
Using and porting gnu lightning

Version 1.2
[No value for \UPDATE-MONTH"]

by Paolo Bonzini

Copyright 1988-92, 1994-95, 1999, 2000 Free Software Foundation, Inc.

This document is released under the terms of the gnu Free Documentation License as
published by the Free Software Foundation; either version 1.1, or (at your option) any later
version.

You should have received a copy of the gnu Free Documentation License along with gnu

lightning ; see the �le `COPYING.DOC'. If not, write to the Free Software Foundation, 59
Temple Place - Suite 330, Boston, MA 02111-1307, USA.

There are no Secondary Sections, no Cover Texts and no Invariant Sections (as de�ned in
the license); this text, along with its equivalent in the Info documentation, constitutes the
Title Page.

Chapter 1: Introduction to gnu lightning 1

1 Introduction to gnu lightning

This document describes installing, using and porting the gnu lightning library for dynamic
code generation. Unlike other dynamic code generation systems, which are usually either
ine�cient or non-portable, gnu lightning is both retargetable and very fast.

Dynamic code generation is the generation of machine code at runtime. It is typically
used to strip a layer of interpretation by allowing compilation to occur at runtime. One of
the most well-known applications of dynamic code generation is perhaps that of interpreters
that compile source code to an intermediate bytecode form, which is then recompiled to
machine code at run-time: this approach e�ectively combines the portability of bytecode
representations with the speed of machine code. Another common application of dynamic
code generation is in the �eld of hardware simulators and binary emulators, which can use
the same techniques to translate simulated instructions to the instructions of the underlying
machine.

Yet other applications come to mind: for example, windowing bitblt operations, matrix
manipulations, and network packet �lters. Albeit very powerful and relatively well known
within the compiler community, dynamic code generation techniques are rarely exploited
to their full potential and, with the exception of the two applications described above,
have remained curiosities because of their portability and functionality barriers: binary
instructions are generated, so programs using dynamic code generation must be retargeted
for each machine; in addition, coding a run-time code generator is a tedious and error-prone
task more than a di�cult one.

This manual describes the gnu lightning dynamic code generation library. gnu lightning
provides a portable, fast and easily retargetable dynamic code generation system.

To be fast, gnu lightning emits machine code without �rst creating intermediate data
structures such as RTL representations traditionally used by optimizing compilers (see sec-
tion \RTL representation" in Using and porting GNU CC). gnu lightning translates code
directly from a machine independent interface to that of the underlying architecture. This
makes code generation more e�cient, since no intermediate data structures have to be con-
structed and consumed. A collateral bene�t it that gnu lightning consumes little space:
other than the memory needed to store generated instructions and data structures such as
parse trees, the only data structure that client will usually need is an array of pointers to
labels and unresolved jumps, which you can often allocate directly on the system stack.

To be portable, gnu lightning abstracts over current architectures' quirks and unorthog-
onalities. The interface that it exposes to is that of a standardized RISC architecture loosely
based on the SPARC and MIPS chips. There are a few general-purpose registers (six, not
including those used to receive and pass parameters between subroutines), and arithmetic
operations involve three operands|either three registers or two registers and an arbitrarily
sized immediate value.

On one hand, this architecture is general enough that it is possible to generate pretty
e�cient code even on CISC architectures such as the Intel x86 or the Motorola 68k families.
On the other hand, it matches real architectures closely enough that, most of the time,
the compiler's constant folding pass ends up generating code which assembles machine
instructions without further tests.

2 Using and porting gnu lightning

1.1 Drawbacks

gnu lightning has been useful in practice; however, it does have at least four drawbacks:
it has limited registers, no peephole optimizer, no instruction scheduler and no symbolic
debugger. Of these, the last is the most critical even though it does not a�ect the quality of
generated code: the only way to debug code generated at run-time is to step through it at
the level of host speci�c machine code. A decent knowledge of the underlying instruction
set is thus needed to make sense of the debugger's output.

The low number of available registers (six) is also an important limitation. However,
let's take the primary application of dynamic code generation, that is, bytecode translators.
The underlying virtual machines tend to have very few general purpose registers (usually 0
to 2) and the translators seldom rely on sophisticated graph-coloring algorithms to allocate
registers to temporary variables. Rather, these translators usually obtain performance
increases because: a) they remove indirect jumps, which are usually poorly predicted, and
thus often form a bottleneck, b) they parameterize the generated code and go through the
process of decoding the bytecodes just once. So, their usage of registers is rather sparse|in
fact, in practice, six registers were found to be enough for most purposes.

The lack of a peephole optimizer is most important on machines where a single instruc-
tion can map to multiple native instructions. For instance, Intel chips' division instruction
hard-codes the dividend to be in EAX and the quotient and remainder to be output, re-
spectively, in EAX and EDX: on such chips, gnu lightning does lots of pushing and popping
of EAX and EDX to save those registers that are not used. Unnecessary stack operations
could be removed by looking at whether preserved registers are destroyed soon. Unfortu-
nately, the current implementation of gnu lightning is so fast because it only knows about
the single instruction that is being generated; performing these optimizations would require
a ow analysis pass that would probably hinder gnu lightning 's speed.

The lack of an instruction scheduler is not very important|pretty good instruction
scheduling can actually be obtained by separating register writes from register reads. The
only architectures on which a scheduler would be useful are those on which arithmetic in-
structions have two operands; an example is, again, the x86, on which the single instruction

subr_i R0, R1, R2 !Compute R0 = R1 - R2

is translated to two instruction, of which the second depends on the result of the �rst:

movl %ebx, %eax ! Move R1 into R0

subl %edx, %eax ! Subtract R2 from R0

Chapter 2: Using gnu lightning 3

2 Using gnu lightning

This chapter describes installing and using gnu lightning .

2.1 Con�guring and installing gnu lightning

The �rst thing to do to use gnu lightning is to con�gure the program, picking the set of
macros to be used on the host architecture; this con�guration is automatically performed
by the `configure' shell script; to run it, merely type:

./configure

gnu lightning supports cross-compiling in that you can choose a di�erent set of macros
from the one needed on the computer that you are compiling gnu lightning on. For example,

./configure --host=sparc-sun-linux

will select the SPARC set of runtime assemblers. You can use con�gure's ability to make
reasonable assumptions about the vendor and operating system and simply type

./configure --host=i386

./configure --host=ppc

./configure --host=sparc

Another option that `configure' accepts is --enable-assertions, which enables sev-
eral consistency checks in the run-time assemblers. These are not usually needed, so you
can decide to simply forget about it; also remember that these consistency checks tend to
slow down your code generator.

After you've con�gured gnu lightning , you don't have to compile it because it is nothing
more than a set of include �les. If you want to compile the examples, run `make' as usual.
The next important step is:

make install

This ends the process of installing gnu lightning .

2.2 gnu lightning 's instruction set

gnu lightning 's instruction set was designed by deriving instructions that closely match
those of most existing RISC architectures, or that can be easily syntesized if absent. Each
instruction is composed of:

� an operation, like sub or mul

� sometimes, an register/immediate ag (r or i)

� a type identi�er or, occasionally, two

The second and third �eld are separated by an underscore; thus, examples of legal
mnemonics are addr_i (integer add, with three register operands) and muli_l (long integer
multiply, with two register operands and an immediate operand). Each instruction takes
two or three operands; in most cases, one of them can be an immediate value instead of a
register.

gnu lightning supports a full range of integer types: operands can be 1, 2 or 4 bytes
long (64-bit architectures might support 8 bytes long operands), either signed or unsigned.
The types are listed in the following table together with the C types they represent:

4 Using and porting gnu lightning

c signed char
uc unsigned char
s short
us unsigned short
i int
ui unsigned int
l long
ul unsigned long
f oat
d double
p void *

Some of these types may not be distinct: for example, (e.g., l is equivalent to i on 32-bit
machines, and p is substantially equivalent to ul).

There are at least seven integer registers, of which six are general-purpose, while the last
is used to contain the stack pointer (SP). The stack pointer can be used to allocate and
access local variables on the stack (which is supposed to grow downwards in memory on all
architectures).

Of the general-purpose registers, at least three are guaranteed to be preserved across
function calls (V0, V1 and V2) and at least three are not (R0, R1 and R2). Six registers are
not very much, but this restriction was forced by the need to target CISC architectures
which, like the x86, are poor of registers; anyway, backends can specify the actual number
of available caller- and callee-save registers.

In addition, there is a special RET register which contains the return value. You should al-
ways remember, however, that writing this register could overwrite either a general-purpose
register or an incoming parameter, depending on the architecture.

There are at least six oating-point registers, named FPR0 to FPR5. These are separate
from the integer registers on all the supported architectures; on Intel architectures, the
register stack is mapped to a at register �le.

The complete instruction set follows; as you can see, most non-memory operations only
take integers, long integers (either signed or unsigned) and pointers as operands; this was
done in order to reduce the instruction set, and because most architectures only provide
word and long word operations on registers. There are instructions that allow operands to
be extended to �t a larger data type, both in a signed and in an unsigned way.

Binary ALU operations
These accept three operands; the last one can be an immediate value for integer
operands, or a register for all operand types. addx operations must directly
follow addc, and subx must follow subc; otherwise, results are unde�ned.

addr i ui l ul p f d O1 = O2 + O3

addi i ui l ul p O1 = O2 + O3

addxr i ui l ul O1 = O2 + (O3 + carry)

addxi i ui l ul O1 = O2 + (O3 + carry)

addcr i ui l ul O1 = O2 + O3, set carry

addci i ui l ul O1 = O2 + O3, set carry

subr i ui l ul p f d O1 = O2 - O3

subi i ui l ul p O1 = O2 - O3

Chapter 2: Using gnu lightning 5

subxr i ui l ul O1 = O2 - (O3 + carry)

subxi i ui l ul O1 = O2 - (O3 + carry)

subcr i ui l ul O1 = O2 - O3, set carry

subci i ui l ul O1 = O2 - O3, set carry

rsbr i ui l ul p f d O1 = O3 - O2

rsbi i ui l ul p O1 = O3 - O2

mulr i ui l ul f d O1 = O2 * O3

muli i ui l ul O1 = O2 * O3

hmulr i ui l ul O1 = high bits of O2 * O3

hmuli i ui l ul O1 = high bits of O2 * O3

divr i ui l ul f d O1 = O2 / O3

divi i ui l ul O1 = O2 / O3

modr i ui l ul O1 = O2 % O3

modi i ui l ul O1 = O2 % O3

andr i ui l ul O1 = O2 & O3

andi i ui l ul O1 = O2 & O3

orr i ui l ul O1 = O2 | O3

ori i ui l ul O1 = O2 | O3

xorr i ui l ul O1 = O2 ^ O3

xori i ui l ul O1 = O2 ^ O3

lshr i ui l ul O1 = O2 << O3

lshi i ui l ul O1 = O2 << O3

rshr i ui l ul O1 = O2 >> O31

rshi i ui l ul O1 = O2 >> O32

Unary ALU operations
These accept two operands, both of which must be registers.

negr i l f d O1 = -O2

notr i ui l ul O1 = ~O2

Compare instructions
These accept three operands; again, the last can be an immediate value for
integer data types. The last two operands are compared, and the �rst operand
is set to either 0 or 1, according to whether the given condition was met or not.

The conditions given below are for the standard behavior of C, where the \un-
ordered" comparison result is mapped to false.

ltr i ui l ul p f d O1 = (O2 < O3)

lti i ui l ul p O1 = (O2 < O3)

ler i ui l ul p f d O1 = (O2 <= O3)

lei i ui l ul p O1 = (O2 <= O3)

gtr i ui l ul p f d O1 = (O2 > O3)

gti i ui l ul p O1 = (O2 > O3)

ger i ui l ul p f d O1 = (O2 >= O3)

gei i ui l ul p O1 = (O2 >= O3)

eqr i ui l ul p f d O1 = (O2 == O3)

1 The sign bit is propagated for signed types.
2 The sign bit is propagated for signed types.

6 Using and porting gnu lightning

eqi i ui l ul p O1 = (O2 == O3)

ner i ui l ul p f d O1 = (O2 != O3)

nei i ui l ul p O1 = (O2 != O3)

unltr f d O1 = !(O2 >= O3)

unler f d O1 = !(O2 > O3)

ungtr f d O1 = !(O2 <= O3)

unger f d O1 = !(O2 < O3)

uneqr f d O1 = !(O2 < O3) && !(O2 > O3)

ltgtr f d O1 = !(O2 >= O3) || !(O2 <= O3)

ordr f d O1 = (O2 == O2) && (O3 == O3)

unordr f d O1 = (O2 != O2) || (O3 != O3)

Transfer operations
These accept two operands; for ext both of them must be registers, while mov
accepts an immediate value as the second operand.

Unlike movr and movi, the other instructions are applied between operands of
di�erent data types, and they need two data type speci�cations. You can use
extr to convert between integer data types, in which case the �rst must be
smaller in size than the second; for example extr_c_ui is correct while extr_
ul_us is not. You can also use extr to convert an integer to a oating point
value: the only available possibilities are extr_i_f and extr_i_d. The other
instructions convert a oating point value to an integer, so the possible su�xes
are _f_i and _d_i.

movr i ui l ul p f d O1 = O2

movi i ui l ul p f d O1 = O2

extr c uc s us i ui l ul f d O1 = O2

roundr i f d O1 = round(O2)

truncr i f d O1 = trunc(O2)

floorr i f d O1 = floor(O2)

ceilr i f d O1 = ceil(O2)

Note that the order of the arguments is destination �rst, source second as
for all other gnu lightning instructions, but the order of the types is always
reversed with respect to that of the arguments: shorter|source|�rst, longer|
destination|second. This happens for historical reasons.

Network extensions
These accept two operands, both of which must be registers; these two instruc-
tions actually perform the same task, yet they are assigned to two mnemonics
for the sake of convenience and completeness. As usual, the �rst operand is the
destination and the second is the source.

hton us ui Host-to-network (big endian) order
ntoh us ui Network-to-host order

Load operations
ld accepts two operands while ldx accepts three; in both cases, the last can be
either a register or an immediate value. Values are extended (with or without
sign, according to the data type speci�cation) to �t a whole register.

ldr c uc s us i ui l ul p f d O1 = *O2

Chapter 2: Using gnu lightning 7

ldi c uc s us i ui l ul p f d O1 = *O2

ldxr c uc s us i ui l ul p f d O1 = *(O2+O3)

ldxi c uc s us i ui l ul p f d O1 = *(O2+O3)

Store operations
st accepts two operands while stx accepts three; in both cases, the �rst can be
either a register or an immediate value. Values are sign-extended to �t a whole
register.

str c uc s us i ui l ul p f d *O1 = O2

sti c uc s us i ui l ul p f d *O1 = O2

stxr c uc s us i ui l ul p f d *(O1+O2) = O3

stxi c uc s us i ui l ul p f d *(O1+O2) = O3

Stack management
These accept a single register parameter. These operations are not guaranteed
to be e�cient on all architectures.

pushr i ui l ul p push O1 on the stack
popr i ui l ul p pop O1 o� the stack

Argument management
These are:

prepare i f d

pusharg c uc s us i ui l ul p f d

getarg c uc s us i ui l ul p f d

arg c uc s us i ui l ul p f d

Of these, the �rst two are used by the caller, while the last two are used by
the callee. A code snippet that wants to call another procedure and has to
pass registers must, in order: use the prepare instruction, giving the number
of arguments to be passed to the procedure (once for each data type); use
pusharg to push the arguments in reverse order; and use calli or finish

(explained below) to perform the actual call.

arg and getarg are used by the callee. arg is di�erent from other instruction
in that it does not actually generate any code: instead, it is a function which
returns a value to be passed to getarg.3 You should call arg as soon as pos-
sible, before any function call or, more easily, right after the prolog or leaf
instructions (which are treated later).

getarg accepts a register argument and a value returned by arg, and will move
that argument to the register, extending it (with or without sign, according to
the data type speci�cation) to �t a whole register. These instructions are more
intimately related to the usage of the gnu lightning instruction set in code that
generates other code, so they will be treated more speci�cally in Section 2.3
[Generating code at run-time], page 10.

You should observe a few rules when using these macros. First of all, it is
not allowed to call functions with more than six arguments; this was done to

3 \Return a value" means that gnu lightning macros that compile these instructions return a value when
expanded.

8 Using and porting gnu lightning

simplify and speed up the implementation on architectures that use registers
for parameter passing.

You should not nest calls to prepare, nor call zero-argument functions (which
do not need a call to prepare) inside a prepare/calli or prepare/finish

block. Doing this might corrupt already pushed arguments.

You cannot pass parameters between subroutines using the six general-purpose
registers. This might work only when targeting particular architectures.

On the other hand, it is possible to assume that callee-saved registers (R0
through R2) are not clobbered by another dynamically generated function which
does not use them as operands in its code and which does not return a value.

Branch instructions
Like arg, these also return a value which, in this case, is to be used to compile
forward branches as explained in Section 2.3.4 [Fibonacci numbers], page 17.
They accept a pointer to the destination of the branch and two operands to be
compared; of these, the last can be either a register or an immediate. They are:

bltr i ui l ul p f d if (O2 < O3) goto O1

blti i ui l ul p if (O2 < O3) goto O1

bler i ui l ul p f d if (O2 <= O3) goto O1

blei i ui l ul p if (O2 <= O3) goto O1

bgtr i ui l ul p f d if (O2 > O3) goto O1

bgti i ui l ul p if (O2 > O3) goto O1

bger i ui l ul p f d if (O2 >= O3) goto O1

bgei i ui l ul p if (O2 >= O3) goto O1

beqr i ui l ul p f d if (O2 == O3) goto O1

beqi i ui l ul p if (O2 == O3) goto O1

bner i ui l ul p f d if (O2 != O3) goto O1

bnei i ui l ul p if (O2 != O3) goto O1

bunltr f d if !(O2 >= O3) goto O1

bunler f d if !(O2 > O3) goto O1

bungtr f d if !(O2 <= O3) goto O1

bunger f d if !(O2 < O3) goto O1

buneqr f d if !(O2 < O3) && !(O2 > O3) goto O1
bltgtr f d if !(O2 >= O3) || !(O2 <= O3) goto O1
bordr f d if (O2 == O2) && (O3 == O3) goto O1
bunordr f d if !(O2 != O2) || (O3 != O3) goto O1

bmsr i ui l ul if O2 & O3 goto O1

bmsi i ui l ul if O2 & O3 goto O1

bmcr i ui l ul if !(O2 & O3) goto O1

bmci i ui l ul if !(O2 & O3) goto O14

boaddr i ui l ul O2 += O3, goto O1 on overow
boaddi i ui l ul O2 += O3, goto O1 on overow
bosubr i ui l ul O2 -= O3, goto O1 on overow

4 These mnemonics mean, respectively, branch if mask set and branch if mask cleared.

Chapter 2: Using gnu lightning 9

bosubi i ui l ul O2 -= O3, goto O1 on overow

Jump and return operations
These accept one argument except ret which has none; the di�erence between
finish and calli is that the latter does not clean the stack from pushed
parameters (if any) and the former must always follow a prepare instruction.
Results are unde�ned when using function calls in a leaf function.

calli (not specified) function call to O1
callr (not specified) function call to a register
finish (not specified) function call to O1
finishr (not specified) function call to a register
jmpi/jmpr (not specified) unconditional jump to O1
prolog (not specified) function prolog for O1 args
leaf (not specified) the same for leaf functions
ret (not specified) return from subroutine
retval c uc s us i ui l ul p f d move return value

to register

Like branch instruction, jmpi also returns a value which is to be used to compile
forward branches. See Section 2.3.4 [Fibonacci numbers], page 17.

As a small appetizer, here is a small function that adds 1 to the input parameter (an
int). I'm using an assembly-like syntax here which is a bit di�erent from the one used
when writing real subroutines with gnu lightning ; the real syntax will be introduced in See
Section 2.3 [Generating code at run-time], page 10.

incr:

leaf 1

in = arg_i ! We have an integer argument

getarg_i R0, in ! Move it to R0

addi_i RET, R0, 1 ! Add 1\, put result in return value

ret ! And return the result

And here is another function which uses the printf function from the standard C library
to write a number in hexadecimal notation:

printhex:

prolog 1

in = arg_i ! Same as above

getarg_i R0, in

prepare 2 ! Begin call sequence for printf

pusharg_i R0 ! Push second argument

pusharg_p "%x" ! Push format string

10 Using and porting gnu lightning

finish printf ! Call printf

ret ! Return to caller

2.3 Generating code at run-time

To use gnu lightning , you should include the `lightning.h' �le that is put in your include
directory by the `make install' command. That include �les de�nes about four hundred
public macros (plus others that are private to gnu lightning), one for each opcode listed
above.

Each of the instructions above translates to a macro. All you have to do is prepend jit_

(lowercase) to opcode names and JIT_ (uppercase) to register names. Of course, parameters
are to be put between parentheses, just like with every other cpp macro.

This small tutorial presents three examples:

� The incr function found in Section 2.2 [gnu lightning 's instruction set], page 3:

� A simple function call to printf

� An RPN calculator.

� Fibonacci numbers

2.3.1 A function which increments a number by one

Let's see how to create and use the sample incr function created in Section 2.2 [gnu
lightning 's instruction set], page 3:

#include <stdio.h>

#include "lightning.h"

static jit_insn codeBuffer[1024];

typedef int (*pifi)(int); /* Pointer to Int Function of Int */

int main()

{

pifi incr = (pifi) (jit_set_ip(codeBuffer).iptr);

int in;

jit_leaf(1); /* leaf 1 */

in = jit_arg_i(); /* in = arg_i */

jit_getarg_i(JIT_R0, in); /* getarg_i R0 */

jit_addi_i(JIT_RET, JIT_R0, 1); /* addi_i RET\, R0\, 1 */

jit_ret(); /* ret */

Chapter 2: Using gnu lightning 11

jit_flush_code(codeBuffer, jit_get_ip().ptr);

/* call the generated code\, passing 5 as an argument */

printf("%d + 1 = %d\n", 5, incr(5));

return 0;

}

Let's examine the code line by line (well, almost. . .):

#include "lightning.h"

You already know about this. It de�nes all of gnu lightning 's macros.

static jit_insn codeBuffer[1024];

You might wonder about what is jit_insn. It is just a type that is de�ned
by gnu lightning . Its exact de�nition depends on the architecture; in general,
de�ning an array of 1024 jit_insns allows one to write 100 to 400 gnu lightning
instructions (depending on the architecture and exact instructions).

typedef int (*pifi)(int);

Just a handy typedef for a pointer to a function that takes an int and returns
another.

pifi incr = (pifi) (jit_set_ip(codeBuffer).iptr);

This is the �rst gnu lightning macro we encounter that does not map to an
instruction. It is jit_set_ip, which takes a pointer to an area of memory
where compiled code will be put and returns the same value, cast to a union

type whose members are pointers to functions returning di�erent C types. This
union is called jit_code and is de�ned as follows:

typedef union jit_code {

char *ptr;

void (*vptr)();

char (*cptr)();

unsigned char (*ucptr)();

short (*sptr)();

unsigned short (*usptr)();

int (*iptr)();

unsigned int (*uiptr)();

long (*lptr)();

unsigned long (*ulptr)();

void * (*pptr)();

float (*fptr)();

double (*dptr)();

} jit_code;

Any of the members could have been used, since the result is soon casted to
type pifi but, for the sake of clarity, the program uses iptr, a pointer to a
function with no prototype and returning an int.

Analogous to jit_set_ip is jit_get_ip, which does not modify the instruction
pointer|it is nothing more than a cast of the current ip to jit_code.

12 Using and porting gnu lightning

int in; A footnote in Section 2.2 [gnu lightning 's instruction set], page 3, under the
description of arg, says that macros implementing arg return a value|we'll be
using this variable to store the result of arg.

jit_leaf(1);

Ok, so we start generating code for our beloved function. . . it will accept one
argument and won't call any other function.

in = jit_arg_i();

jit_getarg_i(JIT_R0, in);

We retrieve the �rst (and only) argument, an integer, and store it into the
general-purpose register R0.

jit_addi_i(JIT_RET, JIT_R0, 1);

We add one to the content of the register and store the result in the return
value.

jit_ret();

This instruction generates a standard function epilog that returns the contents
of the RET register.

jit_flush_code(codeBuffer, jit_get_ip().ptr);

This instruction is very important. It ushes the generated code area out of
the processor's instruction cache, avoiding the processor executes bogus data
that it happens to �nd there. The jit_flush_code function accepts the �rst
and the last address to ush; we use jit_get_ip to �nd out the latter.

printf("%d + 1 = %d", 5, incr(5));

Calling our function is this simple|it is not distinguishable from a normal C
function call, the only di�erence being that incr is a variable.

gnu lightning abstracts two phases of dynamic code generation: selecting instructions
that map the standard representation, and emitting binary code for these instructions.
The client program has the responsibility of describing the code to be generated using the
standard gnu lightning instruction set.

Let's examine the code generated for incr on the SPARC and x86 architectures (on the
right is the code that an assembly-language programmer would write):

SPARC

save %sp, -96, %sp

mov %i0, %l0 retl

add %l0, 1, %i0 add %o0, 1, %o0

ret

restore

In this case, gnu lightning introduces overhead to create a register window (not
knowing that the procedure is a leaf procedure) and to move the argument to
the general purpose register R0 (which maps to %l0 on the SPARC). The former
overhead could be avoided by teaching gnu lightning about leaf procedures (see
Chapter 4 [Future], page 53); the latter could instead be avoided by rewriting
the getarg instruction as jit_getarg_i(JIT_RET, in), which was not done in
this example.

Chapter 2: Using gnu lightning 13

x86

pushl %ebp

movl %esp, %ebp

pushl %ebx

pushl %esi

pushl %edi

movl 8(%ebp), %eax movl 4(%esp), %eax

addl $1, %eax incl %eax

popl %edi

popl %esi

popl %ebx

popl %ebp

ret ret

In this case, the main overhead is due to the function's prolog and epilog,
which is nine instructions long on the x86; a hand-written routine would not
save unused callee-preserved registers on the stack. It is to be said, however,
that this is not a problem in more complicated uses, because more complex
procedure would probably use the V0 through V2 registers (%ebx, %esi, %edi);
in this case, a hand-written routine would have included the prolog too. Also, a
ten byte prolog would probably be a small overhead in a more complex function.

In such a simple case, the macros that make up the back-end compile reasonably e�cient
code, with the notable exception of prolog/epilog code.

2.3.2 A simple function call to printf

Again, here is the code for the example:

#include <stdio.h>

#include "lightning.h"

static jit_insn codeBuffer[1024];

typedef void (*pvfi)(int); /* Pointer to Void Function of Int */

int main()

{

pvfi myFunction; /* ptr to generated code */

char *start, *end; /* a couple of labels */

int in; /* to get the argument */

myFunction = (pvfi) (jit_set_ip(codeBuffer).vptr);

start = jit_get_ip().ptr;

jit_prolog(1);

in = jit_arg_i();

14 Using and porting gnu lightning

jit_movi_p(JIT_R0, "generated %d bytes\n");

jit_getarg_i(JIT_R1, in);

jit_prepare(2);

jit_pusharg_i(JIT_R1); /* push in reverse order */

jit_pusharg_p(JIT_R0);

jit_finish(printf);

jit_ret();

end = jit_get_ip().ptr;

/* call the generated code\, passing its size as argument */

jit_flush_code(start, end);

myFunction(end - start);

}

The function shows how many bytes were generated. Most of the code is not very
interesting, as it resembles very closely the program presented in Section 2.3.1 [A function
which increments a number by one], page 10.

For this reason, we're going to concentrate on just a few statements.

start = jit_get_ip().ptr;

. . .
end = jit_get_ip().ptr;

These two instruction call the jit_get_ip macro which was mentioned in Sec-
tion 2.3.1 [A function which increments a number by one], page 10 too. In this
case we use the only �eld of jit_code that is not a function pointer: ptr, which
is a simple char *.

jit_movi_p(JIT_R0, "generated %d bytes\n");

Note the use of the `p' type speci�er, which automatically casts the second
parameter to an unsigned long to make the code more clear and less cluttered
by typecasts.

jit_prepare(2);

jit_pusharg_i(JIT_R1);

jit_pusharg_p(JIT_R0);

jit_finish(printf);

Once the arguments to printf have been put in general-purpose registers, we
can start a prepare/pusharg/�nish sequence that moves the argument to either
the stack or registers, then calls printf, then cleans up the stack. Note how gnu

lightning abstracts the di�erences between di�erent architectures and ABI's {
the client program does not know how parameter passing works on the host
architecture.

2.3.3 A more complex example, an RPN calculator

We create a small stack-based RPN calculator which applies a series of operators to a given
parameter and to other numeric operands. Unlike previous examples, the code generator is

Chapter 2: Using gnu lightning 15

fully parameterized and is able to compile di�erent formulas to di�erent functions. Here is
the code for the expression compiler; a sample usage will follow.

#include <stdio.h>

#include "lightning.h"

typedef int (*pifi)(int); /* Pointer to Int Function of Int */

pifi compile_rpn(char *expr)

{

pifi fn;

int in;

fn = (pifi) (jit_get_ip().iptr);

jit_leaf(1);

in = jit_arg_i();

jit_getarg_i(JIT_R0, in);

while (*expr) {

char buf[32];

int n;

if (sscanf(expr, "%[0-9]%n", buf, &n)) {

expr += n - 1;

jit_push_i(JIT_R0);

jit_movi_i(JIT_R0, atoi(buf));

} else if (*expr == '+') {

jit_pop_i(JIT_R1);

jit_addr_i(JIT_R0, JIT_R1, JIT_R0);

} else if (*expr == '-') {

jit_pop_i(JIT_R1);

jit_subr_i(JIT_R0, JIT_R1, JIT_R0);

} else if (*expr == '*') {

jit_pop_i(JIT_R1);

jit_mulr_i(JIT_R0, JIT_R1, JIT_R0);

} else if (*expr == '/') {

jit_pop_i(JIT_R1);

jit_divr_i(JIT_R0, JIT_R1, JIT_R0);

} else {

fprintf(stderr, "cannot compile: %s\n", expr);

abort();

}

++expr;

}

jit_movr_i(JIT_RET, JIT_R0);

jit_ret();

return fn;

}

16 Using and porting gnu lightning

The principle on which the calculator is based is easy: the stack top is held in R0, while
the remaining items of the stack are held on the hardware stack. Compiling an operand
pushes the old stack top onto the stack and moves the operand into R0; compiling an
operator pops the second operand o� the stack into R1, and compiles the operation so that
the result goes into R0, thus becoming the new stack top.

Try to locate a call to jit_set_ip in the source code. You will not �nd one; this means
that the client has to manually set the instruction pointer. This technique has one advantage
and one drawback. The advantage is that the client can simply set the instruction pointer
once and then generate code for multiple functions, one after another, without caring about
passing a di�erent instruction pointer each time; see Section 2.4 [Re-entrant usage of gnu
lightning], page 21 for the disadvantage.

Source code for the client (which lies in the same source �le) follows:

static jit_insn codeBuffer[1024];

int main()

{

pifi c2f, f2c;

int i;

jit_set_ip(codeBuffer);

c2f = compile_rpn("9*5/32+");

f2c = compile_rpn("32-5*9/");

jit_flush_code(codeBuffer, jit_get_ip().ptr);

printf("\nC:");

for (i = 0; i <= 100; i += 10) printf("%3d ", i);

printf("\nF:");

for (i = 0; i <= 100; i += 10) printf("%3d ", c2f(i));

printf("\n");

printf("\nF:");

for (i = 32; i <= 212; i += 10) printf("%3d ", i);

printf("\nC:");

for (i = 32; i <= 212; i += 10) printf("%3d ", f2c(i));

printf("\n");

return 0;

}

The client displays a conversion table between Celsius and Fahrenheit degrees (both
Celsius-to-Fahrenheit and Fahrenheit-to-Celsius). The formulas are, F (c) = c � 9=5 + 32
and C(f) = (f � 32) � 5=9, respectively.

Providing the formula as an argument to compile_rpn e�ectively parameterizes code
generation, making it possible to use the same code to compile di�erent functions; this is
what makes dynamic code generation so powerful.

The `rpn.c' �le in the gnu lightning distribution includes a more complete (and more
complex) implementation of compile_rpn, which does constant folding, allows the argument

Chapter 2: Using gnu lightning 17

to the functions to be used more than once, and is able to assemble instructions with an
immediate parameter.

2.3.4 Fibonacci numbers

The code in this section calculates a variant of the Fibonacci sequence. While the traditional
Fibonacci sequence is modeled by the recurrence relation:

f(0) = f(1) = 1
f(n) = f(n-1) + f(n-2)

the functions in this section calculates the following sequence, which is more interesting as
a benchmark5:

n�bs(0) = n�bs(1) = 1
n�bs(n) = n�bs(n-1) + n�bs(n-2) + 1

The purpose of this example is to introduce branches. There are two kind of branches:
backward branches and forward branches. We'll present the calculation in a recursive and
iterative form; the former only uses forward branches, while the latter uses both.

#include <stdio.h>

#include "lightning.h"

static jit_insn codeBuffer[1024];

typedef int (*pifi)(int); /* Pointer to Int Function of Int */

int main()

{

pifi nfibs = (pifi) (jit_set_ip(codeBuffer).iptr);

int in; /* o�set of the argument */

jit_insn *ref; /* to patch the forward reference */

jit_prolog (1);

in = jit_arg_ui ();

jit_getarg_ui(JIT_V0, in); /* V0 = n */

ref = jit_blti_ui (jit_forward(), JIT_V0, 2);

jit_subi_ui (JIT_V1, JIT_V0, 1); /* V1 = n-1 */

jit_subi_ui (JIT_V2, JIT_V0, 2); /* V2 = n-2 */

jit_prepare(1);

jit_pusharg_ui(JIT_V1);

jit_finish(nfibs);

5 That's because, as is easily seen, the sequence represents the number of activations of the nfibs procedure
that are needed to compute its value through recursion.

18 Using and porting gnu lightning

jit_retval(JIT_V1); /* V1 = n�bs(n-1) */

jit_prepare(1);

jit_pusharg_ui(JIT_V2);

jit_finish(nfibs);

jit_retval(JIT_V2); /* V2 = n�bs(n-2) */

jit_addi_ui(JIT_V1, JIT_V1, 1);

jit_addr_ui(JIT_RET, JIT_V1, JIT_V2); /* RET = V1 + V2 + 1 */

jit_ret();

jit_patch(ref); /* patch jump */

jit_movi_i(JIT_RET, 1); /* RET = 1 */

jit_ret();

/* call the generated code\, passing 32 as an argument */

jit_flush_code(codeBuffer, jit_get_ip().ptr);

printf("nfibs(%d) = %d", 32, nfibs(32));

return 0;

}

As said above, this is the �rst example of dynamically compiling branches. Branch in-
structions have three operands: two contains the values to be compared, while the �rst is a
label; gnu lightning label's are represented as jit_insn * values. Unlike other instructions
(apart from arg, which is actually a directive rather than an instruction), branch instruc-
tions also return a value which, as we see in the example above, can be used to compile
forward references.

Compiling a forward reference is a two-step operation. First, a branch is compiled with
a dummy label, since the actual destination of the jump is not yet known; the dummy label
is returned by the jit_forward() macro. The value returned by the branch instruction is
saved to be used later.

Then, when the destination of the jump is reached, another macro is used, jit_patch().
This macro must be called once for every point in which the code had a forward branch to
the instruction following jit_patch (in this case a movi_i instruction).

Now, here is the iterative version:

#include <stdio.h>

#include "lightning.h"

static jit_insn codeBuffer[1024];

typedef int (*pifi)(int); /* Pointer to Int Function of Int */

Chapter 2: Using gnu lightning 19

int main()

{

pifi nfibs = (pifi) (jit_set_ip(codeBuffer).iptr);

int in; /* o�set of the argument */

jit_insn *ref; /* to patch the forward reference */

jit_insn *loop; /* start of the loop */

jit_leaf (1);

in = jit_arg_ui ();

jit_getarg_ui(JIT_R2, in); /* R2 = n */

jit_movi_ui (JIT_R1, 1);

ref = jit_blti_ui (jit_forward(), JIT_R2, 2);

jit_subi_ui (JIT_R2, JIT_R2, 1);

jit_movi_ui (JIT_R0, 1);

loop= jit_get_label();

jit_subi_ui (JIT_R2, JIT_R2, 1); /* decr. counter */

jit_addr_ui (JIT_V0, JIT_R0, JIT_R1); /* V0 = R0 + R1 */

jit_movr_ui (JIT_R0, JIT_R1); /* R0 = R1 */

jit_addi_ui (JIT_R1, JIT_V0, 1); /* R1 = V0 + 1 */

jit_bnei_ui (loop, JIT_R2, 0); /* if (R2) goto loop; */

jit_patch(ref); /* patch forward jump */

jit_movr_ui (JIT_RET, JIT_R1); /* RET = R1 */

jit_ret ();

/* call the generated code\, passing 36 as an argument */

jit_flush_code(codeBuffer, jit_get_ip().ptr);

printf("nfibs(%d) = %d", 36, nfibs(36));

return 0;

}

This code calculates the recurrence relation using iteration (a for loop in high-level
languages). There is still a forward reference (indicated by the jit_forward/jit_patch

20 Using and porting gnu lightning

pair); there are no function calls anymore: instead, there is a backward jump (the bnei at
the end of the loop).

In this case, the destination address should be known, because the jumps lands on an
instruction that has already been compiled. However the program must make a provision
and remember the address where the jump will land. This is achieved with jit_get_label,
yet another macro that is much similar to jit_get_ip but, instead of a jit_code union,
it answers an jit_insn * that the branch macros accept.

Now, let's make one more change: let's rewrite the loop like this:

. . .

jit_delay(

jit_movi_ui (JIT_R1, 1),

ref = jit_blti_ui (jit_forward(), JIT_R2, 2));

jit_subi_ui (JIT_R2, JIT_R2, 1);

loop= jit_get_label();

jit_subi_ui (JIT_R2, JIT_R2, 1); /* decr. counter */

jit_addr_ui (JIT_V0, JIT_R0, JIT_R1); /* V0 = R0 + R1 */

jit_movr_ui (JIT_R0, JIT_R1); /* R0 = R1 */

jit_delay(

jit_addi_ui (JIT_R1, JIT_V0, 1), /* R1 = V0 + 1 */

jit_bnei_ui (loop, JIT_R2, 0)); /* if (R2) goto loop; */

. . .

The jit_delay macro is used to schedule delay slots in jumps and branches. This is
optional, but might lead to performance improvements in tight inner loops (of course not
in a loop that is executed 35 times, but this is just an example).

jit_delay takes two gnu lightning instructions, a delay instruction and a branch in-

struction. Note that the two instructions must be written in execution order (�rst the delay
instruction, then the branch instruction), not with the branch �rst. If the current machine
has a delay slot, the delay instruction (or part of it) is placed in the delay slot after the
branch instruction; otherwise, it emits the delay instruction before the branch instruction.
The delay instruction must not depend on being executed before or after the branch.

Instead of jit_patch, you can use jit_patch_at, which takes two arguments: the �rst
is the same as for jit_patch, and the second is the valued to be patched in. In other words,
these two invocations have the same e�ect:

jit_patch (jump_pc);

jit_patch_at (jump_pc, jit_get_ip ());

Dual to branches and jit_patch_at are jit_movi_p and jit_patch_movi, which can
also be used to implement forward references. jit_movi_p is carefully implemented to use

Chapter 2: Using gnu lightning 21

an encoding that is as long as possible, so that it can always be patched; in addition, like
branches, it will return an address which is then passed to jit_patch_movi. The usage of
jit_patch_movi is similar to jit_patch_at.

2.4 Re-entrant usage of gnu lightning

By default, gnu lightning is able to compile di�erent functions at the same time as long as
it happens in di�erent object �les, and on the other hand constrains code generation tasks
to reside in a single object �le.

The reason for this is not apparent, but is easily explained: the `lightning.h' header
�le de�nes its state as a static variable, so calls to jit_set_ip and jit_get_ip residing
in di�erent �les access di�erent instruction pointers. This was not done without reason: it
makes the usage of gnu lightning much simpler, as it limits the initialization tasks to the
bare minimum and removes the need to link the program with a separate library.

On the other hand, multi-threaded or otherwise concurrent programs require reentrancy
in the code generator, so this approach cannot be the only one. In fact, it is possible to
de�ne your own copy of gnu lightning 's instruction state by de�ning a variable of type
jit_state and #define-ing _jit to it:

struct jit_state lightning;

#define _jit lightning

You are free to de�ne the jit_state variable as you like: extern, static to a function,
auto, or global.

This feature takes advantage of an aspect of macros (cascaded macros), which is docu-
mented thus in CPP's reference manual:

A cascade of macros is when one macro's body contains a reference to another
macro. This is very common practice. For example,

#define BUFSIZE 1020

#define TABLESIZE BUFSIZE

This is not at all the same as de�ning TABLESIZE to be `1020'. The #define

for TABLESIZE uses exactly the body you specify|in this case, BUFSIZE|and
does not check to see whether it too is the name of a macro; it's only when
you use TABLESIZE that the result of its expansion is checked for more macro
names.

This makes a di�erence if you change the de�nition of BUFSIZE at some point
in the source �le. TABLESIZE, de�ned as shown, will always expand using the
de�nition of BUFSIZE that is currently in e�ect: #de�ne BUFSIZE 1020 #de�ne
TABLESIZE BUFSIZE #undef BUFSIZE #de�ne BUFSIZE 37

Now TABLESIZE expands (in two stages) to `37'. (The #undef is to prevent any
warning about the nontrivial rede�nition of BUFSIZE.)

In the same way, jit_get_label will adopt whatever de�nition of _jit is in e�ect:

#define jit_get_label() (_jit.pc)

Special care must be taken when functions residing in separate �les must access the same
state. This could be the case, for example, if a special library contained function for strength
reduction of multiplications to adds & shifts, or maybe of divisions to multiplications and

22 Using and porting gnu lightning

shifts. The function would be compiled using a single de�nition of _jit and that de�nition
would be used whenever the function would be called.

Since gnu lightning uses a feature of the preprocessor to obtain re-entrancy, it makes
sense to rely on the preprocessor in this case too.

The idea is to pass the current struct jit_state to the function:

static void

_opt_muli_i(jit, dest, source, n)

register struct jit_state *jit;

register int dest, source, n;

{

#define _jit jit

...

#undef _jit

}

doing this unbeknownst to the client, using a macro in the header �le:

extern void _opt_muli_i(struct jit_state *, int, int, int);

#define opt_muli_i(rd, rs, n) _opt_muli_i(&_jit, (rd), (rs), (n))

2.4.1 Registers

2.5 Accessing the whole register �le

As mentioned earlier in this chapter, all gnu lightning back-ends are guaranteed to have
at least six integer registers and six oating-point registers, but many back-ends will have
more.

To access the entire register �les, you can use the JIT_R, JIT_V and JIT_FPR macros.
They accept a parameter that identi�es the register number, which must be strictly less than
JIT_R_NUM, JIT_V_NUM and JIT_FPR_NUM respectively; the number need not be constant.
Of course, expressions like JIT_R0 and JIT_R(0) denote the same register, and likewise for
integer callee-saved, or oating-point, registers.

2.6 Using autoconf with gnu lightning

It is very easy to include gnu lightning 's source code (without the documentation and
examples) into your program's distribution so that people don't need to have it installed in
order to use it.

Here is a step by step explanation of what to do:

1. Run lightningize from your package's main distribution directory.

lightningize

If you're using Automake, you might be pleased to know that `Makefile.am' �les will
be already there.

2. If you're not using Automake and aclocal, instead, you should delete
the `Makefile.am' �les (they are of no use to you) and copy the contents
of the `lightning.m4' �le, found in aclocal's macro repository (usually

Chapter 2: Using gnu lightning 23

`/usr/share/aclocal', to your `configure.in' or `acinclude.m4' or `aclocal.m4'
�le.

3. Include a call to the LIGHTNING_CONFIGURE_IF_NOT_FOUND macro in your
`configure.in' �le.

LIGHTNING_CONFIGURE_IF_NOT_FOUND will �rst look for a pre-installed copy of gnu light-
ning and, if it can be found, it will use it; otherwise, it will do exactly the same things that
gnu lightning 's own con�gure script does. If gnu lightning is already installed, or if the
con�guration process succeeds, it will de�ne the HAVE_LIGHTNING symbol.

In addtion, an Automake conditional named HAVE_INSTALLED_LIGHTNING will be set if
gnu lightning is already installed, which can be used to set up include paths appropriately.

Finally, LIGHTNING_CONFIGURE_IF_NOT_FOUND accepts two optional parameters: respec-
tively, an action to be taken if gnu lightning is available, and an action to be taken if it is
not.

24 Using and porting gnu lightning

Chapter 3: Porting gnu lightning 25

3 Porting gnu lightning

This chapter describes the process of porting gnu lightning . It assumes that you are pretty
comfortable with the usage of gnu lightning for dynamic code generation, as described in
Chapter 2 [Using GNU lightning], page 3.

3.1 An overview of the porting process

A particular port of gnu lightning is composed of four �les. These have a common su�x
which identi�es the port (for example, i386 or ppc), and a pre�x that identi�es their
function; they are:

� `asm-suffix.h', which contains the description of the target machine's instruction
format. The creation of this �le is discussed in Section 3.3 [Creating the run-time
assembler], page 26.

� `core-suffix.h', which contains the mappings from gnu lightning 's instruction set to
the target machine's assembly language format. The creation of this �le is discussed
in Section 3.4 [Creating the platform-independent layer], page 29.

� `funcs-suffix.h', for now, only contains the de�nition of jit_flush_code. The cre-
ation of this �le is briey discussed in Section 3.5 [More complex tasks in the platform-
independent layer], page 50.

� `fp-suffix.h', which contains the description of the target machine's instruction for-
mat and the internal macros for doing oating point computation. The creation of this
�le is discussed in Section 3.6 [Implementing macros for oating point], page 51.

Before doing anything, you have to add the ability to recognize the new port during the
con�guration process. This is explained in Section 3.2 [Automatically recognizing the new
platform], page 25.

3.2 Automatically recognizing the new platform

Before starting your port, you have to add the ability to recognize the new port during
the con�gure process. You only have to run `config.guess', which you'll �nd in the main
distribution directory, and note down the �rst part of the output (up to the �rst dash).

Then, in the two �les `configure.in' and `lightning.m4', lookup the line

case "$host_cpu" in

and, right after it, add the line:

cpu-name) cpu=file-suffix ;;

where cpu-name is the cpu as output by `config.guess', and �le-su�x is the su�x that
you are going to use for your �les (see Section 3.1 [An overview of the porting process],
page 25).

Now create empty �les for your new port:

touch lightning/asm-xxx.h

touch lightning/fp-xxx.h

touch lightning/core-xxx.h

touch lightning/funcs-xxx.h

26 Using and porting gnu lightning

and run `configure', which should create the symlinks that are needed by lightning.h.
This is important because it will allow you to use gnu lightning (albeit in a limited way)
for testing even before the port is completed.

3.3 Creating the run-time assembler

The run-time assembler is a set of macros whose purpose is to assemble instructions for the
target machine's assembly language, translating mnemonics to machine language together
with their operands. While a run-time assembler is not, strictly speaking, part of gnu
lightning (it is a private layer to be used while implementing the standard macros that are
ultimately used by clients), designing a run-time assembler �rst allows you to think in terms
of assembly language rather than binary code (ouch!. . .), making it considerably easier to
write the standard macros.

Creating a run-time assembler is a tedious process rather than a di�cult one, because
most of the time will be spent collecting and copying information from the architecture's
manual.

Macros de�ned by a run-time assembler are conventionally named after the mnemonic
and the type of its operands. Examples took from the SPARC's run-time assembler are
ADDrrr, a macro that assembles an ADD instruction with three register operands, and
SUBCCrir, which assembles a SUBCC instruction whose second operand is an immediate
and the remaining two are registers.

The �rst step in creating the assembler is to pick a convention for operand speci�ers (r
and i in the example above) and for register names. On the SPARC, this convention is as
follows

r A register name. For every r in the macro name, a numeric parameter RR is
passed to the macro, and the operand is assembled as %rRR .

i An immediate, usually a 13-bit signed integer (with exception for instructions
such as SETHI and branches). The macros check the size of the passed parameter
if gnu lightning is con�gured with --enable-assertions.

x A combination of two r parameters, which are summed to determine the e�ec-
tive address in a memory load/store operation.

m A combination of an r and i parameter, which are summed to determine the
e�ective address in a memory load/store operation.

Additional macros can be de�ned that provide easier access to register names. For
example, on the SPARC, _Ro(3) and _Rg(5) map respectively to %o3 and %g5; on the x86,
instead, symbolic representations of the register names are provided (for example, _EAX and
_EBX).

CISC architectures sometimes have registers of di�erent sizes{this is the case on the x86
where %ax is a 16-bit register while %esp is a 32-bit one. In this case, it can be useful
to embed information on the size in the de�nition of register names. The x86 machine
language, for example, represents all three of %bh, %di and %edi as 7; but the x86 run-time
assemblers de�nes them with di�erent numbers, putting the register's size in the upper
nybble (for example, `17h' for %bh and `27h' for %di) so that consistency checks can be
made on the operands' sizes when --enable-assertions is used.

Chapter 3: Porting gnu lightning 27

The next important part de�nes the native architecture's instruction formats. These
can be as few as ten on RISC architectures, and as many as �fty on CISC architectures. In
the latter case it can be useful to de�ne more macros for sub-formats (such as macros for
di�erent addressing modes) or even for sub-�elds in an instruction. Let's see an example of
these macros.

#define _2i(OP, RD, OP2, IMM)

_I((_u2 (OP)<<30) | (_u5(RD)<<25) | (_u3(OP2)<<22) |

_u22(IMM))

The name of the macro, _2i, indicates a two-operand instruction comprising an imme-
diate operand. The instruction format is:

.------.---------.------.---.

| OP | RD | OP2 | IMM |

|------+---------+------+---|

|2 bits| 5 bits |3 bits| 22 bits |

|31-30 | 29-25 | 22-24| 0-21 |

'------'---------'------'---'

gnu lightning provides macros named _sXX(OP) and _uXX(OP), where XX is a number
between 1 and 31, which test1 whether OP can be represented as (respectively) a signed or
unsigned integer of the given size. What the macro above does, then, is to shift and or

together the di�erent �elds, ensuring that each of them �ts the �eld.

Here is another de�nition, this time for the PowerPC architecture.

#define _X(OP,RD,RA,RB,XO,RC)

_I((_u6 (OP)<<26) | (_u5(RD)<<21) | (_u5(RA)<<16) |

(_u5(RB)<<11) | (_u10(XO)<<1) | _u1(RC))

Here is the bit layout corresponding to this instruction format:

.--------.--------.--------.--------.---------------------.-------.

| OP | RD | RA | RB | X0 | RC |

|--------+--------+--------+--------+-----------------------------|

| 6 bits | 5 bits | 5 bits | 5 bits | 10 bits | 1 bit |

| 31-26 | 25-21 | 16-20 | 11-15 | 1-10 | 0 |

'--------'---------'-------'--------'-----------------------------'

How do these macros actually generate code? The secret lies in the _I macro, which
is one of four prede�ned macros which actually store machine language instructions in
memory. They are _B, _W, _I and _L, respectively for 8-bit, 16-bit, 32-bit, and long (either
32-bit or 64-bit, depending on the architecture) values.

Next comes another set of macros (usually the biggest) which represents the actual
mnemonics|macros such as ADDrrr and SUBCCrir, which were cited earlier in this chapter,
belong to this set. Most of the times, all these macros will do is to use the \instruction
format" macros, specifying the values of the �elds in the di�erent instruction formats. Let's
see a few of these de�nitions, again taken from the SPARC assembler:

#define BAi(DISP) _2 (0, 0, 8, 2, DISP)

#define BA_Ai(DISP) _2 (0, 1, 8, 2, DISP)

1 Only when --enable-assertions is used.

28 Using and porting gnu lightning

#define SETHIir(IMM, RD) _2i (0, RD, 4, IMM)

#define ADDrrr(RS1, RS2, RD) _3 (2, RD, 0, RS1, 0, 0, RS2)

#define ADDrir(RS1, IMM, RD) _3i (2, RD, 0, RS1, 1, IMM)

#define ADDCCrrr(RS1, RS2, RD) _3 (2, RD, 16, RS1, 0, 0, RS2)

#define ADDCCrir(RS1, IMM, RD) _3i (2, RD, 16, RS1, 1, IMM)

#define ANDrrr(RS1, RS2, RD) _3 (2, RD, 1, RS1, 0, 0, RS2)

#define ANDrir(RS1, IMM, RD) _3i (2, RD, 1, RS1, 1, IMM)

#define ANDCCrrr(RS1, RS2, RD) _3 (2, RD, 17, RS1, 0, 0, RS2)

#define ANDCCrir(RS1, IMM, RD) _3i (2, RD, 17, RS1, 1, IMM)

A few things have to be noted. For example:

� The SPARC assembly language sometimes uses a comma inside a mnemonic (for ex-
ample, ba,a). This symbol is not allowed inside a cpp macro name, so it is replaced
with an underscore; the same is done with the dots found in the PowerPC assembly
language (for example, andi. is de�ned as ANDI_rri).

� It can be useful to group together instructions with the same instruction format, as
doing this tends to make the source code more readable (numbers are put in the same
columns).

� Using an editor without automatic wrap at end of line can be useful, since run-time
assemblers tend to have very long lines.

A �nal touch is to de�ne the synthetic instructions, which are usually found on RISC
machines. For example, on the SPARC, the LD instruction has two synonyms (LDUW and
LDSW) which are de�ned thus:

#define LDUWxr(RS1, RS2, RD) LDxr(RS1, RS2, RD)

#define LDUWmr(RS1, IMM, RD) LDmr(RS1, IMM, RD)

#define LDSWxr(RS1, RS2, RD) LDxr(RS1, RS2, RD)

#define LDSWmr(RS1, IMM, RD) LDmr(RS1, IMM, RD)

Other common case are instructions which take advantage of registers whose value is
hard-wired to zero, and short-cut instructions which hard-code some or all of the operands:

/* Destination is %g0\, which the processor never overwrites. */

#define CMPrr(R1, R2) SUBCCrrr(R1, R2, 0) /* subcc %r1\, %r2\, %g0 */

/* One of the source registers is hard-coded to be %g0. */

#define NEGrr(R,S) SUBrrr(0, R, S) /* sub %g0\, %rR\, %rS */

/* All of the operands are hard-coded. */

#define RET() JMPLmr(31,8 ,0) /* jmpl [%r31+8]\, %g0 */

/* One of the operands acts as both source and destination */

Chapter 3: Porting gnu lightning 29

#define BSETrr(R,S) ORrrr(R, S, S) /* or %rR\, %rS\, %rS */

Speci�c to RISC computers, �nally, is the instruction to load an arbitrarily sized immedi-
ate into a register. This instruction is usually implemented as one or two basic instructions:

1. If the number is small enough, an instruction is su�cient (LI or ORI on the PowerPC,
MOV on the SPARC).

2. If the lowest bits are all zeroed, an instruction is su�cient (LIS on the PowerPC, SETHI
on the SPARC).

3. Otherwise, the high bits are set �rst (with LIS or SETHI), and the result is then ored
with the low bits

Here is the de�nition of such an instruction for the PowerPC:

#define MOVEIri(R,I) (_siP(16,I) ? LIri(R,I) : \ /* case 1 */

(_uiP(16,I) ? ORIrri(R,0,I) : \ /* case 1 */

_MOVEIri(R, _HI(I), _LO(I)))) /* case 2/3 */

#define _MOVEIri(H,L,R) (LISri(R,H), (L ? ORIrri(R,R,L) : 0))

and for the SPARC:

#define SETir(I,R) (_siP(13,I) ? MOVir(I,R) : \

_SETir(_HI(I), _LO(I), R))

#define _SETir(H,L,R) (SETHIir(H,R), (L ? ORrir(R,L,R) : 0))

In both cases, _HI and _LO are macros for internal use that extract di�erent parts of the
immediate operand.

You should take a look at the run-time assemblers distributed with gnu lightning before
trying to craft your own. In particular, make sure you understand the RISC run-time assem-
blers (the SPARC's is the simplest) before trying to decypher the x86 run-time assembler,
which is signi�cantly more complex.

3.4 Creating the platform-independent layer

The platform-independent layer is the one that is ultimately used by gnu lightning clients.
Creating this layer is a matter of creating a hundred or so macros that comprise part of the
interface used by the clients, as described in Section 2.2 [gnu lightning 's instruction set],
page 3.

Fortunately, a number of these de�nitions are common to the di�erent platforms and
are de�ned just once in one of the header �les that make up gnu lightning , that is,
`core-common.h'.

Most of the macros are relatively straight-forward to implement (with a few caveats
for architectures whose assembly language only o�ers two-operand arithmetic instructions).
This section will cover the tricky points, before presenting the complete listing of the macros
that make up the platform-independent interface provided by gnu lightning .

30 Using and porting gnu lightning

3.4.1 Implementing forward references

Implementation of forward references takes place in:

� The branch macros

� The jit_patch_at macros

Roughly speaking, the branch macros, as seen in Section 2.3 [Generating code at run-
time], page 10, return a value that later calls to jit_patch or jit_patch_at use to complete
the assembly of the forward reference. This value is usually the contents of the program
counter after the branch instruction is compiled (which is accessible in the _jit.pc variable).
Let's see an example from the x86 back-end:

#define jit_bmsr_i(label, s1, s2) \

(TESTLrr((s1), (s2)), JNZm(label,0,0,0), _jit.pc)

The bms (branch if mask set) instruction is assembled as the combination of a TEST

instruction (bit-wise and between the two operands) and a JNZ instruction (jump if non-
zero). The macro then returns the �nal value of the program counter.

jit_patch_at is one of the few macros that need to possess a knowledge of the machine's
instruction formats. Its purpose is to patch a branch instruction (identi�ed by the value
returned at the moment the branch was compiled) to jump to the current position (that is,
to the address identi�ed by _jit.pc).

On the x86, the displacement between the jump and the landing point is expressed as a
32-bit signed integer lying in the last four bytes of the jump instruction. The de�nition of
_jit_patch_at is:

#define jit_patch(jump_pc, pv) (*_PSL((jump_pc) - 4) = \

(pv) - (jump_pc))

The _PSL macro is nothing more than a cast to long *, and is used here to shorten the
de�nition and avoid cluttering it with excessive parentheses. These type-cast macros are:

� _PUC(X) to cast to a unsigned char *.

� _PUS(X) to cast to a unsigned short *.

� _PUI(X) to cast to a unsigned int *.

� _PSL(X) to cast to a long *.

� _PUL(X) to cast to a unsigned long *.

On other platforms, notably RISC ones, the displacement is embedded into the instruc-
tion itself. In this case, jit_patch_at must �rst zero out the �eld, and then or in the
correct displacement. The SPARC, for example, encodes the displacement in the bottom
22 bits; in addition the right-most two bits are suppressed, which are always zero because
instruction have to be word-aligned.

#define jit_patch_at(delay_pc, pv) jit_patch_ (((delay_pc) - 1), (pv))

/* branch instructions return the address of the delay
* instruction|this is just a helper macro that makes the code more
* readable.
*/

Chapter 3: Porting gnu lightning 31

#define jit_patch_(jump_pc, pv) (*jump_pc = \

(*jump_pc & ~_MASK(22)) | \

((_UL(pv) - _UL(jump_pc)) >> 2) & _MASK(22))

This introduces more prede�ned shortcut macros:

� _UC(X) to cast to a unsigned char.

� _US(X) to cast to a unsigned short.

� _UI(X) to cast to a unsigned int.

� _SL(X) to cast to a long.

� _UL(X) to cast to a unsigned long.

� _MASK(N) gives a binary number made of N ones.

Dual to branches and jit_patch_at are jit_movi_p and jit_patch_movi, since they
can also be used to implement forward references. jit_movi_p should be carefully imple-
mented to use an encoding that is as long as possible, and it should return an address which
is then passed to jit_patch_movi. The implementation of jit_patch_movi is similar to
jit_patch_at.

3.4.2 Common features supported by `core-common.h'

The `core-common.h' �le contains hundreds of macro de�nitions which will spare you de�n-
ing a lot of things in the �les the are speci�c to your port. Here is a list of the features that
`core-common.h' provides.

Support for common synthetic instructions
These are instructions that can be represented as a simple operation, for exam-
ple a bit-wise and or a subtraction. `core-common.h' recognizes when the port-
speci�c header �le de�nes these macros and avoids compiler warnings about
rede�ned macros, but there should be no need to de�ne them. They are:

#define jit_extr_c_ui(d, rs)

#define jit_extr_s_ui(d, rs)

#define jit_extr_c_ul(d, rs)

#define jit_extr_s_ul(d, rs)

#define jit_extr_i_ul(d, rs)

#define jit_negr_i(d, rs)

#define jit_negr_l(d, rs)

Support for the abi
All of jit_prolog, jit_leaf and jit_finish are not mandatory. If not de-
�ned, they will be de�ned respectively as an empty macro, as a synonym for
jit_prolog, and as a synonym for jit_calli. Whether to de�ne them or
not in the port-speci�c header �le, it depends on the underlying architecture's
abi|in general, however, you'll need to de�ne at least jit_prolog.

Support for uncommon instructions
These are instructions that many widespread architectures lack.
`core-common.h' is able to provide default de�nitions, but they are usually
ine�cient if the hardware provides a way to do these operations with a single
instruction. They are extension with sign and \reverse subtraction" (that is,
REG2=IMM�REG1):

32 Using and porting gnu lightning

#define jit_extr_c_i(d, rs)

#define jit_extr_s_i(d, rs)

#define jit_extr_c_l(d, rs)

#define jit_extr_s_l(d, rs)

#define jit_extr_i_l(d, rs)

#define jit_rsbi_i(d, rs, is)

#define jit_rsbi_l(d, rs, is)

#define jit_rsbi_p(d, rs, is)

Conversion between network and host byte ordering
These macros are no-ops on big endian systems. Don't de�ne them on such
systems; on the other hand, they are mandatory on little endian systems. They
are:

#define jit_ntoh_ui(d, rs)

#define jit_ntoh_us(d, rs)

Support for a \zero" register
Many RISC architectures provide a read-only register whose value is hard-coded
to be zero; this register is then used implicitly when referring to a memory
location using a single register. For example, on the SPARC, an operand like
[%l6] is actually assembled as [%l6+%g0]. If this is the case, you should de�ne
JIT_RZERO to be the number of this register; `core-common.h' will use it to
implement all variations of the ld and st instructions. For example:

#define jit_ldi_c(d, is) jit_ldxi_c(d, JIT_RZERO, is)

#define jit_ldr_i(d, rs) jit_ldxr_c(d, JIT_RZERO, rs)

If available, JIT RZERO is also used to provide more e�cient de�nitions of the
neg instruction (see \Support for common synthetic instructions", above).

Synonyms `core-common.h' provides a lot of trivial de�nitions which make the instruc-
tion set as orthogonal as possible. For example, adding two unsigned integers
is exactly the same as adding two signed integers (assuming a two's comple-
ment representation of negative numbers); yet, gnu lightning provides both
jit_addr_i and jit_addr_ui macros. Similarly, pointers and unsigned long
integers behave in the same way, but gnu lightning has separate instruction for
the two data types|those that operate on pointers usually include a typecast
that makes programs clearer.

Shortcuts These de�ne \synthetic" instructions whose de�nition is not as trivial as in
the case of synonyms, but is anyway standard. This is the case for bitwise
not (which is implemented by XORing a string of ones), \reverse subtraction"
between registers (which is converted to a normal subtraction with the two
source operands inverted), and subtraction of an immediate from a register
(which is converted to an addition). Unlike neg and ext (see \Support for
common synthetic instructions", above), which are simply non-mandatory, you
must not de�ne these functions.

Support for longs
On most systems, longs and unsigned longs are the same as, respectively,
ints and unsigned ints. In this case, `core-common.h' de�nes operations on
these types to be synonyms.

Chapter 3: Porting gnu lightning 33

jit_state

Last but not least, `core-common.h' de�nes the jit_state type. Part of this
struct is machine-dependent and includes all kinds of state needed by the
back-end; this part is always accessible in a re-entrant way as _jitl. _jitl

will be of type struct jit_local_state; this struct must be de�ned even if
no state is required.

3.4.3 Supporting scheduling of delay slots

Delay slot scheduling is obtained by clients through the jit_delay macro. However this
macro is not to be de�ned in the platform-independent layer, because gnu lightning provides
a common de�nition in `core-common.h'.

Instead, the platform-independent layer must de�ne another macro, called jit_fill_

delay_after, which has to exchange the instruction to be scheduled in the delay slot with
the branch instruction. The only parameter accepted by the macro is a call to a branch
macro, which must be expanded exactly once by jit_fill_delay_after. The client must
be able to pass the return value of jit_fill_delay_after to jit_patch_at.

There are two possible approaches that can be used in jit_fill_delay_after. They
are summarized in the following pictures:

� The branch instructions assemble a nop instruction which is then removed by jit_

fill_delay_after.

before | after

---------------------------------+-----------------------------

... |

<would-be delay instruction> | <branch instruction>

<branch instruction> | <delay instruction>

NOP | <--- _jit.pc

<--- _jit.pc |

� The branch instruction assembles the branch so that the delay slot is annulled, jit_
fill_delay_after toggles the bit:

before | after

---------------------------------+-----------------------------

... |

<would-be delay instruction> | <branch instruction>

<branch with annulled delay> | <delay instruction>

<--- _jit.pc | <--- _jit.pc

Don't forget that you can take advantage of delay slots in the implementation of boolean
instructions such as le or gt.

3.4.4 Supporting arbitrarily sized immediate values

This is a problem that is endemic to RISC machines. The basic idea is to reserve one or
two register to represent large immediate values. Let's see an example from the SPARC:

addi_i R0, V2, 45 | addi_i R0, V2, 10000

---------------------------+---------------------------

add %l5, 45, %l0 | set 10000, %l6

| add %l5, %l6, %l0

34 Using and porting gnu lightning

In this case, %l6 is reserved to be used for large immediates. An elegant solution is to
use an internal macro which automatically decides which version is to be compiled.

Beware of register conicts on machines with delay slots. This is the case for the SPARC,
where %l7 is used instead for large immediates in compare-and-branch instructions. So the
sequence

jit_delay(

jit_addi_i(JIT_R0, JIT_V2, 10000),

jit_blei_i(label, JIT_R1, 20000)

);

is assembled this way:

set 10000, %l6 ! prepare immediate for add

set 20000, %l7 ! prepare immediate for cmp

cmp %l1, %l7

ble label

add %l5, %l6, %l0 ! delay slot

Note that using %l6 in the branch instruction would have given an incorrect result|R0

would have been �lled with the value of V2+20000 rather than V2+10000 .

3.4.5 Implementing the ABI

Implementing the underlying architecture's abi is done in the macros that handle function
prologs and epilogs and argument passing.

Let's look at the prologs and epilogs �rst. These are usually pretty simple and, what's
more important, with constant content|that is, they always generate exactly the same
instruction sequence. Here is an example:

SPARC x86

save %sp, -96, %sp push %ebp

push %ebx

push %esi

push %edi

movl %esp, %ebp

... ...

ret popl %edi

restore popl %esi

popl %ebx

popl %ebp

ret

The registers that are saved (%ebx, %esi, %edi) are mapped to the V0 through V2 registers
in the gnu lightning instruction set.

Argument passing is more tricky. There are basically three cases2:

2 For speed and ease of implementation, gnu lightning does not currently support passing some of the
parameters on the stack and some in registers.

Chapter 3: Porting gnu lightning 35

Register windows
Output registers are di�erent from input registers|the prolog takes care of
moving the caller's output registers to the callee's input registers. This is the
case with the SPARC.

Passing parameters via registers
In this case, output registers are the same as input registers. The program
must take care of saving input parameters somewhere (on the stack, or in non-
argument registers). This is the case with the PowerPC.

All the parameters are passed on the stack
This case is by far the simplest and is the most common in CISC architectures,
like the x86 and Motorola 68000.

In all cases, the port-speci�c header �le will de�ne two variable for private use|one to
be used by the caller during the prepare/pusharg/finish sequence, one to be used by the
callee, speci�cally in the jit_prolog and jit_arg macros.

Let's look again, this time with more detail, at each of the cases.

Register windows
jit_finish is the same as jit_calli, and is de�ned in `core-common.h' (see
Section 3.4.2 [Common features supported by `core-common.h'], page 31).

#define jit_prepare_i(numargs) (_jitl.pusharg = _Ro(numargs))

#define jit_pusharg_i(rs) (--_jitl.pusharg, \

MOVrr((rs), _jitl.pusharg))

Remember that arguments pushing takes place in reverse order, thus giving a
pre-decrement (rather than post-increment) in jit_pusharg_i.

Here is what happens on the callee's side:

#define jit_arg_c() (_jitl.getarg++)

#define jit_getarg_c(rd, ofs) jit_extr_c_i ((rd), (ofs))

#define jit_prolog(numargs) (SAVErir(JIT_SP, -96, JIT_SP), \

_jitl.getarg = _Ri(0))

The jit_arg macros return nothing more than a register index, which is then
used by the jit_getarg macros. jit_prolog resets the counter used by jit_

arg to zero; the numargs parameter is not used. It is su�cient for jit_leaf to
be a synonym for jit_prolog.

Passing parameter via registers
The code is almost the same as that for the register windows case, but with
an additional complexity|jit_arg will transfer the argument from the input
register to a non-argument register so that function calls will not clobber it. The
prolog and epilog code can then become unbearably long, up to 20 instructions
on the PPC; a common solution in this case is that of trampolines.

The prolog does nothing more than put the function's actual address in a caller-
preserved register and then call the trampoline:

mflr r0 ! grab return address

movei r10, trampo_2args ! jump to trampoline

36 Using and porting gnu lightning

mtlr r10

blrl

here: mflr r31 ! r31 = address of epilog

...actual code...

mtlr r31 ! return to the trampoline

blr

In this case, jit_prolog does use its argument containing the number of param-
eters to pick the appropriate trampoline. Here, trampo_2args is the address of
a trampoline designed for 2-argument functions.

The trampoline executes the prolog code, jumps to the contents of r10, and
upon return from the subroutine it executes the epilog code.

All the parameters are passed on the stack
jit_pusharg uses a hardware push operation, which is commonly available
on CISC machines (where this approach is most likely followed). Since the
stack has to be cleaned up after the call, jit_prepare_i remembers how many
parameters have been put there, and jit_finish adjusts the stack pointer after
the call.

#define jit_prepare_i(numargs) (_jitl.args += (numargs))

#define jit_pusharg_i(rs) PUSHLr(rs)

#define jit_finish(sub) (jit_calli((sub)), \

ADDLir(4 * _jitl.args, JIT_SP), \

_jitl.numargs = 0)

Note the usage of += in jit_prepare_i. This is done so that one can defer the
popping of the arguments that were saved on the stack (stack pollution). To
do so, it is su�cient to use jit_calli instead of jit_finish in all but the last
call.

On the caller's side, arg returns an o�set relative to the frame pointer, and
getarg loads the argument from the stack:

#define jit_getarg_c(rd, ofs) jit_ldxi_c((rd), _EBP, (ofs));

#define jit_arg_c() ((_jitl.frame += sizeof(int) \

- sizeof(int))

The _jitl.frame variable is initialized by jit_prolog with the displacement
between the value of the frame pointer (%ebp) and the address of the �rst
parameter.

These schemes are the most used, so `core-common.h' provides a way to employ
them automatically. If you do not de�ne the jit_getarg_c macro and its companions,
`core-common.h' will presume that you intend to pass parameters through either the
registers or the stack.

If you de�ne JIT_FP, stack-based parameter passing will be employed and the jit_

getarg macros will be de�ned like this:

Chapter 3: Porting gnu lightning 37

#define jit_getarg_c(reg, ofs) jit_ldxi_c((reg), JIT_FP, (ofs));

In other words, the jit_arg macros (which are still to be de�ned by the platform-
speci�c back-end) shall return an o�set into the stack frame. On the other hand, if you
don't de�ne JIT_FP, register-based parameter passing will be employed and the jit_arg

macros shall return a register number; in this case, jit_getarg will be implemented in
terms of jit_extr and jit_movr operations:

#define jit_getarg_c(reg, ofs) jit_extr_c_i ((reg), (ofs))

#define jit_getarg_i(reg, ofs) jit_movr_i ((reg), (ofs))

3.4.6 Macros composing the platform-independent layer

Register names (all mandatory but the last two)
#define JIT_R

#define JIT_R_NUM

#define JIT_V

#define JIT_V_NUM

#define JIT_FPR

#define JIT_FPR_NUM

#define JIT_SP

#define JIT_FP

#define JIT_RZERO

Helper macros (non-mandatory):
#define jit_fill_delay_after(branch)

Mandatory:
#define jit_arg_c()

#define jit_arg_i()

#define jit_arg_l()

#define jit_arg_p()

#define jit_arg_s()

#define jit_arg_uc()

#define jit_arg_ui()

#define jit_arg_ul()

#define jit_arg_us()

#define jit_abs_d(rd,rs)

#define jit_addi_i(d, rs, is)

#define jit_addr_d(rd,s1,s2)

#define jit_addr_i(d, s1, s2)

#define jit_addxi_i(d, rs, is)

#define jit_addxr_i(d, s1, s2)

#define jit_andi_i(d, rs, is)

#define jit_andr_i(d, s1, s2)

#define jit_beqi_i(label, rs, is)

#define jit_beqr_d(label, s1, s2)

#define jit_beqr_i(label, s1, s2)

#define jit_bgei_i(label, rs, is)

#define jit_bgei_ui(label, rs, is)

38 Using and porting gnu lightning

#define jit_bger_d(label, s1, s2)

#define jit_bger_i(label, s1, s2)

#define jit_bger_ui(label, s1, s2)

#define jit_bgti_i(label, rs, is)

#define jit_bgti_ui(label, rs, is)

#define jit_bgtr_d(label, s1, s2)

#define jit_bgtr_i(label, s1, s2)

#define jit_bgtr_ui(label, s1, s2)

#define jit_blei_i(label, rs, is)

#define jit_blei_ui(label, rs, is)

#define jit_bler_d(label, s1, s2)

#define jit_bler_i(label, s1, s2)

#define jit_bler_ui(label, s1, s2)

#define jit_bltgtr_d(label, s1, s2)

#define jit_blti_i(label, rs, is)

#define jit_blti_ui(label, rs, is)

#define jit_bltr_d(label, s1, s2)

#define jit_bltr_i(label, s1, s2)

#define jit_bltr_ui(label, s1, s2)

#define jit_bmci_i(label, rs, is)

#define jit_bmcr_i(label, s1, s2)

#define jit_bmsi_i(label, rs, is)

#define jit_bmsr_i(label, s1, s2)

#define jit_bnei_i(label, rs, is)

#define jit_bner_d(label, s1, s2)

#define jit_bner_i(label, s1, s2)

#define jit_boaddi_i(label, rs, is)

#define jit_boaddi_ui(label, rs, is)

#define jit_boaddr_i(label, s1, s2)

#define jit_boaddr_ui(label, s1, s2)

#define jit_bordr_d(label, s1, s2)

#define jit_bosubi_i(label, rs, is)

#define jit_bosubi_ui(label, rs, is)

#define jit_bosubr_i(label, s1, s2)

#define jit_bosubr_ui(label, s1, s2)

#define jit_buneqr_d(label, s1, s2)

#define jit_bunger_d(label, s1, s2)

#define jit_bungtr_d(label, s1, s2)

#define jit_bunler_d(label, s1, s2)

#define jit_bunltr_d(label, s1, s2)

#define jit_bunordr_d(label, s1, s2)

#define jit_calli(label)

#define jit_callr(label)

#define jit_ceilr_d_i(rd, rs)

#define jit_divi_i(d, rs, is)

#define jit_divi_ui(d, rs, is)

#define jit_divr_d(rd,s1,s2)

Chapter 3: Porting gnu lightning 39

#define jit_divr_i(d, s1, s2)

#define jit_divr_ui(d, s1, s2)

#define jit_eqi_i(d, rs, is)

#define jit_eqr_d(d, s1, s2)

#define jit_eqr_i(d, s1, s2)

#define jit_extr_i_d(rd, rs)

#define jit_floorr_d_i(rd, rs)

#define jit_gei_i(d, rs, is)

#define jit_gei_ui(d, s1, s2)

#define jit_ger_d(d, s1, s2)

#define jit_ger_i(d, s1, s2)

#define jit_ger_ui(d, s1, s2)

#define jit_gti_i(d, rs, is)

#define jit_gti_ui(d, s1, s2)

#define jit_gtr_d(d, s1, s2)

#define jit_gtr_i(d, s1, s2)

#define jit_gtr_ui(d, s1, s2)

#define jit_hmuli_i(d, rs, is)

#define jit_hmuli_ui(d, rs, is)

#define jit_hmulr_i(d, s1, s2)

#define jit_hmulr_ui(d, s1, s2)

#define jit_jmpi(label)

#define jit_jmpr(reg)

#define jit_ldxi_f(rd, rs, is)

#define jit_ldxr_f(rd, s1, s2)

#define jit_ldxi_c(d, rs, is)

#define jit_ldxi_d(rd, rs, is)

#define jit_ldxi_i(d, rs, is)

#define jit_ldxi_s(d, rs, is)

#define jit_ldxi_uc(d, rs, is)

#define jit_ldxi_us(d, rs, is)

#define jit_ldxr_c(d, s1, s2)

#define jit_ldxr_d(rd, s1, s2)

#define jit_ldxr_i(d, s1, s2)

#define jit_ldxr_s(d, s1, s2)

#define jit_ldxr_uc(d, s1, s2)

#define jit_ldxr_us(d, s1, s2)

#define jit_lei_i(d, rs, is)

#define jit_lei_ui(d, s1, s2)

#define jit_ler_d(d, s1, s2)

#define jit_ler_i(d, s1, s2)

#define jit_ler_ui(d, s1, s2)

#define jit_lshi_i(d, rs, is)

#define jit_lshr_i(d, r1, r2)

#define jit_ltgtr_d(d, s1, s2)

#define jit_lti_i(d, rs, is)

#define jit_lti_ui(d, s1, s2)

40 Using and porting gnu lightning

#define jit_ltr_d(d, s1, s2)

#define jit_ltr_i(d, s1, s2)

#define jit_ltr_ui(d, s1, s2)

#define jit_modi_i(d, rs, is)

#define jit_modi_ui(d, rs, is)

#define jit_modr_i(d, s1, s2)

#define jit_modr_ui(d, s1, s2)

#define jit_movi_d(rd,immd)

#define jit_movi_f(rd,immf)

#define jit_movi_i(d, is)

#define jit_movi_p(d, is)

#define jit_movr_d(rd,rs)

#define jit_movr_i(d, rs)

#define jit_muli_i(d, rs, is)

#define jit_muli_ui(d, rs, is)

#define jit_mulr_d(rd,s1,s2)

#define jit_mulr_i(d, s1, s2)

#define jit_mulr_ui(d, s1, s2)

#define jit_negr_d(rd,rs)

#define jit_nei_i(d, rs, is)

#define jit_ner_d(d, s1, s2)

#define jit_ner_i(d, s1, s2)

#define jit_nop()

#define jit_ordr_d(d, s1, s2)

#define jit_ori_i(d, rs, is)

#define jit_orr_i(d, s1, s2)

#define jit_patch_at(jump_pc, value)

#define jit_patch_movi(jump_pc, value)

#define jit_pop_i(rs)

#define jit_prepare_d(numargs)

#define jit_prepare_f(numargs)

#define jit_prepare_i(numargs)

#define jit_push_i(rs)

#define jit_pusharg_i(rs)

#define jit_ret()

#define jit_retval_i(rd)

#define jit_roundr_d_i(rd, rs)

#define jit_rshi_i(d, rs, is)

#define jit_rshi_ui(d, rs, is)

#define jit_rshr_i(d, r1, r2)

#define jit_rshr_ui(d, r1, r2)

#define jit_sqrt_d(rd,rs)

#define jit_stxi_c(rd, id, rs)

#define jit_stxi_d(id, rd, rs)

#define jit_stxi_f(id, rd, rs)

#define jit_stxi_i(rd, id, rs)

#define jit_stxi_s(rd, id, rs)

Chapter 3: Porting gnu lightning 41

#define jit_stxr_c(d1, d2, rs)

#define jit_stxr_d(d1, d2, rs)

#define jit_stxr_f(d1, d2, rs)

#define jit_stxr_i(d1, d2, rs)

#define jit_stxr_s(d1, d2, rs)

#define jit_subr_d(rd,s1,s2)

#define jit_subr_i(d, s1, s2)

#define jit_subxi_i(d, rs, is)

#define jit_subxr_i(d, s1, s2)

#define jit_truncr_d_i(rd, rs)

#define jit_uneqr_d(d, s1, s2)

#define jit_unger_d(d, s1, s2)

#define jit_ungtr_d(d, s1, s2)

#define jit_unler_d(d, s1, s2)

#define jit_unltr_d(d, s1, s2)

#define jit_unordr_d(d, s1, s2)

#define jit_xori_i(d, rs, is)

#define jit_xorr_i(d, s1, s2)

Non mandatory|there should be no need to de�ne them:
#define jit_extr_c_ui(d, rs)

#define jit_extr_s_ui(d, rs)

#define jit_extr_c_ul(d, rs)

#define jit_extr_s_ul(d, rs)

#define jit_extr_i_ul(d, rs)

#define jit_negr_i(d, rs)

#define jit_negr_l(d, rs)

Non mandatory|whether to de�ne them depends on the abi:
#define jit_prolog(n)

#define jit_finish(sub)

#define jit_finishr(reg)

#define jit_leaf(n)

#define jit_getarg_c(reg, ofs)

#define jit_getarg_i(reg, ofs)

#define jit_getarg_l(reg, ofs)

#define jit_getarg_p(reg, ofs)

#define jit_getarg_s(reg, ofs)

#define jit_getarg_uc(reg, ofs)

#define jit_getarg_ui(reg, ofs)

#define jit_getarg_ul(reg, ofs)

#define jit_getarg_us(reg, ofs)

#define jit_getarg_f(reg, ofs)

#define jit_getarg_d(reg, ofs)

Non mandatory|de�ne them if instructions that do this exist:
#define jit_extr_c_i(d, rs)

#define jit_extr_s_i(d, rs)

#define jit_extr_c_l(d, rs)

42 Using and porting gnu lightning

#define jit_extr_s_l(d, rs)

#define jit_extr_i_l(d, rs)

#define jit_rsbi_i(d, rs, is)

#define jit_rsbi_l(d, rs, is)

Non mandatory if condition code are always set by add/sub, needed on other systems:
#define jit_addci_i(d, rs, is)

#define jit_addci_l(d, rs, is)

#define jit_subci_i(d, rs, is)

#define jit_subci_l(d, rs, is)

Mandatory on little endian systems|don't de�ne them on other systems:
#define jit_ntoh_ui(d, rs)

#define jit_ntoh_us(d, rs)

Mandatory if JIT RZERO not de�ned|don't de�ne them if it is de�ned:
#define jit_ldi_c(d, is)

#define jit_ldi_i(d, is)

#define jit_ldi_s(d, is)

#define jit_ldr_c(d, rs)

#define jit_ldr_i(d, rs)

#define jit_ldr_s(d, rs)

#define jit_ldi_uc(d, is)

#define jit_ldi_ui(d, is)

#define jit_ldi_ul(d, is)

#define jit_ldi_us(d, is)

#define jit_ldr_uc(d, rs)

#define jit_ldr_ui(d, rs)

#define jit_ldr_ul(d, rs)

#define jit_ldr_us(d, rs)

#define jit_sti_c(id, rs)

#define jit_sti_i(id, rs)

#define jit_sti_s(id, rs)

#define jit_str_c(rd, rs)

#define jit_str_i(rd, rs)

#define jit_str_s(rd, rs)

#define jit_ldi_f(rd, is)

#define jit_sti_f(id, rs)

#define jit_ldi_d(rd, is)

#define jit_sti_d(id, rs)

#define jit_ldr_f(rd, rs)

#define jit_str_f(rd, rs)

#define jit_ldr_d(rd, rs)

#define jit_str_d(rd, rs)

Synonyms|don't de�ne them:
#define jit_addi_p(d, rs, is)

#define jit_addi_ui(d, rs, is)

#define jit_addi_ul(d, rs, is)

Chapter 3: Porting gnu lightning 43

#define jit_addr_p(d, s1, s2)

#define jit_addr_ui(d, s1, s2)

#define jit_addr_ul(d, s1, s2)

#define jit_andi_ui(d, rs, is)

#define jit_andi_ul(d, rs, is)

#define jit_andr_ui(d, s1, s2)

#define jit_andr_ul(d, s1, s2)

#define jit_beqi_p(label, rs, is)

#define jit_beqi_ui(label, rs, is)

#define jit_beqi_ul(label, rs, is)

#define jit_beqr_p(label, s1, s2)

#define jit_beqr_ui(label, s1, s2)

#define jit_beqr_ul(label, s1, s2)

#define jit_bmci_ui(label, rs, is)

#define jit_bmci_ul(label, rs, is)

#define jit_bmcr_ui(label, s1, s2)

#define jit_bmcr_ul(label, s1, s2)

#define jit_bmsi_ui(label, rs, is)

#define jit_bmsi_ul(label, rs, is)

#define jit_bmsr_ui(label, s1, s2)

#define jit_bmsr_ul(label, s1, s2)

#define jit_bgei_p(label, rs, is)

#define jit_bger_p(label, s1, s2)

#define jit_bgti_p(label, rs, is)

#define jit_bgtr_p(label, s1, s2)

#define jit_blei_p(label, rs, is)

#define jit_bler_p(label, s1, s2)

#define jit_blti_p(label, rs, is)

#define jit_bltr_p(label, s1, s2)

#define jit_bnei_p(label, rs, is)

#define jit_bnei_ui(label, rs, is)

#define jit_bnei_ul(label, rs, is)

#define jit_bner_p(label, s1, s2)

#define jit_bner_ui(label, s1, s2)

#define jit_bner_ul(label, s1, s2)

#define jit_eqi_p(d, rs, is)

#define jit_eqi_ui(d, rs, is)

#define jit_eqi_ul(d, rs, is)

#define jit_eqr_p(d, s1, s2)

#define jit_eqr_ui(d, s1, s2)

#define jit_eqr_ul(d, s1, s2)

#define jit_extr_c_s(d, rs)

#define jit_extr_c_us(d, rs)

#define jit_extr_uc_s(d, rs)

#define jit_extr_uc_us(d, rs)

#define jit_extr_uc_i(d, rs)

#define jit_extr_uc_ui(d, rs)

44 Using and porting gnu lightning

#define jit_extr_us_i(d, rs)

#define jit_extr_us_ui(d, rs)

#define jit_extr_uc_l(d, rs)

#define jit_extr_uc_ul(d, rs)

#define jit_extr_us_l(d, rs)

#define jit_extr_us_ul(d, rs)

#define jit_extr_ui_l(d, rs)

#define jit_extr_ui_ul(d, rs)

#define jit_gei_p(d, rs, is)

#define jit_ger_p(d, s1, s2)

#define jit_gti_p(d, rs, is)

#define jit_gtr_p(d, s1, s2)

#define jit_ldr_p(d, rs)

#define jit_ldi_p(d, is)

#define jit_ldxi_p(d, rs, is)

#define jit_ldxr_p(d, s1, s2)

#define jit_lei_p(d, rs, is)

#define jit_ler_p(d, s1, s2)

#define jit_lshi_ui(d, rs, is)

#define jit_lshi_ul(d, rs, is)

#define jit_lshr_ui(d, s1, s2)

#define jit_lshr_ul(d, s1, s2)

#define jit_lti_p(d, rs, is)

#define jit_ltr_p(d, s1, s2)

#define jit_movi_p(d, is)

#define jit_movi_ui(d, rs)

#define jit_movi_ul(d, rs)

#define jit_movr_p(d, rs)

#define jit_movr_ui(d, rs)

#define jit_movr_ul(d, rs)

#define jit_nei_p(d, rs, is)

#define jit_nei_ui(d, rs, is)

#define jit_nei_ul(d, rs, is)

#define jit_ner_p(d, s1, s2)

#define jit_ner_ui(d, s1, s2)

#define jit_ner_ul(d, s1, s2)

#define jit_hton_ui(d, rs)

#define jit_hton_us(d, rs)

#define jit_ori_ui(d, rs, is)

#define jit_ori_ul(d, rs, is)

#define jit_orr_ui(d, s1, s2)

#define jit_orr_ul(d, s1, s2)

#define jit_pop_ui(rs)

#define jit_pop_ul(rs)

#define jit_push_ui(rs)

#define jit_push_ul(rs)

#define jit_pusharg_c(rs)

Chapter 3: Porting gnu lightning 45

#define jit_pusharg_p(rs)

#define jit_pusharg_s(rs)

#define jit_pusharg_uc(rs)

#define jit_pusharg_ui(rs)

#define jit_pusharg_ul(rs)

#define jit_pusharg_us(rs)

#define jit_retval_c(rd)

#define jit_retval_p(rd)

#define jit_retval_s(rd)

#define jit_retval_uc(rd)

#define jit_retval_ui(rd)

#define jit_retval_ul(rd)

#define jit_retval_us(rd)

#define jit_rsbi_p(d, rs, is)

#define jit_rsbi_ui(d, rs, is)

#define jit_rsbi_ul(d, rs, is)

#define jit_rsbr_p(d, rs, is)

#define jit_rsbr_ui(d, s1, s2)

#define jit_rsbr_ul(d, s1, s2)

#define jit_sti_p(d, is)

#define jit_sti_uc(d, is)

#define jit_sti_ui(d, is)

#define jit_sti_ul(d, is)

#define jit_sti_us(d, is)

#define jit_str_p(d, rs)

#define jit_str_uc(d, rs)

#define jit_str_ui(d, rs)

#define jit_str_ul(d, rs)

#define jit_str_us(d, rs)

#define jit_stxi_p(d, rs, is)

#define jit_stxi_uc(d, rs, is)

#define jit_stxi_ui(d, rs, is)

#define jit_stxi_ul(d, rs, is)

#define jit_stxi_us(d, rs, is)

#define jit_stxr_p(d, s1, s2)

#define jit_stxr_uc(d, s1, s2)

#define jit_stxr_ui(d, s1, s2)

#define jit_stxr_ul(d, s1, s2)

#define jit_stxr_us(d, s1, s2)

#define jit_subi_p(d, rs, is)

#define jit_subi_ui(d, rs, is)

#define jit_subi_ul(d, rs, is)

#define jit_subr_p(d, s1, s2)

#define jit_subr_ui(d, s1, s2)

#define jit_subr_ul(d, s1, s2)

#define jit_subxi_p(d, rs, is)

#define jit_subxi_ui(d, rs, is)

46 Using and porting gnu lightning

#define jit_subxi_ul(d, rs, is)

#define jit_subxr_p(d, s1, s2)

#define jit_subxr_ui(d, s1, s2)

#define jit_subxr_ul(d, s1, s2)

#define jit_xori_ui(d, rs, is)

#define jit_xori_ul(d, rs, is)

#define jit_xorr_ui(d, s1, s2)

#define jit_xorr_ul(d, s1, s2)

Shortcuts|don't de�ne them:
#define JIT_R0

#define JIT_R1

#define JIT_R2

#define JIT_V0

#define JIT_V1

#define JIT_V2

#define JIT_FPR0

#define JIT_FPR1

#define JIT_FPR2

#define JIT_FPR3

#define JIT_FPR4

#define JIT_FPR5

#define jit_patch(jump_pc)

#define jit_notr_c(d, rs)

#define jit_notr_i(d, rs)

#define jit_notr_l(d, rs)

#define jit_notr_s(d, rs)

#define jit_notr_uc(d, rs)

#define jit_notr_ui(d, rs)

#define jit_notr_ul(d, rs)

#define jit_notr_us(d, rs)

#define jit_rsbr_d(d, s1, s2)

#define jit_rsbr_i(d, s1, s2)

#define jit_rsbr_l(d, s1, s2)

#define jit_subi_i(d, rs, is)

#define jit_subi_l(d, rs, is)

Mandatory unless target arithmetic is always done in the same precision:
#define jit_abs_f(rd,rs)

#define jit_addr_f(rd,s1,s2)

#define jit_beqr_f(label, s1, s2)

#define jit_bger_f(label, s1, s2)

#define jit_bgtr_f(label, s1, s2)

#define jit_bler_f(label, s1, s2)

#define jit_bltgtr_f(label, s1, s2)

#define jit_bltr_f(label, s1, s2)

#define jit_bner_f(label, s1, s2)

#define jit_bordr_f(label, s1, s2)

Chapter 3: Porting gnu lightning 47

#define jit_buneqr_f(label, s1, s2)

#define jit_bunger_f(label, s1, s2)

#define jit_bungtr_f(label, s1, s2)

#define jit_bunler_f(label, s1, s2)

#define jit_bunltr_f(label, s1, s2)

#define jit_bunordr_f(label, s1, s2)

#define jit_ceilr_f_i(rd, rs)

#define jit_divr_f(rd,s1,s2)

#define jit_eqr_f(d, s1, s2)

#define jit_extr_d_f(rs, rd)

#define jit_extr_f_d(rs, rd)

#define jit_extr_i_f(rd, rs)

#define jit_floorr_f_i(rd, rs)

#define jit_ger_f(d, s1, s2)

#define jit_gtr_f(d, s1, s2)

#define jit_ler_f(d, s1, s2)

#define jit_ltgtr_f(d, s1, s2)

#define jit_ltr_f(d, s1, s2)

#define jit_movr_f(rd,rs)

#define jit_mulr_f(rd,s1,s2)

#define jit_negr_f(rd,rs)

#define jit_ner_f(d, s1, s2)

#define jit_ordr_f(d, s1, s2)

#define jit_roundr_f_i(rd, rs)

#define jit_rsbr_f(d, s1, s2)

#define jit_sqrt_f(rd,rs)

#define jit_subr_f(rd,s1,s2)

#define jit_truncr_f_i(rd, rs)

#define jit_uneqr_f(d, s1, s2)

#define jit_unger_f(d, s1, s2)

#define jit_ungtr_f(d, s1, s2)

#define jit_unler_f(d, s1, s2)

#define jit_unltr_f(d, s1, s2)

#define jit_unordr_f(d, s1, s2)

Mandatory if sizeof(long) != sizeof(int)|don't de�ne them on other systems:
#define jit_addi_l(d, rs, is)

#define jit_addr_l(d, s1, s2)

#define jit_andi_l(d, rs, is)

#define jit_andr_l(d, s1, s2)

#define jit_beqi_l(label, rs, is)

#define jit_beqr_l(label, s1, s2)

#define jit_bgei_l(label, rs, is)

#define jit_bgei_ul(label, rs, is)

#define jit_bger_l(label, s1, s2)

#define jit_bger_ul(label, s1, s2)

#define jit_bgti_l(label, rs, is)

48 Using and porting gnu lightning

#define jit_bgti_ul(label, rs, is)

#define jit_bgtr_l(label, s1, s2)

#define jit_bgtr_ul(label, s1, s2)

#define jit_blei_l(label, rs, is)

#define jit_blei_ul(label, rs, is)

#define jit_bler_l(label, s1, s2)

#define jit_bler_ul(label, s1, s2)

#define jit_blti_l(label, rs, is)

#define jit_blti_ul(label, rs, is)

#define jit_bltr_l(label, s1, s2)

#define jit_bltr_ul(label, s1, s2)

#define jit_bosubi_l(label, rs, is)

#define jit_bosubi_ul(label, rs, is)

#define jit_bosubr_l(label, s1, s2)

#define jit_bosubr_ul(label, s1, s2)

#define jit_boaddi_l(label, rs, is)

#define jit_boaddi_ul(label, rs, is)

#define jit_boaddr_l(label, s1, s2)

#define jit_boaddr_ul(label, s1, s2)

#define jit_bmci_l(label, rs, is)

#define jit_bmcr_l(label, s1, s2)

#define jit_bmsi_l(label, rs, is)

#define jit_bmsr_l(label, s1, s2)

#define jit_bnei_l(label, rs, is)

#define jit_bner_l(label, s1, s2)

#define jit_divi_l(d, rs, is)

#define jit_divi_ul(d, rs, is)

#define jit_divr_l(d, s1, s2)

#define jit_divr_ul(d, s1, s2)

#define jit_eqi_l(d, rs, is)

#define jit_eqr_l(d, s1, s2)

#define jit_extr_c_l(d, rs)

#define jit_extr_c_ul(d, rs)

#define jit_extr_s_l(d, rs)

#define jit_extr_s_ul(d, rs)

#define jit_extr_i_l(d, rs)

#define jit_extr_i_ul(d, rs)

#define jit_gei_l(d, rs, is)

#define jit_gei_ul(d, rs, is)

#define jit_ger_l(d, s1, s2)

#define jit_ger_ul(d, s1, s2)

#define jit_gti_l(d, rs, is)

#define jit_gti_ul(d, rs, is)

#define jit_gtr_l(d, s1, s2)

#define jit_gtr_ul(d, s1, s2)

#define jit_hmuli_l(d, rs, is)

#define jit_hmuli_ul(d, rs, is)

Chapter 3: Porting gnu lightning 49

#define jit_hmulr_l(d, s1, s2)

#define jit_hmulr_ul(d, s1, s2)

#define jit_ldi_l(d, is)

#define jit_ldi_ui(d, is)

#define jit_ldr_l(d, rs)

#define jit_ldr_ui(d, rs)

#define jit_ldxi_l(d, rs, is)

#define jit_ldxi_ui(d, rs, is)

#define jit_ldxi_ul(d, rs, is)

#define jit_ldxr_l(d, s1, s2)

#define jit_ldxr_ui(d, s1, s2)

#define jit_ldxr_ul(d, s1, s2)

#define jit_lei_l(d, rs, is)

#define jit_lei_ul(d, rs, is)

#define jit_ler_l(d, s1, s2)

#define jit_ler_ul(d, s1, s2)

#define jit_lshi_l(d, rs, is)

#define jit_lshr_l(d, s1, s2)

#define jit_lti_l(d, rs, is)

#define jit_lti_ul(d, rs, is)

#define jit_ltr_l(d, s1, s2)

#define jit_ltr_ul(d, s1, s2)

#define jit_modi_l(d, rs, is)

#define jit_modi_ul(d, rs, is)

#define jit_modr_l(d, s1, s2)

#define jit_modr_ul(d, s1, s2)

#define jit_movi_l(d, rs)

#define jit_movr_l(d, rs)

#define jit_muli_l(d, rs, is)

#define jit_muli_ul(d, rs, is)

#define jit_mulr_l(d, s1, s2)

#define jit_mulr_ul(d, s1, s2)

#define jit_nei_l(d, rs, is)

#define jit_ner_l(d, s1, s2)

#define jit_ori_l(d, rs, is)

#define jit_orr_l(d, s1, s2)

#define jit_pop_l(rs)

#define jit_push_l(rs)

#define jit_pusharg_l(rs)

#define jit_retval_l(rd)

#define jit_rshi_l(d, rs, is)

#define jit_rshi_ul(d, rs, is)

#define jit_rshr_l(d, s1, s2)

#define jit_rshr_ul(d, s1, s2)

#define jit_sti_l(d, is)

#define jit_str_l(d, rs)

#define jit_stxi_l(d, rs, is)

50 Using and porting gnu lightning

#define jit_stxr_l(d, s1, s2)

#define jit_subr_l(d, s1, s2)

#define jit_xori_l(d, rs, is)

#define jit_xorr_l(d, s1, s2)

3.5 More complex tasks in the platform-independent layer

There is actually a single function that you must de�ne in the `funcs-suffix.h' �le, that
is, jit_flush_code.

As explained in Section 2.3 [Generating code at run-time], page 10, its purpose is to
ush part of the processor's instruction cache (usually the part of memory that contains
the generated code), avoiding the processor executing bogus data that it happens to �nd in
the cache. The jit_flush_code function takes the �rst and the last address to ush.

On many processors (for example, the x86 and the all the processors in the 68k family
up to the 68030), it is not even necessary to ush the cache. In this case, the contents of
the �le will simply be

#ifndef __lightning_funcs_h

#define __lightning_funcs_h

#define jit_flush_code(dest, end)

#endif /* lightning core h */

On other processors, ushing the cache is necessary for proper behavior of the program;
in this case, the �le will contain a proper de�nition of the function. However, we must make
yet another distinction.

On some processors, ushing the cache is obtained through a call to the operating system
or to the C run-time library. In this case, the de�nition of jit_flush_code will be very
simple: two examples are the Alpha and the 68040. For the Alpha the code will be:

#define jit_flush_code(dest, end) \

__asm__ __volatile__("call_pal 0x86");

and, for the Motorola

#define jit_flush_code(start, end) \

__clear_cache((start), (end))

As you can see, the Alpha does not even need to pass the start and end address to the
function. It is good practice to protect usage of the GNU CC-speci�c __asm__ directive by
relying on the preprocessor. For example:

#if !defined(__GNUC__) && !defined(__GNUG__)

#error Go get GNU C, I do not know how to flush the cache

#error with this compiler.

#else

#define jit_flush_code(dest, end) \

__asm__ __volatile__("call_pal 0x86");

#endif

Chapter 3: Porting gnu lightning 51

gnu lightning 's con�guration process tries to compile a dummy �le that includes
lightning.h, and gives a warning if there are problem with the compiler that is installed
on the system.

In more complex cases, you'll need to write a full-edged function. Don't forget to
make it static, otherwise you'll have problems linking programs that include lightning.h
multiple times. An example, taken from the `funcs-ppc.h' �le, is:

#ifndef __lightning_funcs_h

#define __lightning_funcs_h

#if !defined(__GNUC__) && !defined(__GNUG__)

#error Go get GNU C, I do not know how to flush the cache

#error with this compiler.

#else

static void

jit_flush_code(start, end)

void *start;

void *end;

{

register char *dest = start;

for (; dest <= end; dest += SIZEOF_CHAR_P)

__asm__ __volatile__

("dcbst 0,%0; sync; icbi 0,%0; isync"::"r"(dest));

}

#endif

#endif /* __lightning_funcs_h */

The `funcs-suffix.h' �le is also the right place to put helper functions that do complex
tasks for the `core-suffix.h' �le. For example, the PowerPC assembler de�nes jit_prolog
as a function and puts it in that �le (for more information, see Section 3.4.5 [Implement-
ing the ABI], page 34). Take special care when de�ning such a function, as explained in
Section 2.4 [Reentrant usage of gnu lightning], page 21.

3.6 Implementing macros for oating point

52 Using and porting gnu lightning

Chapter 4: The future of gnu lightning 53

4 The future of gnu lightning

Presented below is the set of tasks that I feel need to be performed to make gnu lightning
a more fully functional, viable system. They are presented in no particular order. I would
very much welcome any volunteers who would like to help with the implementation of one
or more of these tasks. Please write to me, Paolo Bonzini, at bonzini@gnu.org if you are
interested in adding your e�orts to the gnu lightning project.

Tasks:

� The most important task to make gnu lightning more widely usable is to retarget
it. Although currently supported architectures (x86, SPARC, PowerPC) are certainly
some of the most widely used, gnu lightning could be ported to others|namely, the
Alpha and MIPS architectures.

� Another interesting task is to allow the instruction stream to grow dynamically. This
is a problem because not all architectures allow to write position independent code.1

� Optimize leaf procedures on the SPARC. This involves using the output registers (%oX)
instead of the local registers (%lX) when writing leaf procedures; the problem is, leaf
procedures also receive parameters in the output registers, so they would be overwritten
by write accesses to general-purpose registers.

1 The x86's absolute jumps, for example, are actually slow indirect jumps, and need a register.

mailto:bonzini@gnu.org

54 Using and porting gnu lightning

Chapter 5: Acknowledgements 55

5 Acknowledgements

As far as I know, the �rst general-purpose portable dynamic code generator is dcg, by
Dawson R. Engler and T. A. Proebsting. Further work by Dawson R. Engler resulted in
the vcode system; unlike dcg, vcode used no intermediate representation and directly
inspired gnu lightning .

Thanks go to Ian Piumarta, who kindly accepted to release his own program ccg un-
der the GNU General Public License, thereby allowing gnu lightning to use the run-time
assemblers he had wrote for ccg. ccg provides a way of dynamically assemble programs
written in the underlying architecture's assembly language. So it is not portable, yet very
interesting.

I also thank Steve Byrne for writing GNU Smalltalk, since gnu lightning was �rst
developed as a tool to be used in GNU Smalltalk's dynamic translator from bytecodes
to native code.

56 Using and porting gnu lightning

i

Table of Contents

1 Introduction to gnu lightning 1

1.1 Drawbacks . 2

2 Using gnu lightning . 3

2.1 Con�guring and installing gnu lightning . 3
2.2 gnu lightning 's instruction set . 3
2.3 Generating code at run-time . 10

2.3.1 A function which increments a number by one 10
2.3.2 A simple function call to printf . 13
2.3.3 A more complex example, an RPN calculator 14
2.3.4 Fibonacci numbers . 17

2.4 Re-entrant usage of gnu lightning . 21
2.4.1 Registers . 22

2.5 Accessing the whole register �le . 22
2.6 Using autoconf with gnu lightning . 22

3 Porting gnu lightning . 25

3.1 An overview of the porting process . 25
3.2 Automatically recognizing the new platform 25
3.3 Creating the run-time assembler . 26
3.4 Creating the platform-independent layer . 29

3.4.1 Implementing forward references . 30
3.4.2 Common features supported by `core-common.h' 31
3.4.3 Supporting scheduling of delay slots . 33
3.4.4 Supporting arbitrarily sized immediate values 33
3.4.5 Implementing the ABI . 34
3.4.6 Macros composing the platform-independent layer 37

3.5 More complex tasks in the platform-independent layer 50
3.6 Implementing macros for oating point . 51

4 The future of gnu lightning 53

5 Acknowledgements. 55

ii Using and porting gnu lightning

	Introduction to
	Drawbacks

	Using
	Configuring and installing
	's instruction set
	Generating code at run-time
	A function which increments a number by one
	A simple function call to printf
	A more complex example, an RPN calculator
	Fibonacci numbers

	Re-entrant usage of
	Registers

	Accessing the whole register file
	Using autoconf with

	Porting
	An overview of the porting process
	Automatically recognizing the new platform
	Creating the run-time assembler
	Creating the platform-independent layer
	Implementing forward references
	Common features supported by core-common.h
	Supporting scheduling of delay slots
	Supporting arbitrarily sized immediate values
	Implementing the ABI
	Macros composing the platform-independent layer

	More complex tasks in the platform-independent layer
	Implementing macros for floating point

	The future of
	Acknowledgements

