine 59

8 mixguile, the Scheme virtual machine 65

9 Reporting Bugs . 73

A Copying . 75

Concept Index . 89

Instructions and commands. 91

ii GNU MIX Development Kit (mdk)

iii

Table of Contents

Introduction . 1

Acknowledgements . 3

1 Installing mdk . 5
1.1 Download the source tarball . 5
1.2 Requirements . 5
1.3 Basic installation . 6
1.4 Emacs support . 6
1.5 Special configure flags . 7
1.6 Supported platforms . 7

2 MIX and MIXAL tutorial 9
2.1 The MIX computer . 9

2.1.1 MIX architecture . 9
2.1.2 MIX instruction set . 11

2.1.2.1 Instruction structure . 11
2.1.2.2 Loading operators . 12
2.1.2.3 Storing operators . 13
2.1.2.4 Arithmetic operators . 13
2.1.2.5 Address transfer operators . 14
2.1.2.6 Comparison operators . 15
2.1.2.7 Jump operators . 15
2.1.2.8 Input-output operators . 16
2.1.2.9 Conversion operators . 17
2.1.2.10 Shift operators . 17
2.1.2.11 Miscellaneous operators . 18
2.1.2.12 Execution times . 18

2.2 MIXAL. 19
2.2.1 Basic program structure . 19
2.2.2 MIXAL directives . 20
2.2.3 Expressions . 22
2.2.4 W-expressions . 22
2.2.5 Local symbols . 23
2.2.6 Literal constants . 24

3 Getting started . 27
3.1 Writing a source file . 27
3.2 Compiling . 28
3.3 Running the program . 28

3.3.1 Non-interactive mode . 29
3.3.2 Interactive mode . 30

iv GNU MIX Development Kit (mdk)

3.3.3 Debugging commands . 31
3.4 Using mixguile . 33

3.4.1 The mixguile shell . 33
3.4.2 Additional MIX Scheme functions . 34
3.4.3 Defining new functions . 35
3.4.4 Hook functions . 36

3.4.4.1 Command hooks . 36
3.4.4.2 Break hooks . 39

3.4.5 Scheme scripts . 39
3.5 Using Scheme in mixvm and gmixvm . 40

4 Emacs tools . 43
4.1 MIXAL mode . 43

4.1.1 Basics . 43
4.1.2 Help system . 43
4.1.3 Compiling and running . 44

4.2 GUD integration . 44

5 mixasm, the MIXAL assembler 45
5.1 Invoking mixasm . 45

6 mixvm, the MIX computer simulator 47
6.1 Invoking mixvm. 47
6.2 Interactive commands . 48

6.2.1 File commands . 48
6.2.2 Debug commands . 50
6.2.3 State commands . 54
6.2.4 Configuration commands . 56
6.2.5 Scheme commands . 57

6.3 MIX block devices . 57

7 gmixvm, the GTK virtual machine 59
7.1 Invoking gmixvm . 59
7.2 MIXVM console . 60
7.3 MIX virtual machine . 60
7.4 MIXAL source view . 61
7.5 MIX devices view . 61
7.6 Menu and status bars . 61

8 mixguile, the Scheme virtual machine 65
8.1 Invoking mixguile . 65
8.2 Scheme functions reference . 66

8.2.1 mixvm command wrappers . 66
8.2.2 Hook functions . 68
8.2.3 Additional VM functions . 69

v

9 Reporting Bugs. 73

Appendix A Copying . 75
A.1 GNU General Public License . 75

Preamble . 75
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION

AND MODIFICATION . 76
How to Apply These Terms to Your New Programs 80

A.2 GNU Free Documentation License . 81
A.2.1 ADDENDUM: How to use this License for your documents

. 87

Concept Index . 89

Instructions and commands. 91

vi GNU MIX Development Kit (mdk)

Introduction 1

Introduction

In his book series The Art of Computer Programming (published by Addison Wesley), D.
Knuth uses an imaginary computer, the MIX, and its associated machine-code and assembly
languages to ilustrate the concepts and algorithms as they are presented.

The MIX’s architecture is a simplified version of those found in real CISC CPUs, and
the MIX assembly language (MIXAL) provides a set of primitives that will be very familiar
to any person with a minimum experience in assembly programming. The MIX/MIXAL
definition is powerful and complete enough to provide a virtual development platform for
writing quite complex programs, and close enough to real computers to be worth using
when learning programming techniques. At any rate, if you want to learn or improve your
programming skills, a MIX development environment would come in handy.

The mdk package aims at providing such virtual development environment on a GNU
box. Thus, mdk offers you a set of utilities to simulate the MIX computer and to write,
compile, run and debug MIXAL programs. As of version 1.2.3, mdk includes the following
programs:

mixasm MIXAL assembler. Assembler which translates MIXAL source files into pro-
grams that can be run (and debugged) by mixvm, mixguile or gmixvm.

mixvm MIX virtual machine. Emulation of the MIX computer with a CLI.

gmixvm A GTK+ GUI for the MIX virtual machine. Provides all of mixvm functionality
accessible through a graphical interface.

mixguile A Guile shell, with an embedded MIX virtual machine and built-in commands
to manipulate it using Scheme.

mixal-mode.el
An Emacs major mode for MIXAL source files editing, providing syntax high-
lighting, documentation lookup and invocation of mixvm within Emacs.

mixvm.el This elisp program allows running mixvm inside an Emacs GUD buffer, provid-
ing concurrent edition and debugging of MIXAL programs.

mixvm and gmixvm implement a simulator of the MIX computer, giving you a virtual
machine for executing and debugging MIX programs. These binary programs could be
written by hand, but it is easier to produce them compiling MIXAL source files, using
the MIXAL assembler mixasm. On the other hand, mixguile offers you the possibility of
manipulating a MIX virtual machine through a set of Scheme functions, so that you can
use this programming language to interact with the virtual machine. In addition, mixvm
and gmixvm are also able to interpret Scheme scripts (using an embedded Guile interpreter),
that is, you can use Scheme as an extension language to add new functionalities to these
programs.

This manual gives you a tutorial of MIX and MIXAL, and a thorough description of the
use of the mdk utilities.

2 GNU MIX Development Kit (mdk)

Acknowledgements 3

Acknowledgements

Many people have further contributed to mdk by reporting problems, suggesting various
improvements, or submitting actual code. Here is a list of these people. Help me keep it
complete and exempt of errors.
• Richard Stallman suggested various improvements to the documentation and has always

kept an eye on each mdk release.
• Philip Ellis King provided MIXAL test programs pinpointing bugs in the first mdk

release, and useful discussions as well. Philip has also contributed with the Emacs
port of mixvm and influenced the gmixvm GUI design with insightful comments and
prototypes.

• Pieter E J Pareit is the author of the Emacs MIXAL mode, and has also contributed
many bug fixes.

• Michael Scholz is the author of the German translation of mdk’s user interface.
• Sergey Poznyakoff provided patches to mixlib/mix scanner.l improving MIXAL com-

pliance.
• Francesc Xavier Noria kindly and thoroughly reviewed the mdk documentation, pro-

viding insightful advice.
• Nelson H. F. Beebe has tested mdk in a lot of Unix platforms, suggesting portability

enhancements to the source code.
• Agustin Navarro, Ying-Chieh Liao, Adrian Bunk, Baruch Even, and Ronald Cole

ported mdk to different platforms, and created and/or maintain packages for it.
• Jason Uhlenkott, Andrew Hood, Aleix Conchillo, Radu Butnaru, Ruslan Batdalov,

WeiZheng, Sascha Wilde, Michael Vernov and Xiaofeng Zhao reported bugs and sug-
gested fixes to them.

• Eli Bendersky, Milan Bella and Jens Seidel reported bugs on the documentation.
• Christoph von Nathusius, Stephen Ramsay and Johan Swanljung tested mdk on dif-

ferent platforms, and helped fix the configuration process in them.
• mdk was inspired by Darius Bacon’s MIXAL program.

http://www.accesscom.com/penalty z@ ~darius/

4 GNU MIX Development Kit (mdk)

Chapter 1: Installing mdk 5

1 Installing mdk

1.1 Download the source tarball

GNU mdk is distributed as a source tarball available for download in the following URLs:

• ftp://ftp.gnu.org/pub/gnu/mdk

• GNU mirrors

• http://sourceforge.net/project/showfiles.php?group_id=13897

The above sites contain the latest stable releases of mdk. The development branch is
available as a GNU Arch archive located at1

• http://arch.sv.gnu.org/archives/mdk

After you have downloaded the source tarball, unpack it in a directory of your choice
using the command:

tar xfvz mdk-X.Y.tar.gz

where X.Y stands for the downloaded version (the current stable release being version
1.2.3).

1.2 Requirements

In order to build and install mdk, you will need the following libraries installed in your
system:

− GLIB 2.4.0 (required)

− GNU Flex 2.5 (required)

− GTK 2.4.0 (optional)

− Libglade 2.4.0 (optional)

− GNU Readline (optional)

− GNU Libguile 1.6 (optional)

If present, readline and history are used to provide command completion and history
management to the command line MIX virtual machine, mixvm. GTK+ and libglade are
needed if you want to build the graphical interface to the MIX virtual machine, gmixvm.
Finally, if libguile is found, the mdk utilities will be compiled with Guile support and will
be extensible using Scheme.

Please note: you need both the libraries and the headers; this means both the library
package and the ‘-dev’ package if you do not compile your libraries yourself (ex: installing
‘libgtk2.0-0’ and ‘libgtk2.0-0-dev’ on Debian).

1 See mdk’s Arch page for more information on using the unstable source tree. Note, however, that the
rest of this manual is about the stable release.

ftp://ftp.gnu.org/pub/gnu/mdk
http://www.gnu.org/prep/ftp.html
http://sourceforge.net/project/showfiles.php?group_id=13897
http://www.gnu.org/software/gnu-arch/
http://arch.sv.gnu.org/archives/mdk
http://www.gtk.org
http://www.gnu.org/software/flex/flex.html
http://www.gtk.org
http://ftp.gnome.org/pub/GNOME/sources/libglade/2.4/
http://cnswww.cns.cwru.edu/php/chet/readline/rltop.html
http://www.gnu.org/software/guile
http://savannah.gnu.org/arch/?group=mdk

6 GNU MIX Development Kit (mdk)

1.3 Basic installation

mdk uses GNU Autoconf and Automake tools, and, therefore, should be built and installed
without hassle using the following commands inside the source directory:

./configure
make
make install

where the last one must be run as root.

The first command, configure, will setup the makefiles for your system. In particular,
configure will look for GTK+ and libglade, and, if they are present, will generate the
appropiate makefiles for building the gmixvm graphical user interface. Upon completion,
you should see a message with the configuration results like the following:

*** GNU MDK 1.2 has been successfully configured. ***

Type ’make’ to build the following utilities:
- mixasm (MIX assembler)
- mixvm (MIX virtual machine, with readline support,

with guile support)
- gmixvm (mixvm GTK+ GUI, with guile support)
- mixguile (the mixvm guile shell)

where the last lines may be missing if you lack the above mentioned libraries.

The next command, make, will actually build the mdk programs in the following loca-
tions:

− ‘mixutils/mixasm’
− ‘mixutils/mixvm’
− ‘mixgtk/gmixvm’
− ‘mixguile/mixguile’

You can run these programs from within their directories, but I recommend you to install
them in proper locations using make install from a root shell.

1.4 Emacs support

mdk includes extensive support for Emacs. Upon installation, all the elisp code is installed
in ‘PREFIX/share/mdk’, where ‘PREFIX’ stands for your installation root directory (e.g.
‘/usr/local’). You can copy the elisp files to a directory that is in your load-path, or you
can add the above directory to it. Assuming that the installing prefix is ‘/usr/local’, you
can do it by adding to your ‘.emacs’ file the following line:

(setq load-path (cons "/usr/local/share/mdk" load-path))

MIXAL programs can be written using Emacs and the elisp program
‘share/mdk/mixal-mode.el’, contributed by Pieter E. J. Pareit. It provides font
locking, interactive help, compiling assistance and invocation of the MIX virtual machine
via a new major mode called mixal-mode. To start mixal-mode automatically whenever
you edit a MIXAL source file, add the following lines to your ‘.emacs’ file:

(autoload ’mixal-mode "mixal-mode" t)

Chapter 1: Installing mdk 7

(add-to-list ’auto-mode-alist ’("\\.mixal\\’" . mixal-mode))

In addition, mixvm can be run within an Emacs GUD buffer using the elisp program
‘share/mdk/mixvm.el’, contributed by Philip E. King. ‘mixvm.el’ provides an interface
between mdk’s mixvm and Emacs, via GUD. Place this file in your load-path, optionally
adding the following line to your ‘.emacs’ file:

(autoload ’mixvm "mixvm" "mixvm/gud interaction" t)

1.5 Special configure flags

You can fine-tune the configuration process using the following switches with configure:

[User Option]--enable-gui[=yes|no]
[User Option]--disable-gui

Enables/disables the build of the MIX virtual machine GUI (gmixvm). If the required
libraries are missing (see Section 1.2 [Requirements], page 5) the configure script with
automatically disable this feature.

[User Option]--with-guile[=yes|no]
[User Option]--without-guile

Enables/disables the Guile support for mixvm and gmixvm, and the build of mixguile.
If the required libraries are missing (see Section 1.2 [Requirements], page 5) the
configure script with automatically disable this feature.

[User Option]--with-readline[=yes|no]
[User Option]--without-readline

Enables/disables the GNU Readline support for mixvm. If the required libraries are
missing (see Section 1.2 [Requirements], page 5) the configure script with automati-
cally disable this feature.

For additional, boilerplate configure options, see the ‘INSTALL’ file, or run
configure --help

1.6 Supported platforms

GNU MDK has been tested in the following platforms:
• Debian GNU/Linux 2.2, 2.3, 3.0, 3.1, 3.2
• Redhat GNU/Linux 8.0 (Ronald Cole), 7.0 (Agustin Navarro), 6.2 (Roberto Ferrero)
• Mandrake 8.0 (Agustin Navarro)
• FreeBSD 4.2, 4.3, 4.4, 4.5 (Ying-Chieh Liao), 5.2
• Solaris 2.8/gcc 2.95.3 (Stephen Ramsay)
• MS Windows 98 SE/Cygwin 1.1.8-2 (Christoph von Nathusius)2

• Mac OS X 10.1.2 (Johan Swanljung), Mac OS X 10.4.x (Darwin Port by Aleix Con-
chillo).

2 Caveats: Christoph has only tested mixvm and mixasm on this platform, using gcc 2.95.3-2, GLIB 1.2.10
and GNUreadline 4.1-2. He has reported missing history functionalities on a first try. If you find problems
with history/readline functionality, please try a newer/manually installed readline version.

8 GNU MIX Development Kit (mdk)

• AMD Athlon, GNU/Linux version 2.4.2-2smp (Red Hat 7.1 (Seawolf)) (N. H. F. Beebe)
• Apple PowerPC G3, GNU/Linux 2.2.18-4hpmac (Red Hat Linux/PPC 2000 Q4) (N.

H. F. Beebe)
• DEC Alpha, GNU/Linux 2.2.19-6.2.1 (Red Hat 6.2) (N. H. F. Beebe)
• Compaq/DEC Alpha OSF/1 4.0F [ONLY after adding rsync’s snprintf() implementa-

tion] (N. H. F. Beebe)
• IBM PowerPC AIX 4.2 (N. H. F. Beebe)
• Intel Pentium III, GNU/Linux 2.4.9-31smp (Red Hat 7.2 (Enigma)) (N. H. F. Beebe)
• SGI Origin 200, IRIX 6.5 (N. H. F. Beebe)
• Sun SPARC, GNU/Linux 2.2.19-6.2.1 (Red Hat 6.2) (N. H. F. Beebe)
• Sun SPARC, Solaris 2.8 (N. H. F. Beebe)

mdk will probably work on any GNU/Linux or BSD platform. If you try it in a platform
not listed above, please send a mail to the author.

mailto:jao@gnu.org

Chapter 2: MIX and MIXAL tutorial 9

2 MIX and MIXAL tutorial

In the book series The Art of Computer Programming, by D. Knuth, a virtual computer,
the MIX, is used by the author (together with the set of binary instructions that the virtual
CPU accepts) to illustrate the algorithms and skills that every serious programmer should
master. Like any other real computer, there is a symbolic assembler language that can
be used to program the MIX: the MIX assembly language, or MIXAL for short. In the
following subsections you will find a tutorial on these topics, which will teach you the basics
of the MIX architecture and how to program a MIX computer using MIXAL.

2.1 The MIX computer

In this section, you will find a description of the MIX computer, its components and in-
struction set.

2.1.1 MIX architecture

The basic information storage unit in the MIX computer is the byte, which stores positive
values in the range 0-63 . Note that a MIX byte can be then represented as 6 bits, instead
of the common 8 bits for a regular byte. Unless otherwise stated, we shall use the word
byte to refer to a MIX 6-bit byte.

A MIX word is defined as a set of 5 bytes plus a sign. The bytes within a word are
numbered from 1 to 5, being byte number one the most significant one. The sign is denoted
by index 0. Graphically,

| 0 | 1 | 2 | 3 | 4 | 5 |

| +/- | byte | byte | byte | byte | byte |

Sample MIX words are ‘- 12 00 11 01 63’ and ‘+ 12 11 34 43 00’.

You can refer to subfields within a word using a field specification or fspec of the form
“(L:R)”, where L denotes the first byte, and R the last byte of the subfield. When L is zero,
the subfield includes the word’s sign. An fspec can also be represented as a single value F,
given by F = 8*L + R (thus the fspec ‘(1:3)’, denoting the first three bytes of a word, is
represented by the integer 11).

The MIX computer stores information in registers, that can store either a word or two
bytes and sign (see below), and memory cells, each one containing a word. Specifically, the
MIX computer has 4000 memory cells with addresses 0 to 3999 (i.e., two bytes are enough
to address a memory cell) and the following registers:

rA A register. General purpose register holding a word. Usually its contents serves
as the operand of arithmetic and storing instructions.

rX X register. General purpose register holding a word. Often it acts as an exten-
sion or a replacement of ‘rA’.

rJ J (jump) register. This register stores positive two-byte values, usually repre-
senting a jump address.

10 GNU MIX Development Kit (mdk)

rI1, rI2, rI3, rI4, rI5, rI6
Index registers. These six registers can store a signed two-byte value. Their
contents are used as indexing values for the computation of effective memory
addresses.

In addition, the MIX computer contains:
− An overflow toggle (a single bit with values on or off). In this manual, this toggle is

denoted ov.
− A comparison indicator (having three values: EQUAL, GREATER or LESS). In this

manual, this indicator is denoted cm, and its possible values are abbreviated as E, G
and L.

− Input-output block devices. Each device is labelled as un, where n runs from 0 to 20.
In Knuth’s definition, u0 through u7 are magnetic tape units, u8 through 15 are disks
and drums, u16 is a card reader, u17 is a card writer, u18 is a line printer and, u19 is
a typewriter terminal, and u20, a paper tape. Our implementation maps these devices
to disk files, except for u19, which represents the standard output.

As noted above, the MIX computer communicates with the external world by a set of
input-output devices which can be “connected” to it. The computer interchanges informa-
tion using blocks of words whose length depends on the device at hand (see Section 6.3
[Devices], page 57). These words are interpreted by the device either as binary information
(for devices 0-16), or as representing printable characters (devices 17-20). In the last case,
each MIX byte is mapped onto a character according to the following table:
00 01 A 02 B 03 C
04 D 05 E 06 F 07 G
08 H 09 I 10 ~ 11 J
12 K 13 L 14 M 15 N
16 O 17 P 18 Q 19 R
20 [21 # 22 S 23 T
24 U 25 V 26 W 27 X
28 Y 29 Z 30 0 31 1
32 2 33 3 34 4 35 5
36 6 37 7 38 8 39 9
40 . 41 , 42 (43)
44 + 45 - 46 * 47 /
48 = 49 $ 50 < 51 >
52 @ 53 ; 54 : 55 ’
The value 0 represents a whitespace. The characters ~, [and # correspond to symbols not
representable as ASCII characters (uppercase delta, sigma and gamma, respectively), and
byte values 56-63 have no associated character.

Finally, the MIX computer features a virtual CPU which controls the above components,
and which is able to execute a rich set of instructions (constituting its machine language,
similar to those commonly found in real CPUs), including arithmetic, logical, storing, com-
parison and jump instructions. Being a typical von Neumann computer, the MIX CPU
fetchs binary instructions from memory sequentially (unless a jump instruction is found),
and stores the address of the next instruction to be executed in an internal register called
location counter (also known as program counter in other architectures).

Chapter 2: MIX and MIXAL tutorial 11

The next section, See Section 2.1.2 [MIX instruction set], page 11, gives a complete
description of the available MIX binary instructions.

2.1.2 MIX instruction set

The following subsections fully describe the instruction set of the MIX computer. We begin
with a description of the structure of binary instructions and the notation used to refer to
their subfields. The remaininig subsections are devoted to describing the actual instructions
available to the MIX programmer.

2.1.2.1 Instruction structure

MIX instructions are codified as words with the following subfield structure:

Subfield fspec Description
ADDRESS (0:2) The first two bytes plus sign are the address field. Com-

bined with the INDEX field, denotes the memory address
to be used by the instruction.

INDEX (3:3) The third byte is the index, normally used for indexing
the address1.

MOD (4:4) Byte four is used either as an operation code modifier or
as a field specification.

OPCODE (5:5) The last (least significant) byte in the word denotes the
operation code.

or, graphically,

--
| 0 | 1 | 2 | 3 | 4 | 5 |
--
| ADDRESS | INDEX | MOD | OPCODE |
--

For a given instruction, ‘M’ stands for the memory address obtained after indexing the
ADDRESS subfield (using its INDEX byte), and ‘V’ is the contents of the subfield indicated
by MOD of the memory cell with address ‘M’. For instance, suppose that we have the
following contents of MIX registers and memory cells:

[rI2] = + 00 63
[31] = - 10 11 00 11 22

where ‘[n]’ denotes the contents of the nth memory cell and ‘[rI2]’ the contents of register
‘rI2’2. Let us consider the binary instruction ‘I = - 00 32 02 11 10’. For this instruction
we have:

ADDRESS = - 00 32 = -32
INDEX = 02 = 2
MOD = 11 = (1:3)
OPCODE = 10

1 The actual memory address the instruction refers to, is obtained by adding to ADDRESS the value of
the ‘rI’ register denoted by INDEX.

2 In general, ‘[X]’ will denote the contents of entity ‘X’; thus, by definition, ‘V = [M](MOD)’.

12 GNU MIX Development Kit (mdk)

M = ADDRESS + [rI2] = -32 + 63 = 31
V = [M](MOD) = (- 10 11 00 11 22)(1:3) = + 00 00 10 11 00

Note that, when computing ‘V’ using a word and an fspec, we apply a left padding to
the bytes selected by ‘MOD’ to obtain a complete word as the result.

In the following subsections, we will assign to each MIX instruction a mnemonic, or
symbolic name. For instance, the mnemonic of ‘OPCODE’ 10 is ‘LD2’. Thus we can rewrite
the above instruction as

LD2 -32,2(1:3)

or, for a generic instruction:
MNEMONIC ADDRESS,INDEX(MOD)

Some instructions are identified by both the OPCODE and the MOD fields. In these cases,
the MOD will not appear in the above symbolic representation. Also when ADDRESS or
INDEX are zero, they can be omitted. Finally, MOD defaults to (0:5) (meaning the whole
word).

2.1.2.2 Loading operators

The following instructions are used to load memory contents into a register.

LDA Put in rA the contents of cell no. M. OPCODE = 8, MOD = fspec. rA <- V.

LDX Put in rX the contents of cell no. M. OPCODE = 15, MOD = fspec. rX <- V.

LDi Put in rIi the contents of cell no. M. OPCODE = 8 + i, MOD = fspec. rIi <-
V.

LDAN Put in rA the contents of cell no. M, with opposite sign. OPCODE = 16, MOD
= fspec. rA <- -V.

LDXN Put in rX the contents of cell no. M, with opposite sign. OPCODE = 23, MOD
= fspec. rX <- -V.

LDiN Put in rIi the contents of cell no. M, with opposite sign. OPCODE = 16 + i,
MOD = fspec. rIi <- -V.

In all the above load instructions the ‘MOD’ field selects the bytes of the memory cell
with address ‘M’ which are loaded into the requisite register (indicated by the ‘OPCODE’).
For instance, the word ‘+ 00 13 01 27 11’ represents the instruction

LD3 13,1(3:3)
^ ^ ^ ^
| | | |
| | | --- MOD = 27 = 3*8 + 3
| | --- INDEX = 1
| --- ADDRESS = 00 13
--- OPCODE = 11

Let us suppose that, prior to this instruction execution, the state of the MIX computer
is the following:

[rI1] = - 00 01
[rI3] = + 24 12
[12] = - 01 02 03 04 05

Chapter 2: MIX and MIXAL tutorial 13

As, in this case, ‘M = 13 + [rI1] = 12’, we have
V = [M](3:3) = (- 01 02 03 04 05)(3:3)
= + 00 00 00 00 03

(note that the specified subfield is left-padded with null bytes to complete a word). Hence,
the MIX state, after the instruction execution, will be

[rI1] = - 00 01
[rI3] = + 00 03
[12] = - 01 02 03 04 05

To further illustrate loading operators, the following table shows the contents of ‘rX’
after different ‘LDX’ instructions:

‘LDX 12(0:0) [rX] = - 00 00 00 00 00’
‘LDX 12(0:1) [rX] = - 00 00 00 00 01’
‘LDX 12(3:5) [rX] = + 00 00 03 04 05’
‘LDX 12(3:4) [rX] = + 00 00 00 03 04’
‘LDX 12(0:5) [rX] = - 01 02 03 04 05’

2.1.2.3 Storing operators

The following instructions are the inverse of the load operations: they are used to store a
subfield of a register into a memory location. Here, MOD represents the subfield of the
memory cell that is to be overwritten with bytes from a register. These bytes are taken
beginning by the rightmost side of the register.

STA Store rA. OPCODE = 24, MOD = fspec. V <- rA.

STX Store rX. OPCODE = 31, MOD = fspec. V <- rX.

STi Store rIi. OPCODE = 24 + i, MOD = fspec. V <- rIi.

STJ Store rJ. OPCODE = 32, MOD = fspec. V <- rJ.

STZ Store zero. OPCODE = 33, MOD = fspec. V <- 0.

By way of example, consider the instruction ‘STA 1200(2:3)’. It causes the MIX to fetch
bytes no. 4 and 5 of register A and copy them to bytes 2 and 3 of memory cell no. 1200
(remember that, for these instructions, MOD specifies a subfield of the memory address).
The other bytes of the memory cell retain their values. Thus, if prior to the instruction
execution we have

[1200] = - 20 21 22 23 24
[rA] = + 01 02 03 04 05

we will end up with
[1200] = - 20 04 05 23 24
[rA] = + 01 02 03 04 05

As a second example, ‘ST2 1000(0)’ will set the sign of ‘[1000]’ to that of ‘[rI2]’.

2.1.2.4 Arithmetic operators

The following instructions perform arithmetic operations between rA and rX register and
memory contents.

ADD Add and set OV if overflow. OPCODE = 1, MOD = fspec. rA <- rA +V.

14 GNU MIX Development Kit (mdk)

SUB Sub and set OV if overflow. OPCODE = 2, MOD = fspec. rA <- rA - V.

MUL Multiply V times rA and store the 10-bytes product in rAX. OPCODE = 3,
MOD = fspec. rAX <- rA x V.

DIV rAX is considered a 10-bytes number, and it is divided by V. OPCODE = 4,
MOD = fspec. rA <- rAX / V, rX <- reminder.

In all the above instructions, ‘[rA]’ is one of the operands of the binary arithmetic
operation, the other being ‘V’ (that is, the specified subfield of the memory cell with address
‘M’), padded with zero bytes on its left-side to complete a word. In multiplication and
division, the register ‘X’ comes into play as a right-extension of the register ‘A’, so that we
are able to handle 10-byte numbers whose more significant bytes are those of ‘rA’ (the sign
of this 10-byte number is that of ‘rA’: ‘rX’’s sign is ignored).

Addition and substraction of MIX words can give rise to overflows, since the result is
stored in a register with room to only 5 bytes (plus sign). When this occurs, the operation
result modulo 1,073,741,823 (the maximum value storable in a MIX word) is stored in ‘rA’,
and the overflow toggle is set to TRUE.

2.1.2.5 Address transfer operators

In these instructions, ‘M’ (the address of the instruction after indexing) is used as a number
instead of as the address of a memory cell. Consequently, ‘M’ can have any valid word value
(i.e., it’s not limited to the 0-3999 range of a memory address).

ENTA Enter ‘M’ in [rA]. OPCODE = 48, MOD = 2. rA <- M.

ENTX Enter ‘M’ in [rX]. OPCODE = 55, MOD = 2. rX <- M.

ENTi Enter ‘M’ in [rIi]. OPCODE = 48 + i, MOD = 2. rIi <- M.

ENNA Enter ‘-M’ in [rA]. OPCODE = 48, MOD = 3. rA <- -M.

ENNX Enter ‘-M’ in [rX]. OPCODE = 55, MOD = 3. rX <- -M.

ENNi Enter ‘-M’ in [rIi]. OPCODE = 48 + i, MOD = 3. rIi <- -M.

INCA Increase [rA] by ‘M’. OPCODE = 48, MOD = 0. rA <- rA + M.

INCX Increase [rX] by ‘M’. OPCODE = 55, MOD = 0. rX <- rX + M.

INCi Increase [rIi] by ‘M’. OPCODE = 48 + i, MOD = 0. rIi <- rIi + M.

DECA Decrease [rA] by ‘M’. OPCODE = 48, MOD = 1. rA <- rA - M.

DECX Decrease [rX] by ‘M’. OPCODE = 55, MOD = 1. rX <- rX - M.

DECi Decrease [rIi] by ‘M’. OPCODE = 48 + i, MaOD = 0. rIi <- rIi - M.

In the above instructions, the subfield ‘ADDRESS’ acts as an immediate (indexed) operand,
and allow us to set directly the contents of the MIX registers without an indirection to the
memory cells (in a real CPU this would mean that they are faster that the previously
discussed instructions, whose operands are fetched from memory). So, if you want to store
in ‘rA’ the value -2000 (- 00 00 00 31 16), you can use the binary instruction + 31 16 00 03 48,
or, symbolically,

Chapter 2: MIX and MIXAL tutorial 15

ENNA 2000

Used in conjuction with the store operations (‘STA’, ‘STX’, etc.), these instructions also allow
you to set memory cells contents to concrete values.

Note that in these address transfer operators, the ‘MOD’ field is not a subfield specificator,
but serves to define (together with ‘OPCODE’) the concrete operation to be performed.

2.1.2.6 Comparison operators

So far, we have learned how to move values around between the MIX registers and its
memory cells, and also how to perform arithmetic operations using these values. But, in
order to write non-trivial programs, other functionalities are needed. One of the most
common is the ability to compare two values, which, combined with jumps, will allow the
execution of conditional statements. The following instructions compare the value of a
register with ‘V’, and set the cm indicator to the result of the comparison (i.e. to ‘E’, ‘G’ or
‘L’, equal, greater or lesser respectively).

CMPA Compare [rA] with V. OPCODE = 56, MOD = fspec.

CMPX Compare [rX] with V. OPCODE = 63, MOD = fspec.

CMPi Compare [rIi] with V. OPCODE = 56 + i, MOD = fspec.

As explained above, these instructions modify the value of the MIX comparison indicator;
but maybe you are asking yourself how do you use this value: enter jump operators, in the
next subsection.

2.1.2.7 Jump operators

The MIX computer has an internal register, called the location counter, which stores the
address of the next instruction to be fetched and executed by the virtual CPU. You cannot
directly modify the contents of this internal register with a load instruction: after fetching
the current instruction from memory, it is automatically increased in one unit by the MIX.
However, there is a set of instructions (which we call jump instructions) which can alter
the contents of the location counter provided some condition is met. When this occurs, the
value of the next instruction address that would have been fetched in the absence of the
jump is stored in ‘rJ’ (except for JSJ), and the location counter is set to the value of ‘M’
(so that the next instruction is fetched from this new address). Later on, you can return to
the point when the jump occurred reading the address stored in ‘rJ’.

The MIX computer provides the following jump instructions: With these instructions
you force a jump to the specified address. Use ‘JSJ’ if you do not care about the return
address.

JMP Unconditional jump. OPCODE = 39, MOD = 0.

JSJ Unconditional jump, but rJ is not modified. OPCODE = 39, MOD = 1.

These instructions check the overflow toggle to decide whether to jump or not.

JOV Jump if OV is set (and turn it off). OPCODE = 39, MOD = 2.

JNOV Jump if OV is not set (and turn it off). OPCODE = 39, MOD = 3.

In the following instructions, the jump is conditioned to the contents of the comparison
flag:

16 GNU MIX Development Kit (mdk)

JL Jump if [CM] = L. OPCODE = 39, MOD = 4.
JE Jump if [CM] = E. OPCODE = 39, MOD = 5.
JG Jump if [CM] = G. OPCODE = 39, MOD = 6.
JGE Jump if [CM] does not equal L. OPCODE = 39, MOD = 7.
JNE Jump if [CM] does not equal E. OPCODE = 39, MOD = 8.
JLE Jump if [CM] does not equal G. OPCODE = 39, MOD = 9.

You can also jump conditioned to the value stored in the MIX registers, using the
following instructions:

JAN
JAZ
JAP
JANN
JANZ
JANP Jump if the content of rA is, respectively, negative, zero, positive, non-negative,

non-zero or non-positive. OPCODE = 40, MOD = 0, 1, 2, 3, 4, 5.

JXN
JXZ
JXP
JXNN
JXNZ
JXNP Jump if the content of rX is, respectively, negative, zero, positive, non-negative,

non-zero or non-positive. OPCODE = 47, MOD = 0, 1, 2, 3, 4, 5.

JiN
JiZ
JiP
JiNN
JiNZ
JiNP Jump if the content of rIi is, respectively, negative, zero, positive, non-negative,

non-zero or non-positive. OPCODE = 40 + i, MOD = 0, 1, 2, 3, 4, 5.

2.1.2.8 Input-output operators

As explained in previous sections (see Section 2.1.1 [MIX architecture], page 9), the MIX
computer can interact with a series of block devices. To that end, you have at your disposal
the following instructions:

IN Transfer a block of words from the specified unit to memory, starting at address
M. OPCODE = 36, MOD = I/O unit.

OUT Transfer a block of words from memory (starting at address M) to the specified
unit. OPCODE = 37, MOD = I/O unit.

IOC Perfom a control operation (given by M) on the specified unit. OPCODE =
35, MOD = I/O unit.

JRED Jump to M if the specified unit is ready. OPCODE = 38, MOD = I/O unit.

JBUS Jump to M if the specified unit is busy. OPCODE = 34, MOD = I/O unit.

Chapter 2: MIX and MIXAL tutorial 17

In all the above instructions, the ‘MOD’ subfile must be in the range 0-20, since it denotes the
operation’s target device. The ‘IOC’ instruction only makes sense for tape devices (‘MOD’ =
0-7 or 20): it shifts the read/write pointer by the number of words given by ‘M’ (if it equals
zero, the tape is rewound)3.

2.1.2.9 Conversion operators

The following instructions convert between numerical values and their character represen-
tations.

NUM Convert rAX, assumed to contain a character representation of a number, to
its numerical value and store it in rA. OPCODE = 5, MOD = 0.

CHAR Convert the number stored in rA to a character representation and store it in
rAX. OPCODE = 5, MOD = 1.

Digits are represented in MIX by the range of values 30-39 (digits 0-9). Thus, if the contents
of ‘rA’ and ‘rX’ are, for instance,

[rA] = + 30 30 31 32 33
[rX] = + 31 35 39 30 34

the represented number is 0012315904, and ‘NUM’ will store this value in ‘rA’ (i.e., we end
up with ‘[rA]’ = + 0 46 62 52 0 = 12315904).

If any byte in ‘rA’ or ‘rB’ does not belong to the range 30-39, it is interpreted by ‘NUM’
as the digit obtained by taking its value modulo 10. E.g. values 0, 10, 20, 30, 40, 50, 60
all represent the digit 0; 2, 12, 22, etc. represent the digit 2, and so on. For instance, the
number 0012315904 mentioned above could also be represented as

[rA] = + 10 40 31 52 23
[rX] = + 11 35 49 20 54

‘CHAR’ performs the inverse operation, using only the values 30 to 39 for representing
digits 0-9.

2.1.2.10 Shift operators

The following instructions perform byte-wise shifts of the contents of ‘rA’ and ‘rX’.

SLA
SRA
SLAX
SRAX
SLC
SRC Shift rA or rAX left, right, or rAX circularly (see example below) left or right.

M specifies the number of bytes to be shifted. OPCODE = 6, MOD = 0, 1, 2,
3, 4, 5.

If we begin with, say, ‘[rA]’ = - 01 02 03 04 05, we would have the following modifications
to ‘rA’ contents when performing the instructions on the left column:

3 In Knuth’s original definition, there are other control operations available, but they do not make sense
when implementing the block devices as disk files (as we do in mdk simulator). For the same reason,
mdk devices are always ready, since all input-output operations are performed using synchronous system
calls.

18 GNU MIX Development Kit (mdk)

SLA 2 [rA] = - 03 04 05 00 00
SLA 6 [rA] = - 00 00 00 00 00
SRA 1 [rA] = - 00 01 02 03 04
Note that the sign is unaffected by shift operations. On the other hand, ‘SLC’, ‘SRC’, ‘SLAX’
and ‘SRAX’ treat ‘rA’ and ‘rX’ as a single 10-bytes register (ignoring again the signs). For
instance, if we begin with ‘[rA]’ = + 01 02 03 04 05 and ‘[rX]’ = - 06 07 08 09 10, we
would have:
SLC 3 [rA] = + 04 05 06 07 08 [rX] = - 09 10 01 02 03
SLAX 3 [rA] = + 04 05 06 07 08 [rX] = - 09 10 00 00 00
SRC 4 [rA] = + 07 08 09 10 01 [rX] = - 02 03 04 05 06
SRAX 4 [rA] = + 00 00 00 00 01 [rX] = - 02 03 04 05 06

2.1.2.11 Miscellaneous operators

Finally, we list in the following table three miscellaneous MIX instructions which do not fit
in any of the previous subsections:

MOVE Move MOD words from M to the location stored in rI1. OPCODE = 7, MOD
= no. of words.

NOP No operation. OPCODE = 0, MOD = 0.

HLT Halt. Stops instruction fetching. OPCODE = 5, MOD = 2.

The only effect of executing ‘NOP’ is increasing the location counter, while ‘HLT’ usually
marks program termination.

2.1.2.12 Execution times

When writing MIXAL programs (or any kind of programs, for that matter), whe shall often
be interested in their execution time. Loosely speaking, we will interested in the answer
to the question: how long takes a program to execute? Of course, this execution time
will be a function of the input size, and the answer to our question is commonly given
as the asymptotic behaviour as a function of the input size. At any rate, to compute this
asymptotic behaviour, we need a measure of how long execution of a single instruction takes
in our (virtual) CPU. Therefore, each MIX instruction will have an associated execution
time, given in arbitrary units (in a real computer, the value of this unit will depend on
the hardware configuration). When our MIX virtual machine executes programs, it will
(optionally) give you the value of their execution time based upon the execution time of
each single instruction.

In the following table, the execution times (in the above mentioned arbitrary units) of
the MIX instructions are given.
NOP 1 ADD 2 SUB 2 MUL 10
DIV 12 NUM 10 CHAR 10 HLT 10
SLx 2 SRx 2 LDx 2 STx 2
JBUS 1 IOC 1 IN 1 OUT 1
JRED 1 Jx 1 INCx 1 DECx 1
ENTx 1 ENNx 1 CMPx 1 MOVE 1+2F

In the above table, ’F’ stands for the number of blocks to be moved (given by the FSPEC
subfield of the instruction); SLx and SRx are a short cut for the byte-shifting operations;

Chapter 2: MIX and MIXAL tutorial 19

LDx denote all the loading operations; STx are the storing operations; Jx stands for all the
jump operations, and so on with the rest of abbreviations.

2.2 MIXAL

In the previous sections we have listed all the available MIX binary instructions. As we
have shown, each instruction is represented by a word which is fetched from memory and
executed by the MIX virtual CPU. As is the case with real computers, the MIX knows
how to decode instructions in binary format (the so–called machine language), but a hu-
man programmer would have a tough time if she were to write her programs in machine
language. Fortunately, the MIX computer can be programmed using an assembly language,
MIXAL, which provides a symbolic way of writing the binary instructions understood by
the imaginary MIX computer. If you have used assembler languages before, you will find
MIXAL a very familiar language. MIXAL source files are translated to machine language
by a MIX assembler, which produces a binary file (the actual MIX program) which can be
directly loaded into the MIX memory and subsequently executed.

In this section, we describe MIXAL, the MIX assembly language. The implementation
of the MIX assembler program and MIX computer simulator provided by mdk are described
later on (see Chapter 3 [Getting started], page 27).

2.2.1 Basic program structure

The MIX assembler reads MIXAL files line by line, producing, when required, a binary
instruction, which is associated to a predefined memory address. To keep track of the
current address, the assembler maintains an internal location counter which is incremented
each time an instruction is compiled. In addition to MIX instructions, you can include in
MIXAL file assembly directives (or pseudoinstructions) addressed at the assembler itself
(for instance, telling it where the program starts and ends, or to reposition the location
counter; see below).

MIX instructions and assembler directives4 are written in MIXAL (one per source file
line) according to the following pattern:

[LABEL] MNEMONIC [OPERAND] [COMMENT]

where ‘OPERAND’ is of the form
[ADDRESS][,INDEX][(MOD)]

Items between square brackets are optional, and

LABEL is an alphanumeric identifier (a symbol) which gets the current value of the
location counter, and can be used in subsequent expressions,

MNEMONIC is a literal denoting the operation code of the instruction (e.g. LDA, STA; see see
Section 2.1.2 [MIX instruction set], page 11) or an assembly pseudoinstruction
(e.g. ORG, EQU),

ADDRESS is an expression evaluating to the address subfield of the instruction,

INDEX is an expression evaluating to the index subfield of the instruction, which de-
faults to 0 (i.e., no use of indexing) and can only be used when ADDRESS is
present,

4 We shall call them, collectively, MIXAL instructions.

20 GNU MIX Development Kit (mdk)

MOD is an expression evaluating to the mod subfield of the instruction. Its default
value, when omitted, depends on OPCODE,

COMMENT any number of spaces after the operand mark the beggining of a comment, i.e.
any text separated by white space from the operand is ignored by the assembler
(note that spaces are not allowed within the ‘OPERAND’ field).

Note that spaces are not allowed between the ADDRESS, INDEX and MOD fields if they are
present. White space is used to separate the label, operation code and operand parts of the
instruction5.

We have already listed the mnemonics associated will each MIX instructions; sample
MIXAL instructions representing MIX instructions are:

HERE LDA 2000 HERE represents the current location counter
LDX HERE,2(1:3) this is a comment
JMP 1234

2.2.2 MIXAL directives

MIXAL instructions can be either one of the MIX machine instructions (see Section 2.1.2
[MIX instruction set], page 11) or one of the following assembly pseudoinstructions:

ORIG Sets the value of the memory address to which following instructions will be
allocated after compilation.

EQU Used to define a symbol’s value, e.g. SYM EQU 2*200/3.

CON The value of the given expression is copied directly into the current memory
address.

ALF Takes as operand five characters, constituting the five bytes of a word which is
copied directly into the current memory address.

END Marks the end of the program. Its operand gives the start address for program
execution.

The operand of ORIG, EQU, CON and END can be any expression evaluating to a constant
MIX word, i.e., either a simple MIXAL expression (composed of numbers, symbols and bi-
nary operators, see Section 2.2.3 [Expressions], page 22) or a w-expression (see Section 2.2.4
[W-expressions], page 22).

All MIXAL programs must contain an END directive, with a twofold end: first, it marks
the end of the assembler job, and, in the second place, its (mandatory) operand indicates
the start address for the compiled program (that is, the address at which the virtual MIX
machine must begin fetching instructions after loading the program). It is also very common
(although not mandatory) to include at least an ORIG directive to mark the initial value of
the assembler’s location counter (remember that it stores the address associated with each
compiled MIX instruction). Thus, a minimal MIXAL program would be

ORIG 2000 set the initial compilation adress
NOP this instruction will be loaded at adress 2000
HLT and this one at address 2001

5 In fact, Knuth’s definition of MIXAL restricts the column number at which each of these instruction
parts must start. The MIXAL assembler included in mdk, mixasm, does not impose such restriction.

Chapter 2: MIX and MIXAL tutorial 21

END 2000 end of program; start at address 2000
this line is not parsed by the assembler

The assembler will generate two binary instructions (NOP (+ 00 00 00 00 00) and HLT (+ 00
00 02 05)), which will be loaded at addresses 2000 and 2001. Execution of the program will
begin at address 2000. Every MIXAL program should also include a HLT instruction, which
will mark the end of program execution (but not of program compilation).

The EQU directive allows the definition of symbolic names for specific values. For instance,
we could rewrite the above program as follows:

START EQU 2000
ORIG START
NOP
HLT
END START

which would give rise to the same compiled code. Symbolic constants (or symbols, for short)
can also be implicitly defined placing them in the LABEL field of a MIXAL instruction: in this
case, the assembler assigns to the symbol the value of the location counter before compiling
the line. Hence, a third way of writing our trivial program is

ORIG 2000
START NOP

HLT
END START

The CON directive allows you to directly specify the contents of the memory address
pointed by the location counter. For instance, when the assembler encounters the following
code snippet

ORIG 1150
CON -1823473

it will assign to the memory cell number 1150 the contents - 00 06 61 11 49 (which corre-
sponds to the decimal value -1823473).

Finally, the ALF directive let’s you specify the memory contents as a set of five (optionally
quoted) characters, which are translated by the assembler to their byte values, conforming
in that way the binary word that is to be stored in the corresponding memory cell. This
directive comes in handy when you need to store printable messages in a memory address,
as in the following example6:

OUT MSG MSG is not yet defined here (future reference)
MSG ALF "THIS " MSG gets defined here

ALF "IS A "
ALF "MESSA"
ALF "GE. "

The above snippet also shows the use of a future reference, that is, the usage of a symbol
(MSG in the example) prior of its actual definition. The MIXAL assembler is able to handle

6 In the original MIXAL definition, the ALF argument is not quoted. You can write the operand (as the
ADDRESS field) without quotes, but, in this case, you must follow the alignment rules of the original
MIXAL definition (namely, the ADDRESS must start at column 17).

22 GNU MIX Development Kit (mdk)

future references subject to some limitations which are described in the following section
(see Section 2.2.3 [Expressions], page 22).

Any line starting with an asterisk is treated as a comment and ignored by the assembler.

* This is a comment: this line is ignored.
* This line is an error: * must be in column 1.

As noted in the previous section, comments can also be located after the OPERAND field
of an instruction, separated from it by white space, as in

LABEL LDA 100 This is also a comment

2.2.3 Expressions

The ADDRESS, INDEX and MOD fields of a MIXAL instruction can be expressions, formed by
numbers, identifiers and binary operators (+ - * / // :). + and - can also be used as unary
operators. Operator precedence is from left to right: there is no other operator precedence
rule, and parentheses cannot be used for grouping. A stand-alone asterisk denotes the
current memory location; thus, for instance,

4+2**

evaluates to 6 (4 plus 2) times the current memory location. White space is not allowed
within expressions.

The special binary operator : has the same meaning as in fspecs, i.e.,

A:B = 8*A + B

while A//B stands for the quotient of the ten-byte number A 00 00 00 00 00 (that is, A
right-padded with 5 null bytes or, what amounts to the same, multiplied by 64 to the fifth
power) divided by B. Sample expressions are:

18-8*3 = 30
14/3 = 4
1+3:11 = 4:11 = 43
1//64 = (01 00 00 00 00 00)/(00 00 00 01 00) = (01 00 00 00 00)

Note that all MIXAL expressions evaluate to a MIX word (by definition).

All symbols appearing within an expression must be previously defined. Future references
are only allowed when appearing standalone (or modified by an unary operator) in the
ADDRESS part of a MIXAL instruction, e.g.

* OK: stand alone future reference
STA -S1(1:5)

* ERROR: future reference in expression
LDX 2-S1

S1 LD1 2000

2.2.4 W-expressions

Besides expressions, as described above (see Section 2.2.3 [Expressions], page 22), the
MIXAL assembler is able to handle the so called w-expressions as the operands of the
directives ORIG, EQU, CON and END (see Section 2.2.2 [MIXAL directives], page 20). The
general form of a w-expression is the following:

Chapter 2: MIX and MIXAL tutorial 23

WEXP = EXP[(EXP)][,WEXP]

where EXP stands for an expression and square brackets denote optional items. Thus, a w-
expression is made by an expression, followed by an optional expression between parenthesis,
followed by any number of similar constructs separated by commas. Sample w-expressions
are:

2000
235(3)
S1+3(S2),3000
S1,S2(3:5),23

W-expressions are evaluated from left to right as follows:

• Start with an accumulated result ‘w’ equal to 0.
• Take the first expression of the comma-separated list and evaluate it. For instance, if

the w-expression is ‘S1+2(2:4),2000(S2)’, we evaluate first ‘S1+2’; let’s suppose that
‘S1’ equals 265230: then ‘S1+2 = 265232 = + 00 01 00 48 16’.

• Evaluate the expression within parenthesis, reducing it to an f-spec of the form ‘L:R’.
In our previous example, the expression between parenthesis already has the desired
form: 2:4.

• Substitute the bytes of the accumulated result ‘w’ designated by the f-spec using those
of the previous expression value. In our sample, ‘w = + 00 00 00 00 00’, and we must
substitute bytes 2, 3 and 4 of ‘w’ using values from 265232. We need 3 bytes, and we
take the least significant ones: 00, 48, and 16, and insert them in positions 2, 3 and 4
of ‘w’, obtaining ‘w = + 00 00 48 16 00’.

• Repeat this operation with the remaining terms, acting on the new value of ‘w’.
In our example, if, say, ‘S2 = 1:1’, we must substitute the first byte of ‘w’ using
one byte (the least significant) from 2000, that is, 16 (since 2000 = + 00 00 00 31
16) and, therefore, we obtain ‘w = + 16 00 48 16 00’; summing up, we have obtained
‘265232(1:4),2000(1:1) = + 16 00 48 16 00 = 268633088’.

As a second example, in the w-expression

1(1:2),66(4:5)

we first take two bytes from 1 (00 and 01) and store them as bytes 1 and 2 of the result
(obtaining ‘+ 00 01 00 00 00’) and, afterwards, take two bytes from 66 (01 and 02) and store
them as bytes 4 and 5 of the result, obtaining ‘+ 00 01 00 01 02’ (262210). The process is
repeated for each new comma-separated example. For instance:

1(1:1),2(2:2),3(3:3),4(4:4) = 01 02 03 04 00

As stated before, w-expressions can only appear as the operands of MIXAL directives
taking a constant value (ORIG, EQU, CON and END). Future references are not allowed within
w-expressions (i.e., all symbols appearing in a w-expression must be defined before it is
used).

2.2.5 Local symbols

Besides user defined symbols, MIXAL programmers can use the so called local symbols,
which are symbols of the form [1-9][HBF]. A local symbol nB refers to the address of the
last previous occurrence of nH as a label, while nF refers to the next nH occurrence. Unlike

24 GNU MIX Development Kit (mdk)

user defined symbols, nH can appear multiple times in the LABEL part of different MIXAL
instructions. The following code shows an instance of local symbols’ usage:

* line 1
1H LDA 100
* line 2: 1B refers to address of line 1, 3F refers to address of line 4

STA 3F,2(1B//2)
* line 3: redefinition of 1H
1H STZ
* line 4: 1B refers to address of line 3
3H JMP 1B

Note that a B local symbol never refers to a definition in its own line, that is, in the
following program:

ORIG 1999
ST NOP
3H EQU 69
3H ENTA 3B local symbol 3B refers to 3H in previous line
HLT
END ST

the contents of ‘rA’ is set to 69 and not to 2001. An specially tricky case occurs when using
local symbols in conjunction with ORIG pseudoinstructions. To wit7,

ORIG 1999
ST NOP
3H CON 10
ENT1 *
LDA 3B
** rI1 is 2001, rA is 10. So far so good!
3H ORIG 3B+1000
** at this point 3H equals 2003
** and the location counter equals 3000.
ENT2 *
LDX 3B
** rI2 contains 3000, rX contains 2003.
HLT
END ST

2.2.6 Literal constants

MIXAL allows the introduction of literal constants, which are automatically stored in mem-
ory addresses after the end of the program by the assembler. Literal constants are denoted
as =wexp=, where wexp is a w-expression (see Section 2.2.4 [W-expressions], page 22). For
instance, the code

L EQU 5
LDA =20-L=

7 The author wants to thank Philip E. King for pointing these two special cases of local symbol usage to
him.

Chapter 2: MIX and MIXAL tutorial 25

causes the assembler to add after the program’s end an instruction with contents 15
(‘20-L’), and to assemble the above code as the instruction LDA a, where a stands for the
address in which the value 15 is stored. In other words, the compiled code is equivalent to
the following:

L EQU 5
LDA a

...
a CON 20-L

END start

26 GNU MIX Development Kit (mdk)

Chapter 3: Getting started 27

3 Getting started

In this chapter, you will find a sample code-compile-run-debug session using the mdk util-
ities. Familiarity with the MIX mythical computer and its assembly language MIXAL (as
described in Knuth’s TAOCP) is assumed; for a compact reminder, see Chapter 2 [MIX
and MIXAL tutorial], page 9.

3.1 Writing a source file

MIXAL programs can be written as ASCII files with your editor of choice. Here you have
the mandatory hello world as written in the MIXAL assembly language:

* (1)
* hello.mixal: say ’hello world’ in MIXAL (2)
* (3)
* label ins operand comment (4)
TERM EQU 19 the MIX console device number (5)

ORIG 1000 start address (6)
START OUT MSG(TERM) output data at address MSG (7)

HLT halt execution (8)
MSG ALF "MIXAL" (9)

ALF " HELL" (10)
ALF "O WOR" (11)
ALF "LD " (12)
END START end of the program (13)

MIXAL source files should have the extension ‘.mixal’ when used with the mdk utilities.
As you can see in the above sample, each line in a MIXAL file can be divided into four fields
separated by an arbitrary amount of whitespace characters (blanks and or tabs). While in
Knuth’s definition of MIXAL each field must start at a fixed pre-defined column number,
the mdk assembler loosens this requirement and lets you format the file as you see fit. The
only restrictions retained are for comment lines (like 1-4) which must begin with an asterisk
(*) placed at column 1, and for the label field (see below) which, if present, must also start
at column 1. The four fields in each non-comment line are:

− an optional label, which either refers to the current memory address (as START and MSG
in lines 7 and 9) or a defined symbol (TERM) (if present, the label must always start at
the first column in its line, for the first whitespace in the line maks the beginning of
the second field),

− an operation mnemonic, which can represent either a MIX instruction (OUT and HLT in
lines 7 and 8 above), or an assembly pseudoinstruction (e.g., the ORIG pseudoinstruction
in line 61.

− an optional operand for the (pseudo)instruction, and

− an optional free text comment.

1 If an ORIG directive is not used, the program will be loaded by the virtual machine at address 0. ORIG

allows allocating the executable code where you see fit.

28 GNU MIX Development Kit (mdk)

Lines 9-12 of the ‘hello.mixal’ file above also show the second (and last) difference between
Knuth’s MIXAL definition and ours: the operand of the ALF pseudoinstruction (a word of
five characters) must be quoted using ""2.

The workings of this sample program should be straightforward if you are familiar with
MIXAL. See TAOCP vol. 1 for a thorough definition or Chapter 2 [MIX and MIXAL
tutorial], page 9, for a tutorial.

3.2 Compiling

Three simulators of the MIX computer, called mixvm, gmixvm and mixguile, are included
in the mdk tools. They are able to run binary files containing MIX instructions written
in their binary representation. You can translate MIXAL source files into this binary form
using mixasm, the MIXAL assembler. So, in order to compile the ‘hello.mixal’ file, you
can type the following command at your shell prompt:

mixasm hello 〈RET〉

If the source file contains no errors, this will produce a binary file called ‘hello.mix’
which can be loaded and run by the MIX virtual machine. Unless the mixasm option -O is
provided, the assembler will include debug information in the executable file (for a complete
description of all the compilation options, see Chapter 5 [mixasm], page 45). Now, your are
ready to run your first MIX program, as described in the following section.

3.3 Running the program

MIX is a mythical computer, so it is no use ordering it from your favorite hardware provider.
mdk provides three software simulators of the computer, though. They are
• mixvm, a command line oriented simulator,
• gmixvm, a GTK based graphical interface to mixvm, and
• mixguile, a Guile shell with a built-in MIX simulator.

All three simulators accept the same set of user commands, but offer a different user
interface, as noted above. In this section we shall describe some of these commands, and
show you how to use them from mixvm’s command line. You can use them as well at gmixvm’s
command prompt (see Chapter 7 [gmixvm], page 59), or using the built-in Scheme primitives
of mixguile (see Section 3.4 [Using mixguile], page 33).

Using the MIX simulators, you can run your MIXAL programs, after compiling them
with mixasm into binary ‘.mix’ files. mixvm can be used either in interactive or non-
interactive mode. In the second case, mixvm will load your program into memory, execute
it (producing any output due to MIXAL OUT instructions present in the program), and exit
when it encounters a HLT instruction. In interactive mode, you will enter a shell prompt
which allows you issuing commands to the running virtual machine. This commands will
permit you to load, run and debug programs, as well as to inspect the MIX computer state
(register contents, memory cells contents and so on).

2 In Knuth’s definition, the operand always starts at a fixed column number, and the use of quotation
is therefore unnecessary. As mixasm releases this requirement, marking the beginning and end of the
ALF operand disambiguates the parser’s recognition of this operand when it includes blanks. Note that
double-quotes (") are not part of the MIX character set, and, therefore, no escape characters are needed
within ALF’s operands.

Chapter 3: Getting started 29

3.3.1 Non-interactive mode

To make mixvm work in non-interactive mode, use the -r flag. Thus, to run our ‘hello.mix’
program, simply type

mixvm -r hello 〈RET〉

at your command prompt, and you will get the following output:
MIXAL HELLO WORLD

Since our hello world program uses MIX’s device number 19 as its output device (see
Section 3.1 [Writing a source file], page 27), the output is redirected to the shell’s standard
output. Had you used any other MIX output devices (disks, drums, line printer, etc.),
mixvm would have created a file named after the device used (e.g. ‘disk4.dev’) and written
its output there3.

The virtual machine can also report the execution time of the program, according to
the (virtual) time spent in each of the binary instructions (see Section 2.1.2.12 [Execution
times], page 18). Printing of execution time statistics is activated with the -t flag; running

mixvm -t -r hello 〈RET〉

produces the following output:
MIXAL HELLO WORLD
** Execution time: 11

Sometimes, you will prefer to store the results of your program in MIX registers rather
than writing them to a device. In such cases, mixvm’s -d flag is your friend: it makes mixvm
to dump the contents of its registers and flags after executing the loaded program. For
instance, typing the following command at your shell’s prompt

mixvm -d -r hello

you will obtain the following output:
MIXAL HELLO WORLD
rA: + 00 00 00 00 00 (0000000000)
rX: + 00 00 00 00 00 (0000000000)
rJ: + 00 00 (0000)
rI1: + 00 00 (0000) rI2: + 00 00 (0000)
rI3: + 00 00 (0000) rI4: + 00 00 (0000)
rI5: + 00 00 (0000) rI6: + 00 00 (0000)
Overflow: F
Cmp: E

which, in addition to the program’s outputs and execution time, gives you the contents of
the MIX registers and the values of the overflow toggle and comparison flag (admittedly,
rather uninteresting in our sample).

As you can see, running programs non-interactively has many limitations. You can-
not peek the virtual machine’s memory contents, not to mention stepping through your
program’s instructions or setting breakpoints4. Enter interactive mode.

3 The device files are stored, by default, in a directory called ‘.mdk’, which is created in your home
directory the first time mixvm is run. You can change this default directory using the command devdir

when running mixvm in interactive mode (see Section 6.2.4 [Configuration commands], page 56)
4 The mixguile program allows you to execute arbitrary combinations of mixvm commands (using Scheme)

non-interactively. See Section 3.4.5 [Scheme scripts], page 39.

30 GNU MIX Development Kit (mdk)

3.3.2 Interactive mode

To enter the MIX virtual machine interactive mode, simply type

mixvm 〈RET〉

at your shell command prompt. This command enters the mixvm command shell. You will
be presented the following command prompt:

MIX >

The virtual machine is initialised and ready to accept your commands. The mixvm command
shell uses GNU’s readline, so that you have at your disposal command completion (using
〈TAB〉) and history functionality, as well as other line editing shortcuts common to all utilities
using this library (for a complete description of readline’s line editing usage, see 〈undefined〉
[Command Line Editing], page 〈undefined〉.)

Usually, the first thing you will want to do is loading a compiled MIX program into
memory. This is acomplished by the load command, which takes as an argument the name
of the ‘.mix’ file to be loaded. Thus, typing

MIX > load hello 〈RET〉
Program loaded. Start address: 3000
MIX >

will load ‘hello.mix’ into the virtual machine’s memory and set the program counter to
the address of the first instruction. You can obtain the contents of the program counter
using the command pc:

MIX > pc
Current address: 3000
MIX >

After loading it, you are ready to run the program, using, as you surely have guessed,
the run command:

MIX > run
Running ...
MIXAL HELLO WORLD
... done
Elapsed time: 11 /Total program time: 11 (Total uptime: 11)
MIX >

Note that now the timing statistics are richer. You obtain the elapsed execution time (i.e.,
the time spent executing instructions since the last breakpoint), the total execution time
for the program up to now (which in our case coincides with the elapsed time, since there
were no breakpoints), and the total uptime for the virtual machine (you can load and run
more than one program in the same session)5. After running the program, the program
counter will point to the address after the one containing the HLT instruction. In our case,
asking the value of the program counter after executing the program will give us

MIX > pc
Current address: 3002
MIX >

5 Printing of timing statistics can be disabled using the command timing (see Section 6.2.4 [Configuration
commands], page 56).

Chapter 3: Getting started 31

You can check the contents of a memory cell giving its address as an argument of the
command pmem, like this

MIX > pmem 3001
3001: + 00 00 00 02 05 (0000000133)
MIX >

and convince yourself that address 3001 contains the binary representation of the instruction
HLT. An address range of the form FROM-TO can also be used as the argument of pmem:

MIX > pmem 3000-3006
3000: + 46 58 00 19 37 (0786957541)
3001: + 00 00 00 02 05 (0000000133)
3002: + 14 09 27 01 13 (0237350989)
3003: + 00 08 05 13 13 (0002118477)
3004: + 16 00 26 16 19 (0268542995)
3005: + 13 04 00 00 00 (0219152384)
3006: + 00 00 00 00 00 (0000000000)
MIX >

In a similar manner, you can look at the contents of the MIX registers and flags. For
instance, to ask for the contents of the A register you can type

MIX > preg A
rA: + 00 00 00 00 00 (0000000000)
MIX >

Use the comand help to obtain a list of all available commands, and help COMMAND for help
on a specific command, e.g.

MIX > help run
run Run loaded or given MIX code file. Usage: run [FILENAME]
MIX >

For a complete list of commands available at the MIX propmt, See Chapter 6 [mixvm],
page 47. In the following subsection, you will find a quick tour over commands useful for
debugging your programs.

3.3.3 Debugging commands

The interactive mode of mixvm lets you step by step execution of programs as well as
breakpoint setting. Use next to step through the program, running its instructions one by
one. To run our two-instruction ‘hello.mix’ sample you can do the following:

MIX > load hello
Program loaded. Start address: 3000
MIX > pc
Current address: 3000
MIX > next
MIXAL HELLO WORLD
Elapsed time: 1 /Total program time: 1 (Total uptime: 1)
MIX > pc
Current address: 3001
MIX > next
End of program reached at address 3002

32 GNU MIX Development Kit (mdk)

Elapsed time: 10 /Total program time: 11 (Total uptime: 11)
MIX > pc
Current address: 3002
MIX > next
MIXAL HELLO WORLD
Elapsed time: 1 /Total program time: 1 (Total uptime: 12)
MIX >
MIX > run
Running ...
... done
Elapsed time: 10 /Total program time: 11 (Total uptime: 22)
MIX >

(As an aside, the above sample also shows how the virtual machine handles cummulative
time statistics and automatic program restart).

You can set a breakpoint at a given address using the command sbpa (set breakpoint at
address). When a breakpoint is set, run will stop before executing the instruction at the
given address. Typing run again will resume program execution. Coming back to our hello
world example, we would have:

MIX > sbpa 3001
Breakpoint set at address 3001
MIX > run
Running ...
MIXAL HELLO WORLD
... stopped: breakpoint at line 8 (address 3001)
Elapsed time: 1 /Total program time: 1 (Total uptime: 23)
MIX > run
Running ...
... done
Elapsed time: 10 /Total program time: 11 (Total uptime: 33)
MIX >

Note that, since we compiled ‘hello.mixal’ with debug info enabled, the virtual machine is
able to tell us the line in the source file corresponding to the breakpoint we are setting. As
a matter of fact, you can directly set breakpoints at source code lines using the command
sbp LINE_NO, e.g.

MIX > sbp 4
Breakpoint set at line 7
MIX >

sbp sets the breakpoint at the first meaningful source code line; thus, in the above example
we have requested a breakpoint at a line which does not correspond to a MIX instruction
and the breakpoint is set at the first line containing a real instruction after the given one. To
unset breakpoints, use cbpa ADDRESS and cbp LINE_NO, or cabp to remove all currently set
breakpoints. You can also set conditional breakpoints, i.e., tell mixvm to interrupt program
execution whenever a register, a memory cell, the comparison flag or the overflow toggle
change using the commands sbp[rmco] (see Section 6.2.2 [Debug commands], page 50).

Chapter 3: Getting started 33

MIXAL lets you define symbolic constants, either using the EQU pseudoinstruction or
starting an instruction line with a label (which assigns to the label the value of the current
memory address). Each MIXAL program has, therefore, an associated symbol table which
you can inspect using the psym command. For our hello world sample, you will obtain the
following output:

MIX > psym
START: 3000
TERM: 19
MSG: 3002
MIX >

Other useful commands for debugging are strace (which turns on tracing of executed
intructions), pbt (which prints a backtrace of executed instructions) and weval (which eval-
uates w-expressions on the fly). For a complete description of all available MIX commands,
See Chapter 6 [mixvm], page 47.

3.4 Using mixguile

With mixguile you can run a MIX simulator embedded in a Guile shell, that is, using
Scheme functions and programs. As with mixvm, mixguile can be run both in interactive
and non-interactive modes. The following subsections provide a quick tour on using this
MIX emulator.

3.4.1 The mixguile shell

If you simply type
mixguile 〈RET〉

at the command prompt, you’ll be presented a Guile shell prompt like this
guile>

At this point, you have entered a Scheme read-eval-print loop (REPL) which offers you
all the Guile functionality plus a new set of built-in procedures to execute and debug
MIX programs. Each of the mixvm commands described in the previous sections (and in
see Chapter 6 [mixvm], page 47) have a Scheme function counterpart named after it by
prepending the prefix mix- to its name. Thus, to load our hello world program, you can
simply enter

guile> (mix-load "hello")
Program loaded. Start address: 3000
guile>

and run it using mix-run:
guile> (mix-run)
Running ...
MIXAL HELLO WORLD
... done
Elapsed time: 11 /Total program time: 11 (Total uptime: 11)
guile>

In the same way, you can execute it step by step using the Scheme function mix-next or
set a breakpoint:

34 GNU MIX Development Kit (mdk)

guile> (mix-sbp 4)
Breakpoint set at line 5
guile>

or, if you one to peek at a register contents:
guile> (mix-preg ’A)
rA: + 00 00 00 00 00 (0000000000)
guile>

You get the idea: you have at your disposal all the mixvm and gmixvm commands by
means of mix- functions. But, in case you are wondering, this is only the beginning. You
also have at your disposal a whole Scheme interpreter, and you can, for instance, define new
functions combining the mix- and all other Scheme primitives. In the next sections, you’ll
find examples of how to take advantage of the Guile interpreter.

3.4.2 Additional MIX Scheme functions

The mix- function counterparts of the mixvm commands don’t return any value, and are eval-
uated only for their side-effects (possibly including informational messages to the standard
output and/or error stream). When writting your own Scheme functions to manipulate the
MIX virtual machine within mixguile (see Section 3.4.3 [Defining new functions], page 35),
you’ll probably need Scheme functions returning the value of the registers, memory cells
and so on. Don’t worry: mixguile also offers you such functions. For instance, to access
the (numerical) value of a register you can use mix-reg:

guile> (mix-reg ’I2)
0
guile>

Note that, unlike (mix-preg ’I2), the expression (mix-reg ’I2) in the above example
evaluates to a Scheme number and does not produce any side-effect:

guile> (number? (mix-reg ’I2))
#t
guile> (number? (mix-preg ’I2))
rI2: + 00 00 (0000)
#f
guile>

In a similar fashion, you can access the memory contents using (mix-cell), or the
program counter using (mix-loc):

guile> (mix-cell 3000)
786957541
guile> (mix-loc)
3002
guile>

Other functions returning the contents of the virtual machine components are mix-cmp
and mix-over, which eval to the value of the comparison flag and the overflow toggle
respectively. For a complete list of these additional functions, See Chapter 8 [mixguile],
page 65.

In the next section, we’ll see a sample of using these functions to extend mixguile’s
functionality.

Chapter 3: Getting started 35

3.4.3 Defining new functions

Scheme is a powerful language, and you can use it inside mixguile to easily extend the
MIX interpreter’s capabilities. For example, you can easily define a function that loads a
file, prints its name, executes it and, finally, shows the registers contents, all in one shot:

guile> (define my-load-and-run 〈RET〉
(lambda (file) 〈RET〉
(mix-load file) 〈RET〉
(display "File loaded: ") 〈RET〉
(mix-pprog) 〈RET〉
(mix-run) 〈RET〉
(mix-preg))) 〈RET〉

guile>

and use it to run your programs:
guile> (my-load-and-run "hello")
Program loaded. Start address: 3000
File loaded: hello.mix
Running ...
MIXAL HELLO WORLD
... done
Elapsed time: 11 /Total program time: 11 (Total uptime: 33)
rA: + 00 00 00 00 00 (0000000000)
rX: + 00 00 00 00 00 (0000000000)
rJ: + 00 00 (0000)
rI1: + 00 00 (0000) rI2: + 00 00 (0000)
rI3: + 00 00 (0000) rI4: + 00 00 (0000)
rI5: + 00 00 (0000) rI6: + 00 00 (0000)
guile>

Or, maybe, you want a function which sets a breakpoint at a specified line number before
executing it:

guile> (define my-load-and-run-with-bp
(lambda (file line)
(mix-load file)
(mix-sbp line)
(mix-run)))

guile> (my-load-and-run-with-bp "samples/primes" 10)
Program loaded. Start address: 3000
Breakpoint set at line 10
Running ...
... stopped: breakpoint at line 10 (address 3001)
Elapsed time: 1 /Total program time: 1 (Total uptime: 45)
guile>

As a third example, the following function loads a program, runs it and prints the
contents of the memory between the program’s start and end addresses:

guile> (define my-run
(lambda (file)

36 GNU MIX Development Kit (mdk)

(mix-load file)
(let ((start (mix-loc)))
(mix-run)
(mix-pmem start (mix-loc)))))

guile> (my-run "hello")
Program loaded. Start address: 3000
Running ...
MIXAL HELLO WORLD
... done
Elapsed time: 11 /Total program time: 11 (Total uptime: 11)
3000: + 46 58 00 19 37 (0786957541)
3001: + 00 00 00 02 05 (0000000133)
3002: + 14 09 27 01 13 (0237350989)
guile>

As you can see, the possibilities are virtually unlimited. Of course, you don’t need
to type a function definition each time you start mixguile. You can write it in a file,
and load it using Scheme’s load function. For instance, you can create a file named,
say, ‘functions.scm’ with your definitions (or any Scheme expression) and load it at the
mixguile prompt:

guile> (load "functions.scm")

Alternatively, you can make mixguile to load it for you. When mixguile starts, it looks
for a file named ‘mixguile.scm’ in your MDK configuration directory (‘~/.mdk’) and, if it
exists, loads it before entering the REPL. Therefore, you can copy your definitions in that
file, or load the ‘functions.scm’ file in ‘mixguile.scm’.

3.4.4 Hook functions

Hooks are functions called before or after a given event occurs. In mixguile, you can define
command and break hooks, which are associated, respectively, with command execution
and program interruption events. The following sections give you a tutorial on using hook
functions within mixguile.

3.4.4.1 Command hooks

In the previous section, we have seen how to extend mixguile’s functionality through the
use of user defined functions. Frequently, you’ll write new functions that improve in some
way the workings of a built-in mixvm command, following this pattern:

a. Prepare the command execution

b. Execute the desired command

c. Perform post execution operations

We call the functions executed in step (a) pre-hooks, and those of step post-hooks of the
given command. mixguile lets you specify pre- and post-hooks for any mixvm command
using the mix-add-pre-hook and mix-add-post-hook functions, which take as arguments
a symbol naming the command and a function to be executed before (resp. after) the
command. In other words, mixguile will execute for you steps (a) and (c) above whenever
you eval (b). The hook functions must take a single argument, which is a string list of

Chapter 3: Getting started 37

the command’s arguments. As an example, let us define the following hooks for the next
command:

(define next-pre-hook
(lambda (arglist)
(mix-slog #f)))

(define next-post-hook
(lambda (arglist)
(display "Stopped at line ")
(display (mix-src-line-no))
(display ": ")
(display (mix-src-line))
(newline)
(mix-slog #t)))

In these functions, we are using the function mix-slog to turn off the informational messages
produced by the virtual machine, since we are providing our own ones in the post hook
function. To install these hooks, we would write:

(mix-add-pre-hook ’next next-pre-hook)
(mix-add-post-hook ’next next-post-hook)

Assuming we have put the above expressions in mixguile’s initialisation file, we would
obtain the following results when evaluating mix-next:

guile> (mix-next)
MIXAL HELLO WORLD
Stopped at line 6: HLT
guile>

As a second, more elaborated, example, let’s define hooks which print the address and
contents of a cell being modified using smem. The hook functions could be something like
this:

(define smem-pre-hook
(lambda (arglist)
(if (eq? (length arglist) 2)

(begin
(display "Changing address ")
(display (car arglist))
(newline)
(display "Old contents: ")
(display (mix-cell (string->number (car arglist))))
(newline))

(error "Wrong arguments" arglist))))

(define smem-post-hook
(lambda (arglist)
(if (eq? (length arglist) 2)

(begin
(display "New contents: ")

38 GNU MIX Development Kit (mdk)

(display (mix-cell (string->number (car arglist))))
(newline)))))

and we can install them using

(mix-add-pre-hook ’smem smem-pre-hook)
(mix-add-post-hook ’smem smem-post-hook)

Aferwards, a sample execution of mix-smem would look like this:

guile> (mix-smem 2000 100)
Changing address 2000
Old contents: 0
New contents: 100
guile>

You can add any number of hooks to a given command. They will be executed in the
same order as they are registered. You can also define global post (pre) hooks, which
will be called before (after) any mixvm command is executed. Global hook functions must
admit two arguments, namely, a string naming the invoked command and a string list of its
arguments, and they are installed using the Scheme functions mix-add-global-pre-hook
and mix-add-global-post-hook. A simple example of global hook would be:

guile> (define pre-hook
(lambda (cmd args)
(display cmd)
(display " invoked with arguments ")
(display args)
(newline)))

guile> (mix-add-global-pre-hook pre-hook)
ok
guile> (mix-pmem 120 125)
pmem invoked with arguments (120-125)
0120: + 00 00 00 00 00 (0000000000)
0121: + 00 00 00 00 00 (0000000000)
0122: + 00 00 00 00 00 (0000000000)
0123: + 00 00 00 00 00 (0000000000)
0124: + 00 00 00 00 00 (0000000000)
0125: + 00 00 00 00 00 (0000000000)
guile>

Note that if you invoke mixvm commands within a global hook, its associated command
hooks will be run. Thus, if you have installed both the next hooks described earlier and
the global hook above, executing mix-next will yield the following result:

guile> (mix-next 5)
next invoked with arguments (5)
slog invoked with arguments (off)
MIXAL HELLO WORLD
Stopped at line 7: MSG ALF "MIXAL"
slog invoked with arguments (on)
guile>

Chapter 3: Getting started 39

Adventurous readers may see the above global hook as the beginning of a command log
utility or a macro recorder that saves your commands for replay.

3.4.4.2 Break hooks

We have seen in the previous section how to associate hooks to command execution, but
they are not the whole story. You can also associate hook functions to program interruption,
that is, specify functions that should be called every time the execution of a MIX program
is stopped due to the presence of a breakpoint, either explicit or conditional. Break hooks
take as arguments the line number and memory address at which the break occurred. A
simple hook that logs the line and address of the breakpoint could be defined as:

(define break-hook
(lambda (line address)
(display "Breakpoint encountered at line ")
(display line)
(display " and address ")
(display address)
(newline)))

and installed for explicit and conditional breakpoints using

(mix-add-break-hook break-hook)
(mix-add-cond-break-hook break-hook)

after that, every time the virtual machine encounters a breakpoint, break-code shall be
evaluated for you6.

3.4.5 Scheme scripts

Another useful way of using mixguile is writing executable scripts that perform a set
of commands for you. This is done using the mixguile switch -s (being a Guile shell,
mixguile accepts all the command options of guile; type mixguile -h for a list of all
available command options). For instance, if you have a very useful MIX program ‘foo.mix’
which you want to run often, you don’t have to fire a MIX virtual machine, load and run it
every time; you can write a Scheme script instead:

#! /usr/bin/mixguile -s
!#
;;; runprimes: execute the primes.mix program

;; load the file you want to run
(mix-load "../samples/primes")
;; execute it
(mix-run)
;; print the contents of registers
(mix-pall)
;; ...

6 You may have noticed that break hooks can be implemented in terms of command hooks associated to
mix-run and mix-next. As a matter of fact, they are implemented this way: take a look at the file
‘install_dir/share/mdk/mix-vm-stat.scm’ if you are curious.

40 GNU MIX Development Kit (mdk)

Just save the above script to a file named, say, ‘runtest’, make it executable (chmod +x
runtest), and, well, execute it from the Unix shell:

$./runtest
Program loaded. Start address: 3000
Running ...
... done
Elapsed time: 190908 /Total program time: 190908 (Total uptime: 190908)
rA: + 30 30 30 30 30 (0511305630)
rX: + 30 30 32 32 39 (0511313959)
rJ: + 47 18 (3026)
rI1: + 00 00 (0000) rI2: + 55 51 (3571)
rI3: + 00 19 (0019) rI4: + 31 51 (2035)
rI5: + 00 00 (0000) rI6: + 00 00 (0000)
Overflow: F
Cmp: L
$

Note that this is far more flexible that running programs non-interactively using mixvm
(see Section 3.3.1 [Non-interactive mode], page 29), for you can execute any combination
of commands you want from a Scheme script (not just running and dumping the registers).
For additional mixguile command line options, see Section 8.1 [Invoking mixguile], page 65.

3.5 Using Scheme in mixvm and gmixvm

In the previous section (see Section 3.4 [Using mixguile], page 33) we have seen how the
Guile shell mixguile offers you the possibility of using Scheme to manipulate a MIx virtual
machine and extend the set of commands offered by mixvm and gmixvm. This possibility
is not limited to the mixguile shell. Actually, both mixvm and gmixvm incorporate an
embedded Guile interpreter, and can evaluate Scheme expressions. To evaluate a single-line
expression at the mixvm or gmixvm command prompt, simply write it and press return (the
command parser will recognise it as a Scheme expression because it is parenthesized, and
will pass it to the Guile interpreter). A sample mixvm session using Scheme expressions
could be:

MIX > load hello
Program loaded. Start address: 3000
MIX > (define a (mix-loc))
MIX > run
Running ...
MIXAL HELLO WORLD
... done
Elapsed time: 11 /Total program time: 11 (Total uptime: 11)
MIX > (mix-pmem a)
3000: + 46 58 00 19 37 (0786957541)
MIX > (mix-pmem (mix-loc))
3002: + 14 09 27 01 13 (0237350989)
MIX >

You can also load and evaluate a file, using the scmf command like this:

Chapter 3: Getting started 41

MIX> scmf /path/to/file/file.scm

Therefore, you have at your disposal all the mixguile goodies described above (new
functions, new command definitions, hooks...) inside mixvm and gmixvm. In other words,
these programs are extensible using Scheme. See Section 3.4 [Using mixguile], page 33 for
examples of how to do it.

42 GNU MIX Development Kit (mdk)

Chapter 4: Emacs tools 43

4 Emacs tools

Everyone writing code knows how important a good editor is. Most systems already come
with Emacs, and excellent programmer’s editor. mdk adds support to Emacs for both
writing and debugging MIX programs. A major mode for MIXAL source files eases edition
of your code, while integration with Emacs’ debugging interface (GUD) lets you use mixvm
without leaving your favourite text editor.

This chapter shows how to use the Elisp modules included in mdk, assuming that you
have followed the installation instructions in See Section 1.4 [Emacs support], page 6.

4.1 MIXAL mode

The module ‘mixal-mode.el’ provides a new mode, mixal-mode, for editing MIXAL source
files1. When everything is installed correctly, Emacs will select it as the major mode for
editing files with extension .mixal. You can also activate mixal-mode in any buffer issuing
the Emacs command M-x mixal-mode.

4.1.1 Basics

The mode for editing mixal source files is inherited from fundamental-mode, meaning that
all your favorite editing operations will still work. If you want a short introduction to
Emacs, type C-h t inside Emacs to start the tutorial.

Mixal mode adds font locking. If you do not have font locking globally enabled, you can
turn it on for mixal-mode by placing the following line in your ‘.emacs’ file:

(add-hook ’mixal-mode-hook ’turn-on-font-lock)

You can also customize the colors used to colour your mixal code by changing the
requisite faces. This is the list of faces used by mixal-mode:
• font-lock-comment-face Face to use for comments.
• mixal-font-lock-label-face Face to use for label names.
• mixal-font-lock-operation-code-face Face to use for operation code names.
• mixal-font-lock-assembly-pseudoinstruction-face Face to use for assembly

pseudo-instruction names.

4.1.2 Help system

When coding your program, you will be thinking, looking up documentation and editing
files. Emacs already helps you with editing files, but Emacs can do much more. In particular,
looking up documentation is one of its strong points. Besides the info system (which you are
probably already using), mixal-mode defines commands for getting particular information
about a MIX operation code.

With M-x mixal-describe-operation-code (or its keyboard shortcut C-h o) you will
get the documentation about a particular MIX operation code. Keep in mind that these
are not assembly (MIXAL) pseudoinstructions. When the point is around a MIXAL pseu-
doinstruction in your source file, Emacs will recognize it and will suggest the right MIX
operation code.

1 mixal-mode has been developed and documented by Pieter E. J. Pareit

44 GNU MIX Development Kit (mdk)

4.1.3 Compiling and running

After you have written your MIXAL program, you’ll probably want to test it. This can be
done with the MIX virtual machine. First you will need to compile your code into MIX byte
code. This can be done within Emacs with the command M-x compile (C-c c). In case of
compilation errors, you can jump to the offending source code line with M-x next-error.

Once the program compiles without errors, you can debug or run it. To invoke the
debugger, use M-x mixal-debug (C-c d). Emacs will open a GUD buffer where you can use
the debugging commands described in See Chapter 6 [mixvm], page 47.

If you just want to execute the program, you can do so with M-x mixal-run (C-c r).
This will invoke mixvm, execute the program and show its output in a separate buffer.

4.2 GUD integration

If you are an Emacs user and write your MIXAL programs using this editor, you will find the
elisp program ‘mixvm.el’ quite useful2. ‘mixvm.el’ allows running the MIX virtual machine
mixvm (see Chapter 6 [mixvm], page 47) inside an Emacs GUD buffer, while visiting the
MIXAL source file in another buffer.

After installing ‘mixvm.el’ (see Section 1.4 [Emacs support], page 6), you can initiate
an mdk/GUD session inside Emacs with the command

M-x mixvm

and you will have a mixvm prompt inside a newly created GUD buffer. GUD will reflect the
current line in the corresponding source file buffer.

2 ‘mixvm.el’ has been kindly contributed by Philip E. King. ‘mixvm.el’ is based on a study of gdb, perldb,
and pdb as found in ‘gud.el’, and ‘rubydb3x.el’ distributed with the source code to the Ruby language.

Chapter 5: mixasm, the MIXAL assembler 45

5 mixasm, the MIXAL assembler

MIX programs, as executed by mixvm, are composed of binary instructions loaded into the
virtual machine memory as MIX words. Although you could write your MIX programs
directly as a series of words in binary format, you have at your disposal a more friendly
assembly language, MIXAL (see Section 2.2 [MIXAL], page 19) which is compiled into
binary form by mixasm, the MIXAL assembler included in mdk. In this chapter, you will
find a complete description of mixasm options.

5.1 Invoking mixasm

In its simplest form, mixasm is invoked with a single argument, which is the name of the
MIXAL file to be compiled, e.g.

mixasm hello

will compile either ‘hello’ or ‘hello.mixal’, producing a binary file named ‘hello.mix’ if
no errors are found.

In addition, mixasm can be invoked with the following command line options (note, that,
following GNU’s conventions, we provide a long option name for each available single letter
switch):

mixasm [-vhulO] [-o OUTPUT_FILE] [--version] [--help] [--usage]
[--ndebug] [--output=OUTPUT_FILE] [--list[=LIST_FILE]] file

The meaning of these options is as follows:

[User Option]-v
[User Option]--version

Prints version and copyleft information and exits.

[User Option]-h
[User Option]--help
[User Option]-u
[User Option]--usage

Prints a summary of available options and exits.

[User Option]-O
[User Option]--ndebug

Do not include debugging information in the compiled file, saving space but disallow-
ing breakpoint setting at source level and symbol table inspection under mixvm.

[User Option]-o output file
[User Option]--output=output_file

By default, the given source file file.mixal is compiled into file.mix. You can provide
a different name for the output file using this option.

[User Option]-l
[User Option]--list[=list_file]

This option causes mixasm to produce, in addion to the ‘.mix’ file, an ASCII file
containing a summary of the compilation results. The file is named after the MIXAL
source file, changing its extension to ‘.mls’ if no argument is provided; otherwise, the
listing file is named according to the argument.

46 GNU MIX Development Kit (mdk)

Chapter 6: mixvm, the MIX computer simulator 47

6 mixvm, the MIX computer simulator

This chapter describes mixvm, the MIX computer simulator. mixvm is a command line inter-
face programme which simulates the MIX computer (see Section 2.1 [The MIX computer],
page 9). It is able to run MIXAL programs (see Section 2.2 [MIXAL], page 19) previously
compiled with the MIX assembler (see Chapter 5 [mixasm], page 45). The simulator allows
inspection of the MIX computer components (registers, memory cells, comparison flag and
overflow toggle), step by step execution of MIX programmes, and breakpoint setting to aid
you in debugging your code. For a tutorial description of mixvm usage, See Section 3.3
[Running the program], page 28.

6.1 Invoking mixvm

mixvm can be invoked with the following command line options (note that, following GNU’s
conventions, we provide a long option name for each available single letter switch):

mixvm [-vhurdtq] [--version] [--help] [--usage] [--run] [--dump]
[--time] [--noinit] [FILE[.mix]]

The meaning of these options is as follows:

[User Option]-v
[User Option]--version

Prints version and copyleft information and exits.

[User Option]-h
[User Option]--help
[User Option]-u
[User Option]--usage

Prints a summary of available options and exits.

[User Option]-r
[User Option]--run

Loads the specified FILE and executes it. After the program execution, mixvm exits.
FILE must be the name of a binary ‘.mix’ program compiled with mixasm. If your
program does not produce any output, use the -d flag (see below) to peek at the
virtual machine’s state after execution.

[User Option]-d
[User Option]--dump

This option must be used in conjuction with -r, and tells mixvm to print the value
of the virtual machine’s registers, comparison flag and overflow toggle after executing
the program named FILE. See See Section 3.3.1 [Non-interactive mode], page 29, for
sample usage.

[User Option]-t
[User Option]--time

This option must be used in conjuction with -r, and tells mixvm to print virtual time
statistics for the program’s execution.

48 GNU MIX Development Kit (mdk)

When run without the -r flag, mixvm enters its interactive mode, showing you a prompt
like this one:

MIX >

and waiting for your commands (see Section 6.2 [Commands], page 48). If the optional FILE
argument is given, the file ‘FILE.mix’ will be loaded into the virtual machine memory before
entering the interactive mode.

The first time mixvm is invoked, a directory named ‘.mdk’ is created in your home
directory. It contains the mixvm configuration file, the command history file and (by default)
the block devices files (see Section 6.3 [Devices], page 57). Before showing you the command
prompt, mixvm looks in the ‘~/.mdk’ directory for a file named mixguile.scm; if it exists,
it is read and evaluated by the embedded Guile interpreter (see Section 3.4.3 [Defining new
functions], page 35). You can use the -q command line option to skip this file loading:

[User Option]-q
[User Option]--noinit

Do not load the Guile initialisation file ~/.mdk/mixguile.scm at startup.

6.2 Interactive commands

You can enter the interactive mode of the MIX virtual machine by simply invoking mixvm
without arguments. You will then be greeted by a shell prompt1

MIX >

which indicates that a new virtual machine has been initialised and is ready to execute your
commands. As we have already mentioned, this command prompt offers you command line
editing facilities which are described in the Readline user’s manual (chances are that you are
already familiar with these command line editing capabilities, as they are present in many
GNU utilities, e.g. the bash shell)2. In a nutshell, readline provides command completion
using the TAB key and command history using the cursor keys. A history file containing
the last commands typed in previous sessions is stored in the mdk configuration directory
(‘~/.mdk’).

As a beginner, your best friend will be the help command, which shows you a summary
of all available MIX commands and their usage; its syntax is as follows:

[mixvm command]help [command]
Prints a short description of the given command and its usage. If command is omitted,
help prints the short description for all available commands.

6.2.1 File commands

You have at your disposal a series of commands that let you load and execute MIX exe-
cutable files, as well as manipulate MIXAL source files:

1 The default command prompt, ‘MIX > ’, can be changed using the prompt command (see Section 6.2.4
[Configuration commands], page 56)

2 The readline functionality will be available if you have compiled mdk with readline support, i.e., if GNU
readline is installed in your system. This is ofte the case in GNU/Linux and BSD systems

Chapter 6: mixvm, the MIX computer simulator 49

[file command]load file[.mix]
This command loads a binary file, file.mix into the virtual machine memory, and
positions the program counter at the beginning of the loaded program. This address
is indicated in the MIXAL source file as the operand of the END pseudoinstruction.
Thus, if your ‘sample.mixal’ source file contains the line:

END 3000

and you compile it with mixasm to produce the binary file ‘sample.mix’, you will load
it into the virtual machine as follows:

MIX > load sample
Program loaded. Start address: 3000
MIX >

[file command]run [file[.mix]]
When executed without argument, this command initiates or resumes execution of
instructions from the current program counter address. Therefore, issuing this com-
mand after a successful load, will run the loaded program until either a HLT instruc-
tion or a breakpoint is found. If you provide a MIX filename as argument, the given
file will be loaded (as with load file) and executed. If run is invoked again after
program execution completion (i.e., after the HLT instruction has been found in a
previous run), the program counter is repositioned and execution starts again from
the beginning (as a matter of fact, a load command preserving the currently set
breakpoints is issued before resuming execution).

[file command]edit [file[.mixal]]
The source file file.mixal is edited using the editor defined in the environment variable
MDK EDITOR. If this variable is not set, the following ones are tried out in order:
X EDITOR, EDITOR and VISUAL. If invoked without argument, the source file
for the currently loaded MIX file is edited. The command used to edit source files
can also be configured using the sedit command (see Section 6.2.4 [Configuration
commands], page 56).

[file command]compile file[.mixal]
The source file file.mixal is compiled (with debug information enabled) using mixasm.
If invoked without argument, the source file for the currently loaded MIX file is
recompiled. The compilation command can be set using the sasm command (see
Section 6.2.4 [Configuration commands], page 56).

[file command]pprog
[file command]psrc

Print the path of the currently loaded MIX program and its source file:
MIX > load ../samples/primes
Program loaded. Start address: 3000
MIX > pprog
../samples/primes.mix
MIX > psrc
/home/jao/projects/mdk/gnu/samples/primes.mixal
MIx>

50 GNU MIX Development Kit (mdk)

Finally, you can use the quit command to exit mixvm:

[file command]quit
Exit mixvm, saving the current configuration parameters in ‘~/.mdk/mixvm.config’.

6.2.2 Debug commands

Sequential execution of loaded programs can be interrupted using the following debug com-
mands:

[debug command]next [ins number]
This command causes the virtual machine to fetch and execute up to ins number
instructions, beginning from the current program counter position. Execution is in-
terrupted either when the specified number of instructions have been fetched or a
breakpoint is found, whatever happens first. If run without arguments, one instruc-
tion is executed. If next is invoked again after program execution completion (i.e.,
after the HLT instruction has been found in a previous run), the program counter
is repositioned and execution starts again from the beginning (as a matter of fact,
a load command preserving the currently set breakpoints is issued before resuming
execution).

[debug command]sbp line number
[debug command]cbp line no

Sets a breakpoint at the specified source file line number. If the line specified corre-
sponds to a command or to a MIXAL pseudoinstruction which does not produce a
MIX instruction in the binary file (such as ORIG or EQU) the breakpoint is set at the
first source code line giving rise to a MIX instruction after the specified one. Thus,
for our sample ‘hello.mixal’ file:

* (1)
* hello.mixal: say ’hello world’ in MIXAL (2)
* (3)
* label ins operand comment (4)
TERM EQU 19 the MIX console device number (5)

ORIG 1000 start address (6)
START OUT MSG(TERM) output data at address MSG (7)
...

trying to set a breakpoint at line 5, will produce the following result:
MIX > sbp 5
Breakpoint set at line 7
MIX >

since line 7 is the first one compiled into a MIX instruction (at address 3000).
The command cbp clears a (previously set) breakpoint at the given source file line.

[debug command]spba address
[debug command]cbpa address

Sets a breakpoint at the given memory address. The argument must be a valid MIX
memory address, i.e., it must belong into the range [0-3999]. Note that no check is
performed to verify that the specified address is reachable during program execution.

Chapter 6: mixvm, the MIX computer simulator 51

No debug information is needed to set a breakpoint by address with sbpa. The
command cbpa clears a (previously set) breakpoint at the given memory address.

[debug command]sbpr A | X | J | Ii
[debug command]cbpr A | X | J | Ii

Sets a conditional breakpoint on the specified register change. For instance,
sbpr I1

will cause an interruption during program execution whenever the contents or register
I1 changes. A previously set breakpoint is cleared using the cbpr command.

[debug command]sbpm address
[debug command]cbpm address

Sets a conditional breakpoint on the specified memory cell change. The argument
must be a valid MIX memory address, i.e., it must belong into the range [0-3999].
For instance,

sbpm 1000

will cause an interruption during program execution whenever the contents or of the
memory cell number 1000 changes. A previously set breakpoint is cleared using the
cbpm command.

[debug command]sbpo
[debug command]cbpo

Sets/clears a conditional breakpoint on overflow toggle change.

[debug command]sbpc
[debug command]cbpc

Sets/clears a conditional breakpoint on comparison flag change.

[debug command]cabp
Clears all currently set breakpoints.

[debug command]psym [symbol name]
MIXAL programs can define symbolic constants, using either the EQU pseudoinstruc-
tion or a label at the beginning of a line. Thus, in the program fragment

VAR EQU 2168
ORIG 4000

START LDA VAR

the symbol VAR stands for the value 2168, while START is assigned the value 4000. The
symbol table can be consulted from the mixvm command line using psym followed by
the name of the symbol whose contents you are interested in. When run without
arguments, psym will print all defined symbols and their values.

The virtual machine can also show you the instructions it is executing, using the following
commands:

[debug command]strace [on|off]
strace on enables instruction tracing. When tracing is enabled, each time the virtual
machine executes an instruction (due to your issuing a run or next command), it is

52 GNU MIX Development Kit (mdk)

printed in its canonical form (that is, with all expressions evaluated to their numerical
values) and, if the program was compiled with debug information, as it was originally
typed in the MIXAL source file. Instruction tracing is disabled with strace off
command. A typical tracing session could be like this:

MIX > strace on
MIX > next
3000: [OUT 3002,0(2:3)] START OUT MSG(TERM)
MIXAL HELLO WORLD
Elapsed time: 1 /Total program time: 1 (Total uptime: 1)
MIX > next
3001: [HLT 0,0] HLT
End of program reached at address 3002
Elapsed time: 10 /Total program time: 11 (Total uptime: 11)
MIX > strace off
MIX >

The executed instruction, as it was translated, is shown between square brackets
after the memory address, and, following it, you can see the actual MIXAL code that
was compiled into the executed instruction. The tracing behaviour is stored as a
configuration parameter in ‘~/.mdk’.

[debug command]pline [LINE NUMBER]
Prints the requested source line (or the current one if line number is omitted:

MIX > load ../samples/hello
Program loaded. Start address: 3000
MIX > pline
Line 5: START OUT MSG(TERM)
MIX > pline 6
Line 6: HLT
MIX >

[debug command]pbt [INS NUMBER]
This command prints a backtrace of executed instructions. Its optional argument
ins number is the number of instructions to print. If it is omitted or equals zero, all
executed instructions are printed. For instance, if you compile and load the following
program (‘bt.mixal’):

ORIG 0
BEG JMP *+1

JMP *+1
FOO JMP BAR
BAR HLT

END BEG

you could get the following traces:
MIX > load bt
Program loaded. Start address: 0
MIX > next
MIX > pbt

Chapter 6: mixvm, the MIX computer simulator 53

#0 BEG in bt.mixal:2
MIX > next
MIX > pbt
#0 1 in bt.mixal:3
#1 BEG in bt.mixal:2
MIX > run
Running ...
... done
MIX > pbt 3
#0 BAR in bt.mixal:5
#1 FOO in bt.mixal:4
#2 1 in bt.mixal:3
MIX > pbt
#0 BAR in bt.mixal:5
#1 FOO in bt.mixal:4
#2 1 in bt.mixal:3
#3 BEG in bt.mixal:2
MIX >

Note that the executed instruction trace gives you the label of the executed line or,
if it has no label, its address.

As you have probably observed, mixvm prints timing statistics when running programs.
This behaviour can be controlled using the stime command (see Section 6.2.4 [Configuration
commands], page 56).

mixvm is also able of evaluating w-expressions (see Section 2.2.4 [W-expressions], page 22)
using the following command:

[debug command]weval WEXP
Evaluates the given w-expression, WEXP. The w-expression can contain any currently
defined symbol. For instance:

MIX > psym START
+ 00 00 00 46 56 (0000003000)
MIX > weval START(0:1),START(3:4)
+ 56 00 46 56 00 (0939716096)
MIX >

New symbols can be defined using the ssym command:

[debug command]ssym SYM WEXP
Defines the symbol named SYM with the value resulting from evaluating WEXP, an
w-expression. The newly defined symbol can be used in subsequent weval commands,
as part of the expression to be evaluated. E.g.,

MIX > ssym S 2+23*START
+ 00 00 18 19 56 (0000075000)
MIX > psym S
+ 00 00 18 19 56 (0000075000)
MIX > weval S(3:4)

54 GNU MIX Development Kit (mdk)

+ 00 00 19 56 00 (0000081408)
MIX >

Finally, if you want to discover which is the decimal value of a MIX word expressed as
five bytes plus sign, you can use

[debug command]w2d WORD
Computes the decimal value of the given word. WORD must be expressed as a sign
(+/-) followed by five space-delimited, two-digit decimal values representing the five
bytes composing the word. The reverse operation (showing the word representation
of a decimal value) can be accomplished with weval. For instance:

MIX > w2d - 01 00 00 02 02
-16777346
MIX > weval -16777346
- 01 00 00 02 02 (0016777346)
MIX >

6.2.3 State commands

Inspection and modification of the virtual machine state (memory, registers, overflow toggle
and comparison flag contents) is accomplished using the following commands:

[state command]pstat
This commands prints the current virtual machine state, which can be one of the
following:
− No program loaded
− Program successfully loaded
− Execution stopped (next executed)
− Execution stopped: breakpoint encountered
− Execution stopped: conditional breakpoint encountered
− Program successfully terminated

[state command]pc
Prints the current value of the program counter, which stores the address of the next
instruction to be executed in a non-halted program.

[state command]sreg A | X | J | I[1-6] value
[state command]preg [A | X | J | I[1-6]]
[state command]pall

preg prints the contents of a given MIX register. For instance, preg A will print the
contents of the A-register. When invoked without arguments, all registers shall be
printed:

MIX > preg
rA: - 00 00 00 00 35 (0000000035)
rX: + 00 00 00 15 40 (0000001000)
rJ: + 00 00 (0000)
rI1: + 00 00 (0000) rI2: + 00 00 (0000)
rI3: + 00 00 (0000) rI4: + 00 00 (0000)

Chapter 6: mixvm, the MIX computer simulator 55

rI5: + 00 00 (0000) rI6: + 00 00 (0000)
MIX >

As you can see in the above sample, the contents is printed as the sign plus the
values of the MIX bytes stored in the register and, between parenthesis, the decimal
representation of its module.

pall prints the contents of all registers plus the comparison flag and overflow toggle.

Finally, sreg Sets the contents of the given register to value, expressed as a decimal
constant. If value exceeds the maximum value storable in the given register, VALUE
mod MAXIMU_VALUE is stored, e.g.

MIX > sreg I1 1000
MIX > preg I1
rI1: + 15 40 (1000)
MIX > sreg I1 1000000
MIX > preg I1
rI1: + 09 00 (0576)
MIX >

[state command]pflags
[state command]scmp E | G | L
[state command]sover F | T

pflags prints the value of the comparison flag and overflow toggle of the virtual
machine, e.g.

MIX > pflags
Overflow: F
Cmp: E
MIX >

The values of the overflow toggle are either F (false) or T (true), and, for the compari-
son flag, E, G, L (equal, greater, lesser). scmp and sover are setters of the comparison
flag and overflow toggle values.

[state command]pmem from[-to]
[state command]smem address value

pmem prints the contents of memory cells in the address range [FROM-TO]. If the
upper limit to is omitted, only the contents of the memory cell with address FROM
is printed, as in

MIX > pmem 3000
3000: + 46 58 00 19 37 (0786957541)
MIX >

The memory contents is displayed both as the set of five MIX bytes plus sign com-
posing the stored MIX word and, between parenthesis, the decimal representation of
the module of the stored value.

smem sets the content of the memory cell with address address to value, expressed as
a decimal constant.

56 GNU MIX Development Kit (mdk)

6.2.4 Configuration commands

This section describes commands that allow you to configure the virtual machine behaviour.
This configuration is stored in the mdk directory ‘~/.mdk’.

As you can see in their description, some commands print, as a side effect, informa-
tional messages to the standard output (e.g. load prints a message telling you the loaded
program’s start address): these messages can be enabled/disabled using slog:

[config command]slog on|off
Turns on/off the logging of informational messages. Note that error messages are
always displayed, as well as state messages required using commands prefixed with p
(preg, pmem and the like).

[config command]stime on|off
[config command]ptime

The stime command (un)sets the printing of timing statistics, and ptime prints their
current value:

MIX > ptime
Elapsed time: 10 /Total program time: 11 (Total uptime: 11)
MIX >

[config command]sedit TEMPLATE
[config command]pedit

sedit sets the command to be used to edit MIXAL source files with the edit com-
mand. TEMPLATE must contain the control characters %s to mark the place where
the source’s file name will be inserted. For instance, if you type

MIX > sedit emacsclient %s
MIX >

issuing the mixvm command edit foo.mixal will invoke the operating system com-
mand emacsclient foo.mixal.
pedit prints the current value of the edit command template.

[config command]sasm TEMPLATE
[config command]pasm

sasm sets the command to be used to compile MIXAL source files with the compile
command. template must contain the control characters %s to mark the place where
the source’s file name will be inserted. For instance, if you type

MIX > sasm mixasm -l %s
MIX >

issuing the mixvm command compile foo.mixal will invoke the operating system
command mixasm -l foo.mixal.
pasm prints the current value of the compile command template.

[config command]sddir DIRNAME
[config command]pddir

MIX devices (see Section 6.3 [Devices], page 57) are implemented as regular files
stored, by default, inside ‘~/.mdk’. The sddir command lets you specify an alter-
native location for storing these device files, while pddir prints the current device
directory.

Chapter 6: mixvm, the MIX computer simulator 57

Finally, you can change the default command prompt, ‘MIX > ’, using the prompt com-
mand:

[config command]prompt PROMPT
Changes the command prompt to prompt. If you want to include white space(s) at
the end of the new prompt, bracket prompt using double quotes (e.g., prompt ">> ").

6.2.5 Scheme commands

If you have compiled mdk with libguile support (see Section 1.5 [Special configure flags],
page 7), mixvm will start and initialise an embedded Guile Scheme interpret when it is
invoked. That means that you have at your disposal, at mixvm’s command prompt, all
the Scheme primitives described in Section 3.4 [Using mixguile], page 33 and Chapter 8
[mixguile], page 65, as well as any other function or hook that you have defined in the
initialisation file ‘~/.mdk/mixguile.scm’. To evaluate a Scheme function, simply type it
at the mixvm command prompt (see Section 3.5 [Using Scheme in mixvm and gmixvm],
page 40 for a sample). Compared to the mixguile program, this has only one limitation:
the expressions used in mixvm cannot span more than one line. You can get over this
inconvenience writing your multiline Scheme expressions in a file and loading it using the
scmf command:

[scheme command]scmf FILE NAME
Loads the given Scheme file and evaluates it using the embedded Guile interpreter.

6.3 MIX block devices

The MIX computer comes equipped with a set of block devices for input-output operations
(see Section 2.1.2.8 [Input-output operators], page 16). mixvm implements these block de-
vices as disk files, with the exception of block device no. 19 (typewriter terminal) which
is redirected to standard input/output. When you request an output operation on any
other (output) device, a file named according to the following table will be created, and
the specified MIX words will be written to the file in binary form (for binary devices) or
in ASCII (for char devices). Files corresponding to input block devices should be created
and filled beforehand to be used by the MIX virtual machine (for input-output devices this
creation can be accomplished by a MIXAL program writing to the device the required data,
or, if you prefer, with your favourite editor). The device files are stored, by default, in the
directory ‘~/.mdk’; this location can be changed using the mixvm command devdir (see
Section 6.2.4 [Configuration commands], page 56).

Device No. filename type and
block size

Tape 0-7 ‘tape[0-7].dev’ bin i/o - 100
words

Disks 8-15 ‘disk[0-7].dev’ bin i/o - 100
words

Card reader 16 ‘cardrd.dev’ char in - 16
words

Card writer 17 ‘cardwr.dev’ char out - 16
words

58 GNU MIX Development Kit (mdk)

Line printer 18 ‘printer.dev’ char out - 24
words

Terminal 19 stdin/stdout char i/o - 14
words

Paper tape 20 ‘paper.dev’ char in - 14
words

Devices of type char are stored as ASCII files, using one line per block. For instance,
since the card reader has blocks of size 16, that is, 80 characters, it will be emulated by an
ASCII file consisting of lines with length 80. If the reader finds a line with less than the
required number of characters, it pads the memory with zeroes (MIX character ’space’) to
complete the block size.

Note that the virtual machine automatically converts between the MIX and ASCII char-
acter encodings, so that you can manipulate char device files with any ASCII editor. In
addition, the reader is not case-sensitive, i.e., it automatically converts lowercase letters to
their uppercase counterparts (since the MIX character set does not include the former).

The typewriter (device no. 19) lets you use the standard input and output in your
MIXAL programs. For instance, here is a simple ’echo’ program:

* simple echo program
TERM EQU 19 the typewriter device
BUF EQU 500 input buffer

ORIG 1000
START IN BUF(TERM) read a block (70 chars)

OUT BUF(TERM) write the read chars
HLT
END START

Input lines longer than 70 characters (14 words) are trimmed. On the other hand, if you
type less than a block of characters, whitespace (MIX character zero) is used as padding.

Chapter 7: gmixvm, the GTK virtual machine 59

7 gmixvm, the GTK virtual machine

This chapter describes the graphical MIX virtual machine emulator shipped with mdk. In
addition to having all the command-oriented functionalities of the other virtual machines
(mixvm and mixguile), gmixvm offers you a graphical interface displaying the status of the
virtual machine, the source code of the the downloaded programs and the contents of the
MIX devices.

7.1 Invoking gmixvm

If you have built mdk with GTK+ support (see Chapter 1 [Installing MDK], page 5), a
graphical front-end for the MIX virtual machine will be available in your system. You can
invoke it by typing

gmixvm [-vhuq] [--version] [--help] [--usage] [--noinit]

at your command prompt, where the options have the following meanings:

[User Option]-v
[User Option]--version

Prints version and copyleft information and exits.

[User Option]-h
[User Option]--help
[User Option]-u
[User Option]--usage

Prints a summary of available options and exits.

[User Option]-q
[User Option]--noinit

Do not load the Guile initialisation file ~/.mdk/mixguile.scm at startup. This file
contains any local Scheme code to be executed by the embedded Guile interpreter at
startup (see Section 3.5 [Using Scheme in mixvm and gmixvm], page 40).

Typing gmixvm or gmixvm -q at your command prompt, the main window will appear,
offering you a graphical interface to run and debug your MIX programs.

Apart from the menu and status bars, we can distinguish two zones (or halves) in this
main window. In the upper half of gmixvm’s main window there is a notebook with three
pages, namely,
• a MIX virtual machine view, which shows you the registers, flags, memory contents

and time statistics of the virtual machine;
• a MIXAL source view, which shows the MIXAL file and lets you manage breakpoints;
• a Devices view, which shows you the output to character based MIX block devices.

These three windows can be detached from the notebook, using either the penultimate
toolbar button (which detachs the currently visible notebook page) or the menu entries
under View->Detached windows.

On the other hand, the main window’s lower half presents you a mixvm command prompt
and a logging area where results of the issued commands are presented. These widgets
implement a mixvm console which offers almost the same functionality as its CLI counterpart.

60 GNU MIX Development Kit (mdk)

When gmixvm is run, it creates a directory named ‘.mdk’ in your home directory (if it
does not already exist). The ‘.mdk’ directory contains the program settings, the device files
used by your MIX programs (see Section 6.3 [Devices], page 57), and a command history
file.

The following sections describe the above mentioned components of gmixvm.

7.2 MIXVM console

In the lower half of the gmixvm main window, you will find a command text entry and, above
it, an echo area. These widgets offer you the same functionality as its CLI counterpart,
mixvm (see Chapter 6 [mixvm], page 47). You can issue almost all mixmv commands at
the gmixvm’s command prompt in order to manipulate the MIX virtual machine. Please
refer to See Chapter 6 [mixvm], page 47, for a description of these commands, and to See
Chapter 3 [Getting started], page 27, for a tutorial on using the MIX virtual machine. The
command prompt offers command line completion for partially typed commands using the
〈TAB〉 key; e.g., if you type

lo 〈TAB〉

the command is automatically completed to load. If multiple completions are available,
they will be shown in the echo area. Thus, typing

p 〈TAB〉

will produce the following output on the echo area:
Completions:
pc psym preg pflags pall
pmem

which lists all the available commands starting with p. In addition, the command prompt
maintains a history of typed commands, which can be recovered using the arrow up and
down keys. As mentioned above, a file containing previous sessions’ commands is stored in
the configuration directory ‘~/.mdk’, and reloaded every time you start gmixvm.

You can change the font used to display the issued commands and the mes-
sages in the echo area using the Settings->Change font->Command prompt and
Settings->Change font->Command log menu commands.

7.3 MIX virtual machine

The first notebook’s page displays the current status of the virtual machine. There you
can find the registers’ contents, the value of the comparison and overflow flags, the loca-
tion pointer, a list with all MIX memory cells and their contents, and the time statistics
(including total uptime, elapsed time since the last run command and total execution time
for the currently loaded MIX program).

If you click any register entry, you will be prompted for a new register’s contents.
In the same manner, click on any address of the memory cells list to be prompted for

the new contents of the clicked cell. If you click the address column’s title, a dialog asking
you for a memory address will appear; if you introduce a valid address, this will be the first
cell displayed in the scrollable list after you click the OK button.

The register contents are shown as a list of MIX bytes plus sign. If you place the mouse
pointer over any of them, the decimal value of this MIX word will appear inside a tooltip.

Chapter 7: gmixvm, the GTK virtual machine 61

You can change the font used to display the MIX virtual machine contents using the
Settings->Change font->MIX menu command.

7.4 MIXAL source view

The second notebook’s page, dubbed Source, shows you the MIXAL source of the currently
loaded MIX file.

The information is presented in four columns. The first column displays little icons
showing the current program pointer and any set breakpoints. The second and third columns
show the address and memory contents of the compiled MIX instruction, while the last
one displays its corresponding MIXAL representation, together with the source file line
number. You can set/unset breakpoints by clicking on any line that has an associated
memory address.

You can change the font used to display the MIXAL source code using the
Settings->Change font->MIXAL menu command.

7.5 MIX devices view

The last notebook page, dubbed Devices, shows you the output/input to/from MIX block
devices (the console, line printer, paper tape, disks, card and tapes see Section 6.3 [Devices],
page 57) produced by the running program.

Input device contents is read from files located in the ‘~/.mdk’ directory, and the output
is also written to files at the same location. Note that device tabs will appear as they are
used by the MIX program being run, and that loading a new MIX program will close all
previously open devices.

The input/output for binary block devices (tapes and disks) is a list of MIX words,
which can be displayed either in decimal or word format (e.g. - 67 or - 00 00 00 01 03).
The format used by gmixvm can be configured using the Settings->Device output menu
command for each binary device.

You can change the font used to display the devices content using the
Settings->Change font->Devices menu command.

7.6 Menu and status bars

The menu bar gives you access to the following commands:

[File]Load...
Opens a file dialog that lets you specify a binary MIX file to be loaded in the virtual
machine’s memory. It is equivalent to the mixvm’s load command (see Section 6.2.1
[File commands], page 48).

[File]Edit...
Opens a file dialog that lets your specify a MIXAL source file to be edited. It
is equivalent to the mixvm’s edit command (see Section 6.2.1 [File commands],
page 48). The program used for editing can be specified using the menu entry
Settings->External programs, or using the mixvm command sedit.

62 GNU MIX Development Kit (mdk)

[File]Compile...
Opens a file dialog that lets your specify a MIXAL source file to be compiled. It
is equivalent to the mixvm’s compile command (see Section 6.2.1 [File commands],
page 48). The command used for compiling can be specified using the menu entry
Settings->External programs, or using the mixvm command sasm.

[File]Exit
Exits the application.

[Debug]Run
Runs the currently loaded MIX program, up to the next breakpoint. It is equivalent
to the mixvm’s run command (see Section 6.2.2 [Debug commands], page 50).

[Debug]Next
Executes the next MIX instruction. It is equivalent to the mixvm’s next command
(see Section 6.2.2 [Debug commands], page 50).

[Debug]Clear breakpoints
Clears all currently set breakpoints. It is equivalent to the mixvm’s cabp command.

[Debug]Symbols...
Opens a dialog showing the list of symbols defined in the currently loaded MIX
program. The font used to display this list can be customised using the meny entry
Settings->Change font->Symbol list.

[View]Toolbar(s)
Toggles the toolbar(s) in the gmixvm window(s) (when notebook pages are detached,
each one has its own toolbar).

[View]Detached windows Virtual machine
[View]Detached windows Source
[View]Detached windows Devices

These toggles let you detach (or re-attach) the corresponding notebook page.

[Settings]Change font
Lets you change the font used in the various gmixv widgets (i.e. commad prompt,
command log, Virtual machine, Source, Devices and Symbol list). There is also an
entry (All) to change all fonts at once.

[Settings]Device output...
Opens a dialog that lets you specify which format shall be used to show the contents
of MIX binary block devices.
The available formats are decimal (e.g. -1234) and MIX word (e.g. - 00 00 00 19 18).

[Settings]Devices dir...
Opens a dialog that lets you choose where the MIX device files will be stored (‘~/.mdk’
is the default location).
You can also specify the devices directory using the mixvm command sddir (see
Section 6.2.4 [Configuration commands], page 56).

Chapter 7: gmixvm, the GTK virtual machine 63

[Settings]External programs...
This menu command opens a dialog that lets you specify the commands used for
editing and compiling MIXAL source files.
The commands are specified as template strings, where the control substring %s will
be substituted by the actual file name. Thus, if you want to edit programs using
vi running in an xterm, you must enter the command template xterm -e vi %s in
the corresponding dialog entry. These settings can also be changed using the mixvm
commands sedit and sasm (see Section 6.2.4 [Configuration commands], page 56).

[Settings]Save
Saves the current settings.

[Settings]Save on exit
Mark this checkbox if you want gmixvm to save its settings every time you quit the
program.

[Help]About...
Shows information about gmixvm’s version and copyright.

On the other hand, the status bar displays the name of the last loaded MIX file. In
addition, when the mouse pointer is over a MIXAL source file line that contains symbols,
a list of these symbols with their values will appear in the status bar.

64 GNU MIX Development Kit (mdk)

Chapter 8: mixguile, the Scheme virtual machine 65

8 mixguile, the Scheme virtual machine

This chapter provides a reference to using mixguile and the Scheme function library giving
access to the MIX virtual machine in the mdk emulators (mixguile, mixvm and gmixvm). See
Section 3.4 [Using mixguile], page 33 for a tutorial, step by step introduction to mixguile
and using Scheme as an extension language for the mdk MIX virtual machines.

8.1 Invoking mixguile

Invoking mixguile without arguments will enter the Guile REPL (read-eval-print loop)
after loading, if it exists, the user’s initialisation file (‘~/.mdk/mixguile.scm’).

mixguile accepts the same command line options than Guile:
mixguile [-s SCRIPT] [-c EXPR] [-l FILE] [-e FUNCTION] [-qhv]

[--help] [--version]

The meaning of these options is as follows:

[User Option]-h
[User Option]--help

Prints usage summary and exits.

[User Option]-v
[User Option]--version

Prints version and copyleft information and exits.

[User Option]-s SCRIPT
Loads Scheme code from script, evaluates it and exits. This option can be used
to write executable Scheme scripts, as described in Section 3.4.5 [Scheme scripts],
page 39.

[User Option]-c EXPR
Evaluates the given Scheme expression and exits.

[User Option]-l FILE
Loads the given Scheme file and enters the REPL (read-eval-print loop).

[User Option]-e FUNCTION
After reading the script, executes the given function using the provided command
line arguments. For instance, you can write the following Scheme script:

#! /usr/bin/mixguile \
-e main -s
!#

;;; execute a given program and print the registers.

(define main
(lambda (args)
;; load the file provided as a command line argument
(mix-load (cadr args))

66 GNU MIX Development Kit (mdk)

;; execute it
(mix-run)
;; print the contents of registers
(mix-pall)))

save it in a file called, say, ‘foo’, make it executable, and run it as
$./foo hello

This invocation will cause the evaluation of the main function with a list of command
line parameters as its argument (("./foo" "hello") in the above example. Note
that command line options to mixguile must be written in their own line after the \
symbol.

[User Option]-q
Do not load user’s initialisation file. When mixguile starts up, it looks for a file named
‘mixguile.scm’ in the user’s mdk configuration directory (‘~/.mdk’), and loads it if
it exists. This option tells mixguile to skip this initialisation file loading.

8.2 Scheme functions reference

As we have previously pointed out, mixguile embeds a MIX virtual machine that can be
accessed through a set of Scheme functions, that is, of a Scheme library. Conversely, mixvm
and gmixvm contain a Guile interpreter, and are able to use this same Scheme library, as
well as all the other Guile/Scheme primitives and any user defined function. Therefore,
you have at your disposal a powerful programming language, Scheme, to extend the mdk
virtual machine emulators (see Section 3.5 [Using Scheme in mixvm and gmixvm], page 40
for samples of how to do it).

The following subsections describe available functions the MIX/Scheme library.

8.2.1 mixvm command wrappers

For each of the mixvm commands listed in Section 6.2 [Commands], page 48, there is a
corresponding Scheme function named by prefixing the command name with mix- (e.g.,
mix-load, mix-run and so on). These command wrappers are implemented using a generic
command dispatching function:

[Function]mixvm-cmd command argument
Dispatchs the given command to the MIX virtual appending the provided argument.
Both command and argument must be strings. The net result is as writing "command
argument" at the mixvm or gmixvm command prompt.

For instance, you can invoke the run command at the mixvm prompt in three equivalent
ways:

MIX > run hello
MIX > (mix-run "hello")
MIX > (mixvm-cmd "run" "hello")

(only the two last forms can be used at the mixguile prompt or inside a Scheme script).
The mix- functions evaluate to a unspecified value. If you want to check the result of

the last mixvm command invocation, use the mix-last-result function:

Chapter 8: mixguile, the Scheme virtual machine 67

[Function]mix-last-result
Returns #t if the last mixvm command invocation was successful, #f otherwise.

Using this function, we could improve the script for running a program presented in the
previous section by adding error checking:

#! /usr/bin/mixguile \
-e main -s
!#

;;; Execute a given program and print the registers.

(define main
(lambda (args)
;; load the file provided as a command line argument
(mix-load (cadr args))
;; execute it if mix-load succeeded
(if (mix-last-result) (mix-run))
;; print the contents of registers if the above commands succeded
(if (mix-last-result) (mix-pall))))

Please, refer to Section 6.2 [Commands], page 48 for a list of available commands. Given
the description of a mixvm, it is straightforward to use its Scheme counterpart and, there-
fore, we shall not give a complete description of these functions here. Instead, we will
only mention those wrappers that exhibit a treatment of their differing from that of their
command counterpart.

[Function]mix-preg [register]
[Function]mix-sreg register value

The argument register of these functions can be either a string or a symbol repre-
senting the desired register. For instance, the following invocations are equivalent:

(mix-preg ’I1)
(mix-preg "I1")

[Function]mix-pmem from [to]
The command pmem takes a single argument which can be either a cell number or
a range of the form FROM-TO. This function takes one argument to ask for a single
memory cell contents, or two parameters to ask for a range. For instance, the following
commands are equivalent:

MIX > pmem 10-12
0010: + 00 00 00 00 00 (0000000000)
0011: + 00 00 00 00 00 (0000000000)
0012: + 00 00 00 00 00 (0000000000)
MIX > (mix-pmem 10 12)
0010: + 00 00 00 00 00 (0000000000)
0011: + 00 00 00 00 00 (0000000000)
0012: + 00 00 00 00 00 (0000000000)
MIX >

68 GNU MIX Development Kit (mdk)

[Function]mix-sover #t|#f
The command sover takes as argument either the string T or the string F, to set,
respectively, the overflow toggle to true or false. Its Scheme counterpart, mix-sover,
takes as argument a Scheme boolean value: #t (true) or #f.

For the remaining functions, you simply must take into account that when the command
arguments are numerical, the corresponding Scheme function takes as arguments Scheme
number literals. On the other hand, when the command argument is a string, the argument
of its associated Scheme function will be a Scheme string. By way of example, the following
invocations are pairwise equivalent:

MIX > load ../samples/hello
MIX > (mix-load "../samples/hello")

MIX > next 5
MIX > (mix-next 5)

8.2.2 Hook functions

Hooks are functions evaluated before or after executing a mixvm command (or its corre-
sponding Scheme function wrapper), or after an explicit or conditional breakpoint is found
during the execution of a MIX program. The following functions let you install hooks:

[Function]mix-add-pre-hook command hook
Adds a function to the list of pre-hooks associated with the give command. command
is a string naming the corresponding mixvm command, and hook is a function which
takes a single argument: a string list of the commands arguments. The following
scheme code defines a simple hook and associates it with the run command:

(define run-hook
(lambda (args)
(display "argument list: ")
(display args)
(newline)))

(mix-add-pre-hook "run" run-hook)

Pre-hooks are executed, in the order they are added, before invoking the corresponding
command (or its associated Scheme wrapper function).

[Function]mix-add-post-hook command hook
Adds a function to the list of pre-hooks associated with the give command. The
arguments have the same meaning as in mix-add-pre-hook.

[Function]mix-add-global-pre-hook hook
[Function]mix-add-global-post-hook hook

Global pre/post hooks are executed before/after any mixvm command or function
wrapper invocation. In this case, hook takes two arguments: a string with the name
of the command being invoked, and a string list with its arguments.

[Function]mix-add-break-hook hook
[Function]mix-add-cond-break hook

Add a hook funtion to be executed when an explicit (resp. conditional) breakpoint is
encountered during program execution. hook is a function taking two arguments: the

Chapter 8: mixguile, the Scheme virtual machine 69

source line number where the hook has occurred, and the current program counter
value. The following code shows a simple definition and installation of a break hook:

(define break-hook
(lambda (line address)
(display "Breakpoint at line ") (display line)
(display " and address ") (display address)
(newline)))

(mix-add-break-hook break-hook)

Break hook functions are entirely implemented in Scheme using regular post-hooks
for the next and run commands. If you are curious, you can check the Scheme source
code at ‘prefix/share/mdk/mixguile-vm-stat.scm’ (where prefix stands for your
root install directory, usualy /usr or /usr/local.

See Section 3.4.4 [Hook functions], page 36 for further examples on using hook functions.

8.2.3 Additional VM functions

When writing non-trivial Scheme extensions using the MIX/Scheme library, you will prob-
ably need to evaluate the contents of the virtual machine components (registers, memory
cells and so on). For instance, you may need to store the contents of the A register in a
variable. The Scheme functions described so far are of no help: you can print the contents
of A using (mix-preg ’A), but you cannot define a variable containing the contents of A. To
address this kind of problems, the MIX/Scheme library provides the following additional
functions:

[Function]mixvm-status
[Function]mix-vm-status

Return the current status of the virtual machine, as a number (mixvm-status) or as
a symbol (mix-vm-status). Posible return values are:

(mixvm-status) (mix-vm-status)
0 MIX ERROR Loading or execution error
1 MIX BREAK Breakpoint encountered
2 MIX COND BREAK Conditional breakpoint
3 MIX HALTED Execution terminated
4 MIX RUNNING Execution stopped after next
5 MIX LOADED Program successfully loaded
6 MIX EMPTY No program loaded

[Function]mix-vm-error?
[Function]mix-vm-break?
[Function]mix-vm-cond-break?
[Function]mix-vm-halted?
[Function]mix-vm-running?
[Function]mix-vm-loaded?
[Function]mix-vm-empty?

Predicates asking whether the current virtual machine status is MIX_ERROR, MIX_
BREAK, etc.

70 GNU MIX Development Kit (mdk)

[Function]mix-reg register
[Function]mix-set-reg! register value

mix-reg evaluates to a number which is the contents of the specified register. mix-
set-reg sets the contents of the given register to value. The register can be specified
either as a string ("A", "X", etc.) or as a symbol (’A, ’X, etc.). For instance,

guile> (mix-reg ’A)
2341
guile> (mix-set-reg! "A" 2000)
ok
guile> (define reg-a (mix-reg ’A))
guile> (display reg-a)
2000
guile>

[Function]mix-cell cell no
[Function]mix-set-cell! cell no value

Evaluate and set the contents of the memory cell number cell no. Both cell no and
value are Scheme numbers.

[Function]mix-loc
Evaluates to the value of the location counter (i.e., the address of the next instruction
to be executed).

[Function]mix-over
[Function]mix-set-over! #t|#f

mix-over evaluates to #t if the overflow toggle is set, and to #f otherwise. The value
of the overflow toggle can be modified using mix-set-over!.

[Function]mix-cmp
[Function]mix-set-cmp! ’L|’E|’G

Evaluate and set the comparison flag. Possible values are the scheme symbols L
(lesser), E (equal) and G (greater).

[Function]mix-up-time
Evaluates to the current virtual machine uptime.

[Function]mix-lap-time
Evaluates to the current virtual machine lapsed time, i.e., the time elapsed since the
last run or next command.

[Function]mix-prog-time
Evaluates to the total time spent executing the currently loaded program.

[Function]mix-prog-name
Evaluates to a string containing the basename (without any leading path) of the
currently loaded MIX program.

[Function]mix-prog-path
Evaluates to a string containing the full path to the currently loaded MIX program.

Chapter 8: mixguile, the Scheme virtual machine 71

[Function]mix-src-path
Evaluates to a string containing the full path to the source file of the currently loaded
MIX program.

[Function]mix-src-line [lineno]
[Function]mix-src-line-no

mix-src-line-no evaluates to the current source file number during the execution of
a program. mix-src-line evaluates to a string containing the source file line number
lineno; when invoked without argument, it evaluates to (mix-src-line (mix-src-
line-no)).

[Function]mix-ddir
Evaluates to a string containing the full path of the current device directory.

72 GNU MIX Development Kit (mdk)

Chapter 9: Reporting Bugs 73

9 Reporting Bugs

If you have any questions, comments or suggestions, please send electronic mail to the
author.

If you find a bug in mdk, please send electronic mail to the mdk bug list.
In your report, please include the version number, which you can find by running

‘mixasm --version’. Also include in your message the output that the program produced
and the output you expected.

mailto:jao@gnu.org
mailto:jao@gnu.org
mailto:bug-mdk@gnu.org

74 GNU MIX Development Kit (mdk)

Appendix A: Copying 75

Appendix A Copying

GNU MDK is distributed under the GNU General Public License (GPL) and this manual
under the GNU Free Documentation License (GFDL).

A.1 GNU General Public License
Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom
to share and change free software—to make sure the software is free for all its users. This
General Public License applies to most of the Free Software Foundation’s software and to
any other program whose authors commit to using it. (Some other Free Software Foundation
software is covered by the GNU Library General Public License instead.) You can apply it
to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

76 GNU MIX Development Kit (mdk)

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION
AND MODIFICATION

1. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.
Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

2. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.
You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

3. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:
a. You must cause the modified files to carry prominent notices stating that you

changed the files and the date of any change.
b. You must cause any work that you distribute or publish, that in whole or in part

contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.

Appendix A: Copying 77

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.
In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

4. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:
a. Accompany it with the complete corresponding machine-readable source code,

which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.
If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

5. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

6. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

78 GNU MIX Development Kit (mdk)

7. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

8. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.
If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

9. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

10. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free
Software Foundation.

11. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software

Appendix A: Copying 79

which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

12. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

13. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

80 GNU MIX Development Kit (mdk)

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and an idea of what it does.

Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or

modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2

of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details

type ‘show w’. This is free software, and you are welcome

to redistribute it under certain conditions; type ‘show c’

for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever
suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright

interest in the program ‘Gnomovision’

(which makes passes at compilers) written

by James Hacker.

signature of Ty Coon, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.

Appendix A: Copying 81

A.2 GNU Free Documentation License
Version 1.2, November 2002

Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

82 GNU MIX Development Kit (mdk)

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.
The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.
A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.
A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.
The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and

Appendix A: Copying 83

that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

84 GNU MIX Development Kit (mdk)

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

Appendix A: Copying 85

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.
In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.
You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called

86 GNU MIX Development Kit (mdk)

an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Appendix A: Copying 87

A.2.1 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

88 GNU MIX Development Kit (mdk)

Concept Index 89

Concept Index

.

.mix file . 28

.mixal file . 27

.mls file . 45

A
address . 9
address transfer operators . 14
arithmetic operators . 13
assembler . 28, 45
assembly . 19

B
binary operator . 22
binary programs . 28
break hook . 39
breakpoints . 32
bugs . 73
byte . 9

C
cell . 9
cm . 10
comments . 22
comparison indicator . 10
comparison operators . 15
compiling . 28
conversion operators . 17

E
exection time . 18

F
FDL, GNU Free Documentation License 81
field specification . 9
fspec . 9

G
global hook . 38
gmixvm . 59
GPL, GNU General Public License 75
GTK+ . 59
GUI . 59

H
help . 31

hook function . 36

I
index . 9
input-output devices . 10
input-output operators . 16
instruction . 9
instruction set . 11
interactive mode . 28, 30
Introduction . 1

J
jump operators . 15

L
literal constants . 24
load . 30
loading operators . 12
local symbols . 23

M
memory . 9
memory cell . 9
miscellaneous operators . 18
MIX . 9
MIX architecture . 9
MIX assembly language . 19
MIX byte . 9
MIX computer . 9
MIX instruction . 9
MIX register . 9
MIX word . 9
MIXAL . 9, 19, 27, 45
mixasm . 28, 45
mixguile . 33, 65
mixguile options . 65
mixvm . 28
mixvm . 47

N
next . 31
non-interactive . 39
non-interactive mode . 28, 29

O
operator . 22
ov . 10
overflow toggle . 10

90 GNU MIX Development Kit (mdk)

P
pc . 30
pmem . 30
post-hook . 36
pre-hook . 36
preg . 31
problems . 73
psym . 32

Q
questions . 73

R
rA . 9
register . 9
REPL . 33
rIn . 9
rJ . 9
run . 30
rX . 9

S
sbp . 32
sbpa . 32
Scheme . 33

Scheme functions . 35
Scheme script . 39
scmf . 40
shift . 17
shift operators . 17
source file . 27
storing operators . 13
suggestions . 73

T
tail recursion . 89
time . 18
tutorial . 27

U
un . 10
unary operator . 22

V
virtual machine . 28

W
w-expressions . 22
word . 9

Instructions and commands 91

Instructions and commands

A
About... 63
ADD . 13
ALF . 20

C
cabp . 51
cbp . 50
cbpa . 50
cbpc . 51
cbpm . 51
cbpo . 51
cbpr . 51
Change font . 62
CHAR . 17
Clear breakpoints . 62
CMPA . 15
CMPi . 15
CMPX . 15
compile . 49
Compile... 62
CON . 20

D
DECA . 14
DECi . 14
DECX . 14
Detached windows . 62
Device output... 62
Devices dir... 62
DIV . 14

E
edit . 49
Edit... 61
END . 20
ENNA . 14
ENNi . 14
ENNX . 14
ENTA . 14
ENTi . 14
ENTX . 14
EQU . 20
Exit . 62
External programs... 63

H
help . 48
HLT . 18

I
IN . 16
INCA . 14
INCi . 14
INCX . 14
IOC . 16

J
JAN . 16
JANN . 16
JANP . 16
JANZ . 16
JAP . 16
JAZ . 16
JBUS . 16
JE . 16
JG . 16
JGE . 16
JiN . 16
JiNN . 16
JiNP . 16
JiNZ . 16
JiP . 16
JiZ . 16
JL . 16
JLE . 16
JMP . 15
JNE . 16
JNOV . 15
JOV . 15
JRED . 16
JSJ . 15
JXN . 16
JXNN . 16
JXNP . 16
JXNZ . 16
JXP . 16
JXZ . 16

L
LDA . 12
LDAN . 12
LDi . 12
LDiN . 12
LDX . 12
LDXN . 12
load . 49
Load... 61

M
mix-add-break-hook . 68

92 GNU MIX Development Kit (mdk)

mix-add-cond-break . 68
mix-add-global-post-hook 68
mix-add-global-pre-hook 68
mix-add-post-hook . 68
mix-add-pre-hook . 68
mix-cell . 70
mix-cmp . 70
mix-ddir . 71
mix-lap-time . 70
mix-last-result . 67
mix-loc . 70
mix-over . 70
mix-pmem . 67
mix-preg . 67
mix-prog-name . 70
mix-prog-path . 70
mix-prog-time . 70
mix-reg . 70
mix-set-cell! . 70
mix-set-cmp! . 70
mix-set-over! . 70
mix-set-reg! . 70
mix-sover . 68
mix-src-line . 71
mix-src-line-no . 71
mix-src-path . 71
mix-sreg . 67
mix-up-time . 70
mix-vm-break? . 69
mix-vm-cond-break? . 69
mix-vm-empty? . 69
mix-vm-error? . 69
mix-vm-halted? . 69
mix-vm-loaded? . 69
mix-vm-running? . 69
mix-vm-status . 69
mixvm-cmd . 66
mixvm-status . 69
MOVE . 18
MUL . 14

N
next . 50
Next . 62
NOP . 18
NUM . 17

O
ORIG . 20
OUT . 16

P
pall . 54
pasm . 56
pbt . 52

pc . 54
pddir . 56
pedit . 56
pflags . 55
pline . 52
pmem . 55
pprog . 49
preg . 54
prompt . 57
psrc . 49
pstat . 54
psym . 51
ptime . 56

Q
quit . 50

R
run . 49
Run . 62

S
sasm . 56
Save . 63
Save on exit . 63
sbp . 50
sbpc . 51
sbpm . 51
sbpo . 51
sbpr . 51
scmf . 57
scmp . 55
sddir . 56
sedit . 56
SLA . 17
SLAX . 17
SLC . 17
slog . 56
smem . 55
sover . 55
spba . 50
SRA . 17
SRAX . 17
SRC . 17
sreg . 54
ssym . 53
STA . 13
STi . 13
stime . 56
STJ . 13
strace . 51
STX . 13
STZ . 13
SUB . 14
Symbols... 62

Instructions and commands 93

T
Toolbar(s) . 62

W
w2d . 54

weval . 53

94 GNU MIX Development Kit (mdk)

	Introduction
	Acknowledgements
	Installing mdk
	Download the source tarball
	Requirements
	Basic installation
	Emacs support
	Special configure flags
	Supported platforms

	MIX and MIXAL tutorial
	The MIX computer
	MIX architecture
	MIX instruction set
	Instruction structure
	Loading operators
	Storing operators
	Arithmetic operators
	Address transfer operators
	Comparison operators
	Jump operators
	Input-output operators
	Conversion operators
	Shift operators
	Miscellaneous operators
	Execution times

	MIXAL
	Basic program structure
	MIXAL directives
	Expressions
	W-expressions
	Local symbols
	Literal constants

	Getting started
	Writing a source file
	Compiling
	Running the program
	Non-interactive mode
	Interactive mode
	Debugging commands

	Using mixguile
	The mixguile shell
	Additional MIX Scheme functions
	Defining new functions
	Hook functions
	Command hooks
	Break hooks

	Scheme scripts

	Using Scheme in mixvm and gmixvm

	Emacs tools
	MIXAL mode
	Basics
	Help system
	Compiling and running

	GUD integration

	mixasm, the MIXAL assembler
	Invoking mixasm

	mixvm, the MIX computer simulator
	Invoking mixvm
	Interactive commands
	File commands
	Debug commands
	State commands
	Configuration commands
	Scheme commands

	MIX block devices

	gmixvm, the GTK virtual machine
	Invoking gmixvm
	MIXVM console
	MIX virtual machine
	MIXAL source view
	MIX devices view
	Menu and status bars

	mixguile, the Scheme virtual machine
	Invoking mixguile
	Scheme functions reference
	mixvm command wrappers
	Hook functions
	Additional VM functions

	Reporting Bugs
	Copying
	GNU General Public License
	Preamble
	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	How to Apply These Terms to Your New Programs

	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Concept Index
	Instructions and commands

