
GNU gprof
The gnu Profiler

Jay Fenlason and Richard Stallman

This manual describes the gnu profiler, gprof, and how you can use it to
determine which parts of a program are taking most of the execution time.
We assume that you know how to write, compile, and execute programs.
gnu gprof was written by Jay Fenlason. Eric S. Raymond made some
minor corrections and additions in 2003.

Copyright c© 1988, 92, 97, 98, 99, 2000, 2003 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document un-
der the terms of the GNU Free Documentation License, Version 1.1 or any
later version published by the Free Software Foundation; with no Invariant
Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy
of the license is included in the section entitled "GNU Free Documentation
License".

Chapter 1: Introduction to Profiling 1

1 Introduction to Profiling

Profiling allows you to learn where your program spent its time and
which functions called which other functions while it was executing. This
information can show you which pieces of your program are slower than
you expected, and might be candidates for rewriting to make your program
execute faster. It can also tell you which functions are being called more
or less often than you expected. This may help you spot bugs that had
otherwise been unnoticed.

Since the profiler uses information collected during the actual execution of
your program, it can be used on programs that are too large or too complex
to analyze by reading the source. However, how your program is run will
affect the information that shows up in the profile data. If you don’t use
some feature of your program while it is being profiled, no profile information
will be generated for that feature.

Profiling has several steps:
• You must compile and link your program with profiling enabled. See

Chapter 2 [Compiling], page 3.
• You must execute your program to generate a profile data file. See

Chapter 3 [Executing], page 5.
• You must run gprof to analyze the profile data. See Chapter 4 [Invok-

ing], page 7.

The next three chapters explain these steps in greater detail.
Several forms of output are available from the analysis.
The flat profile shows how much time your program spent in each func-

tion, and how many times that function was called. If you simply want to
know which functions burn most of the cycles, it is stated concisely here.
See Section 5.1 [Flat Profile], page 15.

The call graph shows, for each function, which functions called it, which
other functions it called, and how many times. There is also an estimate
of how much time was spent in the subroutines of each function. This can
suggest places where you might try to eliminate function calls that use a lot
of time. See Section 5.2 [Call Graph], page 17.

The annotated source listing is a copy of the program’s source code,
labeled with the number of times each line of the program was executed.
See Section 5.4 [Annotated Source], page 24.

To better understand how profiling works, you may wish to read a de-
scription of its implementation. See Section 9.1 [Implementation], page 33.

2 GNU gprof

Chapter 2: Compiling a Program for Profiling 3

2 Compiling a Program for Profiling

The first step in generating profile information for your program is to
compile and link it with profiling enabled.

To compile a source file for profiling, specify the ‘-pg’ option when you
run the compiler. (This is in addition to the options you normally use.)

To link the program for profiling, if you use a compiler such as cc to do
the linking, simply specify ‘-pg’ in addition to your usual options. The same
option, ‘-pg’, alters either compilation or linking to do what is necessary for
profiling. Here are examples:

cc -g -c myprog.c utils.c -pg
cc -o myprog myprog.o utils.o -pg

The ‘-pg’ option also works with a command that both compiles and
links:

cc -o myprog myprog.c utils.c -g -pg
Note: The ‘-pg’ option must be part of your compilation options as well

as your link options. If it is not then no call-graph data will be gathered
and when you run gprof you will get an error message like this:

gprof: gmon.out file is missing call-graph data
If you add the ‘-Q’ switch to suppress the printing of the call graph data

you will still be able to see the time samples:
Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls Ts/call Ts/call name
44.12 0.07 0.07 zazLoop
35.29 0.14 0.06 main
20.59 0.17 0.04 bazMillion

% the percentage of the total running time of the
If you run the linker ld directly instead of through a compiler such as cc,

you may have to specify a profiling startup file ‘gcrt0.o’ as the first input file
instead of the usual startup file ‘crt0.o’. In addition, you would probably
want to specify the profiling C library, ‘libc_p.a’, by writing ‘-lc_p’ instead
of the usual ‘-lc’. This is not absolutely necessary, but doing this gives you
number-of-calls information for standard library functions such as read and
open. For example:

ld -o myprog /lib/gcrt0.o myprog.o utils.o -lc_p
If you compile only some of the modules of the program with ‘-pg’, you

can still profile the program, but you won’t get complete information about
the modules that were compiled without ‘-pg’. The only information you
get for the functions in those modules is the total time spent in them; there
is no record of how many times they were called, or from where. This will

4 GNU gprof

not affect the flat profile (except that the calls field for the functions will
be blank), but will greatly reduce the usefulness of the call graph.

If you wish to perform line-by-line profiling, you will also need to specify
the ‘-g’ option, instructing the compiler to insert debugging symbols into the
program that match program addresses to source code lines. See Section 5.3
[Line-by-line], page 23.

In addition to the ‘-pg’ and ‘-g’ options, older versions of GCC required
you to specify the ‘-a’ option when compiling in order to instrument it to
perform basic-block counting. Newer versions do not require this option and
will not accept it; basic-block counting is always enabled when ‘-pg’ is on.

When basic-block counting is enabled, as the program runs it will count
how many times it executed each branch of each ‘if’ statement, each itera-
tion of each ‘do’ loop, etc. This will enable gprof to construct an annotated
source code listing showing how many times each line of code was executed.

It also worth noting that GCC supports a different profiling method
which is enabled by the ‘-fprofile-arcs’, ‘-ftest-coverage’ and
‘-fprofile-values’ switches. These switches do not produce data which
is useful to gprof however, so they are not discussed further here. There is
also the ‘-finstrument-functions’ switch which will cause GCC to insert
calls to special user supplied instrumentation routines at the entry and
exit of every function in their program. This can be used to implement an
alternative profiling scheme.

Chapter 3: Executing the Program 5

3 Executing the Program

Once the program is compiled for profiling, you must run it in order
to generate the information that gprof needs. Simply run the program as
usual, using the normal arguments, file names, etc. The program should
run normally, producing the same output as usual. It will, however, run
somewhat slower than normal because of the time spent collecting and the
writing the profile data.

The way you run the program—the arguments and input that you give
it—may have a dramatic effect on what the profile information shows. The
profile data will describe the parts of the program that were activated for the
particular input you use. For example, if the first command you give to your
program is to quit, the profile data will show the time used in initialization
and in cleanup, but not much else.

Your program will write the profile data into a file called ‘gmon.out’ just
before exiting. If there is already a file called ‘gmon.out’, its contents are
overwritten. There is currently no way to tell the program to write the
profile data under a different name, but you can rename the file afterwards
if you are concerned that it may be overwritten.

In order to write the ‘gmon.out’ file properly, your program must exit
normally: by returning from main or by calling exit. Calling the low-level
function _exit does not write the profile data, and neither does abnormal
termination due to an unhandled signal.

The ‘gmon.out’ file is written in the program’s current working directory
at the time it exits. This means that if your program calls chdir, the
‘gmon.out’ file will be left in the last directory your program chdir’d to. If
you don’t have permission to write in this directory, the file is not written,
and you will get an error message.

Older versions of the gnu profiling library may also write a file called
‘bb.out’. This file, if present, contains an human-readable listing of the
basic-block execution counts. Unfortunately, the appearance of a human-
readable ‘bb.out’ means the basic-block counts didn’t get written into
‘gmon.out’. The Perl script bbconv.pl, included with the gprof source
distribution, will convert a ‘bb.out’ file into a format readable by gprof.
Invoke it like this:

bbconv.pl < bb.out > bh-data

This translates the information in ‘bb.out’ into a form that gprof can
understand. But you still need to tell gprof about the existence of this
translated information. To do that, include bb-data on the gprof command
line, along with ‘gmon.out’, like this:

gprof options executable-file gmon.out bb-data [yet-more-profile-data-files...] [> out-

file]

6 GNU gprof

Chapter 4: gprof Command Summary 7

4 gprof Command Summary

After you have a profile data file ‘gmon.out’, you can run gprof to in-
terpret the information in it. The gprof program prints a flat profile and a
call graph on standard output. Typically you would redirect the output of
gprof into a file with ‘>’.

You run gprof like this:
gprof options [executable-file [profile-data-files...]] [> outfile]

Here square-brackets indicate optional arguments.
If you omit the executable file name, the file ‘a.out’ is used. If you give

no profile data file name, the file ‘gmon.out’ is used. If any file is not in the
proper format, or if the profile data file does not appear to belong to the
executable file, an error message is printed.

You can give more than one profile data file by entering all their names
after the executable file name; then the statistics in all the data files are
summed together.

The order of these options does not matter.

4.1 Output Options

These options specify which of several output formats gprof should pro-
duce.

Many of these options take an optional symspec to specify functions to
be included or excluded. These options can be specified multiple times, with
different symspecs, to include or exclude sets of symbols. See Section 4.5
[Symspecs], page 13.

Specifying any of these options overrides the default (‘-p -q’), which
prints a flat profile and call graph analysis for all functions.

-A[symspec]
--annotated-source[=symspec]

The ‘-A’ option causes gprof to print annotated source code.
If symspec is specified, print output only for matching symbols.
See Section 5.4 [Annotated Source], page 24.

-b
--brief If the ‘-b’ option is given, gprof doesn’t print the verbose blurbs

that try to explain the meaning of all of the fields in the tables.
This is useful if you intend to print out the output, or are tired
of seeing the blurbs.

-C[symspec]
--exec-counts[=symspec]

The ‘-C’ option causes gprof to print a tally of functions and
the number of times each was called. If symspec is specified,
print tally only for matching symbols.

8 GNU gprof

If the profile data file contains basic-block count records, spec-
ifying the ‘-l’ option, along with ‘-C’, will cause basic-block
execution counts to be tallied and displayed.

-i
--file-info

The ‘-i’ option causes gprof to display summary information
about the profile data file(s) and then exit. The number of
histogram, call graph, and basic-block count records is displayed.

-I dirs
--directory-path=dirs

The ‘-I’ option specifies a list of search directories in which to
find source files. Environment variable GPROF PATH can also
be used to convey this information. Used mostly for annotated
source output.

-J[symspec]
--no-annotated-source[=symspec]

The ‘-J’ option causes gprof not to print annotated source code.
If symspec is specified, gprof prints annotated source, but ex-
cludes matching symbols.

-L
--print-path

Normally, source filenames are printed with the path component
suppressed. The ‘-L’ option causes gprof to print the full path-
name of source filenames, which is determined from symbolic
debugging information in the image file and is relative to the
directory in which the compiler was invoked.

-p[symspec]
--flat-profile[=symspec]

The ‘-p’ option causes gprof to print a flat profile. If symspec
is specified, print flat profile only for matching symbols. See
Section 5.1 [Flat Profile], page 15.

-P[symspec]
--no-flat-profile[=symspec]

The ‘-P’ option causes gprof to suppress printing a flat profile.
If symspec is specified, gprof prints a flat profile, but excludes
matching symbols.

-q[symspec]
--graph[=symspec]

The ‘-q’ option causes gprof to print the call graph analysis. If
symspec is specified, print call graph only for matching symbols
and their children. See Section 5.2 [Call Graph], page 17.

Chapter 4: gprof Command Summary 9

-Q[symspec]
--no-graph[=symspec]

The ‘-Q’ option causes gprof to suppress printing the call graph.
If symspec is specified, gprof prints a call graph, but excludes
matching symbols.

-y
--separate-files

This option affects annotated source output only. Normally,
gprof prints annotated source files to standard-output. If
this option is specified, annotated source for a file named
‘path/filename ’ is generated in the file ‘filename-ann’. If the
underlying filesystem would truncate ‘filename-ann’ so that it
overwrites the original ‘filename ’, gprof generates annotated
source in the file ‘filename.ann’ instead (if the original file name
has an extension, that extension is replaced with ‘.ann’).

-Z[symspec]
--no-exec-counts[=symspec]

The ‘-Z’ option causes gprof not to print a tally of functions
and the number of times each was called. If symspec is specified,
print tally, but exclude matching symbols.

--function-ordering
The ‘--function-ordering’ option causes gprof to print a sug-
gested function ordering for the program based on profiling data.
This option suggests an ordering which may improve paging, tlb
and cache behavior for the program on systems which support
arbitrary ordering of functions in an executable.

The exact details of how to force the linker to place functions in
a particular order is system dependent and out of the scope of
this manual.

--file-ordering map_file
The ‘--file-ordering’ option causes gprof to print a sug-
gested .o link line ordering for the program based on profiling
data. This option suggests an ordering which may improve pag-
ing, tlb and cache behavior for the program on systems which
do not support arbitrary ordering of functions in an executable.

Use of the ‘-a’ argument is highly recommended with this op-
tion.

The map file argument is a pathname to a file which provides
function name to object file mappings. The format of the file is
similar to the output of the program nm.

10 GNU gprof

c-parse.o:00000000 T yyparse

c-parse.o:00000004 C yyerrflag

c-lang.o:00000000 T maybe_objc_method_name

c-lang.o:00000000 T print_lang_statistics

c-lang.o:00000000 T recognize_objc_keyword

c-decl.o:00000000 T print_lang_identifier

c-decl.o:00000000 T print_lang_type

...

To create a map file with gnu nm, type a command like
nm --extern-only --defined-only -v --print-file-name
program-name.

-T
--traditional

The ‘-T’ option causes gprof to print its output in “traditional”
BSD style.

-w width
--width=width

Sets width of output lines to width. Currently only used when
printing the function index at the bottom of the call graph.

-x
--all-lines

This option affects annotated source output only. By default,
only the lines at the beginning of a basic-block are annotated. If
this option is specified, every line in a basic-block is annotated
by repeating the annotation for the first line. This behavior is
similar to tcov’s ‘-a’.

--demangle[=style]
--no-demangle

These options control whether C++ symbol names should be
demangled when printing output. The default is to demangle
symbols. The --no-demangle option may be used to turn off
demangling. Different compilers have different mangling styles.
The optional demangling style argument can be used to choose
an appropriate demangling style for your compiler.

4.2 Analysis Options

-a
--no-static

The ‘-a’ option causes gprof to suppress the printing of stat-
ically declared (private) functions. (These are functions whose
names are not listed as global, and which are not visible outside
the file/function/block where they were defined.) Time spent in

Chapter 4: gprof Command Summary 11

these functions, calls to/from them, etc, will all be attributed to
the function that was loaded directly before it in the executable
file. This option affects both the flat profile and the call graph.

-c
--static-call-graph

The ‘-c’ option causes the call graph of the program to be aug-
mented by a heuristic which examines the text space of the ob-
ject file and identifies function calls in the binary machine code.
Since normal call graph records are only generated when func-
tions are entered, this option identifies children that could have
been called, but never were. Calls to functions that were not
compiled with profiling enabled are also identified, but only if
symbol table entries are present for them. Calls to dynamic li-
brary routines are typically not found by this option. Parents
or children identified via this heuristic are indicated in the call
graph with call counts of ‘0’.

-D
--ignore-non-functions

The ‘-D’ option causes gprof to ignore symbols which are not
known to be functions. This option will give more accurate
profile data on systems where it is supported (Solaris and HPUX
for example).

-k from/to
The ‘-k’ option allows you to delete from the call graph any
arcs from symbols matching symspec from to those matching
symspec to.

-l
--line The ‘-l’ option enables line-by-line profiling, which causes his-

togram hits to be charged to individual source code lines, in-
stead of functions. If the program was compiled with basic-block
counting enabled, this option will also identify how many times
each line of code was executed. While line-by-line profiling can
help isolate where in a large function a program is spending its
time, it also significantly increases the running time of gprof,
and magnifies statistical inaccuracies. See Section 6.1 [Sampling
Error], page 27.

-m num
--min-count=num

This option affects execution count output only. Symbols that
are executed less than num times are suppressed.

-n[symspec]
--time[=symspec]

The ‘-n’ option causes gprof, in its call graph analysis, to only
propagate times for symbols matching symspec.

12 GNU gprof

-N[symspec]
--no-time[=symspec]

The ‘-n’ option causes gprof, in its call graph analysis, not to
propagate times for symbols matching symspec.

-z
--display-unused-functions

If you give the ‘-z’ option, gprof will mention all functions in
the flat profile, even those that were never called, and that had
no time spent in them. This is useful in conjunction with the
‘-c’ option for discovering which routines were never called.

4.3 Miscellaneous Options

-d[num]
--debug[=num]

The ‘-d num ’ option specifies debugging options. If num is not
specified, enable all debugging. See Section 9.3.1 [Debugging],
page 39.

-Oname
--file-format=name

Selects the format of the profile data files. Recognized formats
are ‘auto’ (the default), ‘bsd’, ‘4.4bsd’, ‘magic’, and ‘prof’ (not
yet supported).

-s
--sum The ‘-s’ option causes gprof to summarize the information in

the profile data files it read in, and write out a profile data file
called ‘gmon.sum’, which contains all the information from the
profile data files that gprof read in. The file ‘gmon.sum’ may be
one of the specified input files; the effect of this is to merge the
data in the other input files into ‘gmon.sum’.
Eventually you can run gprof again without ‘-s’ to analyze the
cumulative data in the file ‘gmon.sum’.

-v
--version

The ‘-v’ flag causes gprof to print the current version number,
and then exit.

4.4 Deprecated Options

These options have been replaced with newer versions that use
symspecs.

Chapter 4: gprof Command Summary 13

-e function_name
The ‘-e function ’ option tells gprof to not print information
about the function function name (and its children. . .) in the
call graph. The function will still be listed as a child of any
functions that call it, but its index number will be shown as
‘[not printed]’. More than one ‘-e’ option may be given; only
one function name may be indicated with each ‘-e’ option.

-E function_name
The -E function option works like the -e option, but time
spent in the function (and children who were not called from
anywhere else), will not be used to compute the percentages-of-
time for the call graph. More than one ‘-E’ option may be given;
only one function name may be indicated with each ‘-E’ option.

-f function_name
The ‘-f function ’ option causes gprof to limit the call graph
to the function function name and its children (and their
children. . .). More than one ‘-f’ option may be given; only
one function name may be indicated with each ‘-f’ option.

-F function_name
The ‘-F function ’ option works like the -f option, but
only time spent in the function and its children (and their
children. . .) will be used to determine total-time and
percentages-of-time for the call graph. More than one ‘-F’
option may be given; only one function name may be indicated
with each ‘-F’ option. The ‘-F’ option overrides the ‘-E’ option.

Note that only one function can be specified with each -e, -E, -f or
-F option. To specify more than one function, use multiple options. For
example, this command:

gprof -e boring -f foo -f bar myprogram > gprof.output
lists in the call graph all functions that were reached from either foo or bar
and were not reachable from boring.

4.5 Symspecs

Many of the output options allow functions to be included or excluded
using symspecs (symbol specifications), which observe the following syntax:

filename_containing_a_dot
| funcname_not_containing_a_dot
| linenumber
| ([any_filename] ‘:’ (any_funcname | linenumber))

Here are some sample symspecs:

‘main.c’ Selects everything in file ‘main.c’—the dot in the string tells
gprof to interpret the string as a filename, rather than as a

14 GNU gprof

function name. To select a file whose name does not contain a
dot, a trailing colon should be specified. For example, ‘odd:’ is
interpreted as the file named ‘odd’.

‘main’ Selects all functions named ‘main’.
Note that there may be multiple instances of the same function
name because some of the definitions may be local (i.e., static).
Unless a function name is unique in a program, you must use
the colon notation explained below to specify a function from a
specific source file.
Sometimes, function names contain dots. In such cases, it is
necessary to add a leading colon to the name. For example,
‘:.mul’ selects function ‘.mul’.
In some object file formats, symbols have a leading underscore.
gprof will normally not print these underscores. When you
name a symbol in a symspec, you should type it exactly as gprof
prints it in its output. For example, if the compiler produces a
symbol ‘_main’ from your main function, gprof still prints it as
‘main’ in its output, so you should use ‘main’ in symspecs.

‘main.c:main’
Selects function ‘main’ in file ‘main.c’.

‘main.c:134’
Selects line 134 in file ‘main.c’.

Chapter 5: Interpreting gprof’s Output 15

5 Interpreting gprof’s Output

gprof can produce several different output styles, the most important of
which are described below. The simplest output styles (file information, exe-
cution count, and function and file ordering) are not described here, but are
documented with the respective options that trigger them. See Section 4.1
[Output Options], page 7.

5.1 The Flat Profile

The flat profile shows the total amount of time your program spent ex-
ecuting each function. Unless the ‘-z’ option is given, functions with no
apparent time spent in them, and no apparent calls to them, are not men-
tioned. Note that if a function was not compiled for profiling, and didn’t
run long enough to show up on the program counter histogram, it will be
indistinguishable from a function that was never called.

This is part of a flat profile for a small program:
Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls ms/call ms/call name

33.34 0.02 0.02 7208 0.00 0.00 open

16.67 0.03 0.01 244 0.04 0.12 offtime

16.67 0.04 0.01 8 1.25 1.25 memccpy

16.67 0.05 0.01 7 1.43 1.43 write

16.67 0.06 0.01 mcount

0.00 0.06 0.00 236 0.00 0.00 tzset

0.00 0.06 0.00 192 0.00 0.00 tolower

0.00 0.06 0.00 47 0.00 0.00 strlen

0.00 0.06 0.00 45 0.00 0.00 strchr

0.00 0.06 0.00 1 0.00 50.00 main

0.00 0.06 0.00 1 0.00 0.00 memcpy

0.00 0.06 0.00 1 0.00 10.11 print

0.00 0.06 0.00 1 0.00 0.00 profil

0.00 0.06 0.00 1 0.00 50.00 report

...

The functions are sorted by first by decreasing run-time spent in them, then
by decreasing number of calls, then alphabetically by name. The functions
‘mcount’ and ‘profil’ are part of the profiling apparatus and appear in
every flat profile; their time gives a measure of the amount of overhead due
to profiling.

Just before the column headers, a statement appears indicating how much
time each sample counted as. This sampling period estimates the margin of
error in each of the time figures. A time figure that is not much larger than
this is not reliable. In this example, each sample counted as 0.01 seconds,
suggesting a 100 Hz sampling rate. The program’s total execution time was

16 GNU gprof

0.06 seconds, as indicated by the ‘cumulative seconds’ field. Since each
sample counted for 0.01 seconds, this means only six samples were taken
during the run. Two of the samples occurred while the program was in
the ‘open’ function, as indicated by the ‘self seconds’ field. Each of the
other four samples occurred one each in ‘offtime’, ‘memccpy’, ‘write’, and
‘mcount’. Since only six samples were taken, none of these values can be
regarded as particularly reliable. In another run, the ‘self seconds’ field
for ‘mcount’ might well be ‘0.00’ or ‘0.02’. See Section 6.1 [Sampling Error],
page 27, for a complete discussion.

The remaining functions in the listing (those whose ‘self seconds’ field
is ‘0.00’) didn’t appear in the histogram samples at all. However, the call
graph indicated that they were called, so therefore they are listed, sorted
in decreasing order by the ‘calls’ field. Clearly some time was spent exe-
cuting these functions, but the paucity of histogram samples prevents any
determination of how much time each took.

Here is what the fields in each line mean:

% time This is the percentage of the total execution time your program
spent in this function. These should all add up to 100%.

cumulative seconds
This is the cumulative total number of seconds the computer
spent executing this functions, plus the time spent in all the
functions above this one in this table.

self seconds
This is the number of seconds accounted for by this function
alone. The flat profile listing is sorted first by this number.

calls This is the total number of times the function was called. If the
function was never called, or the number of times it was called
cannot be determined (probably because the function was not
compiled with profiling enabled), the calls field is blank.

self ms/call
This represents the average number of milliseconds spent in this
function per call, if this function is profiled. Otherwise, this field
is blank for this function.

total ms/call
This represents the average number of milliseconds spent in this
function and its descendants per call, if this function is profiled.
Otherwise, this field is blank for this function. This is the only
field in the flat profile that uses call graph analysis.

name This is the name of the function. The flat profile is sorted by
this field alphabetically after the self seconds and calls fields are
sorted.

Chapter 5: Interpreting gprof’s Output 17

5.2 The Call Graph

The call graph shows how much time was spent in each function and
its children. From this information, you can find functions that, while they
themselves may not have used much time, called other functions that did
use unusual amounts of time.

Here is a sample call from a small program. This call came from the same
gprof run as the flat profile example in the previous chapter.

granularity: each sample hit covers 2 byte(s) for 20.00% of 0.05 seconds

index % time self children called name

<spontaneous>

[1] 100.0 0.00 0.05 start [1]

0.00 0.05 1/1 main [2]

0.00 0.00 1/2 on_exit [28]

0.00 0.00 1/1 exit [59]

0.00 0.05 1/1 start [1]

[2] 100.0 0.00 0.05 1 main [2]

0.00 0.05 1/1 report [3]

0.00 0.05 1/1 main [2]

[3] 100.0 0.00 0.05 1 report [3]

0.00 0.03 8/8 timelocal [6]

0.00 0.01 1/1 print [9]

0.00 0.01 9/9 fgets [12]

0.00 0.00 12/34 strncmp <cycle 1> [40]

0.00 0.00 8/8 lookup [20]

0.00 0.00 1/1 fopen [21]

0.00 0.00 8/8 chewtime [24]

0.00 0.00 8/16 skipspace [44]

[4] 59.8 0.01 0.02 8+472 <cycle 2 as a whole> [4]

0.01 0.02 244+260 offtime <cycle 2> [7]

0.00 0.00 236+1 tzset <cycle 2> [26]

The lines full of dashes divide this table into entries, one for each function.
Each entry has one or more lines.

In each entry, the primary line is the one that starts with an index number
in square brackets. The end of this line says which function the entry is for.
The preceding lines in the entry describe the callers of this function and the
following lines describe its subroutines (also called children when we speak
of the call graph).

The entries are sorted by time spent in the function and its subroutines.

The internal profiling function mcount (see Section 5.1 [Flat Profile],
page 15) is never mentioned in the call graph.

18 GNU gprof

5.2.1 The Primary Line

The primary line in a call graph entry is the line that describes the
function which the entry is about and gives the overall statistics for this
function.

For reference, we repeat the primary line from the entry for function
report in our main example, together with the heading line that shows the
names of the fields:

index % time self children called name

...

[3] 100.0 0.00 0.05 1 report [3]

Here is what the fields in the primary line mean:

index Entries are numbered with consecutive integers. Each function
therefore has an index number, which appears at the beginning
of its primary line.
Each cross-reference to a function, as a caller or subroutine of
another, gives its index number as well as its name. The index
number guides you if you wish to look for the entry for that
function.

% time This is the percentage of the total time that was spent in this
function, including time spent in subroutines called from this
function.
The time spent in this function is counted again for the callers of
this function. Therefore, adding up these percentages is mean-
ingless.

self This is the total amount of time spent in this function. This
should be identical to the number printed in the seconds field
for this function in the flat profile.

children This is the total amount of time spent in the subroutine calls
made by this function. This should be equal to the sum of all the
self and children entries of the children listed directly below
this function.

called This is the number of times the function was called.
If the function called itself recursively, there are two numbers,
separated by a ‘+’. The first number counts non-recursive calls,
and the second counts recursive calls.
In the example above, the function report was called once from
main.

name This is the name of the current function. The index number is
repeated after it.
If the function is part of a cycle of recursion, the cycle number is
printed between the function’s name and the index number (see

Chapter 5: Interpreting gprof’s Output 19

Section 5.2.4 [Cycles], page 20). For example, if function gnurr
is part of cycle number one, and has index number twelve, its
primary line would be end like this:

gnurr <cycle 1> [12]

5.2.2 Lines for a Function’s Callers

A function’s entry has a line for each function it was called by. These
lines’ fields correspond to the fields of the primary line, but their meanings
are different because of the difference in context.

For reference, we repeat two lines from the entry for the function report,
the primary line and one caller-line preceding it, together with the heading
line that shows the names of the fields:

index % time self children called name

...

0.00 0.05 1/1 main [2]

[3] 100.0 0.00 0.05 1 report [3]

Here are the meanings of the fields in the caller-line for report called
from main:

self An estimate of the amount of time spent in report itself when
it was called from main.

children An estimate of the amount of time spent in subroutines of
report when report was called from main.
The sum of the self and children fields is an estimate of the
amount of time spent within calls to report from main.

called Two numbers: the number of times report was called from
main, followed by the total number of non-recursive calls to
report from all its callers.

name and index number
The name of the caller of report to which this line applies,
followed by the caller’s index number.
Not all functions have entries in the call graph; some options to
gprof request the omission of certain functions. When a caller
has no entry of its own, it still has caller-lines in the entries of
the functions it calls.
If the caller is part of a recursion cycle, the cycle number is
printed between the name and the index number.

If the identity of the callers of a function cannot be determined, a dummy
caller-line is printed which has ‘<spontaneous>’ as the “caller’s name” and
all other fields blank. This can happen for signal handlers.

20 GNU gprof

5.2.3 Lines for a Function’s Subroutines

A function’s entry has a line for each of its subroutines—in other words,
a line for each other function that it called. These lines’ fields correspond
to the fields of the primary line, but their meanings are different because of
the difference in context.

For reference, we repeat two lines from the entry for the function main,
the primary line and a line for a subroutine, together with the heading line
that shows the names of the fields:

index % time self children called name

...

[2] 100.0 0.00 0.05 1 main [2]

0.00 0.05 1/1 report [3]

Here are the meanings of the fields in the subroutine-line for main calling
report:

self An estimate of the amount of time spent directly within report
when report was called from main.

children An estimate of the amount of time spent in subroutines of
report when report was called from main.
The sum of the self and children fields is an estimate of the
total time spent in calls to report from main.

called Two numbers, the number of calls to report from main fol-
lowed by the total number of non-recursive calls to report.
This ratio is used to determine how much of report’s self and
children time gets credited to main. See Section 6.2 [Assump-
tions], page 28.

name The name of the subroutine of main to which this line applies,
followed by the subroutine’s index number.
If the caller is part of a recursion cycle, the cycle number is
printed between the name and the index number.

5.2.4 How Mutually Recursive Functions Are
Described

The graph may be complicated by the presence of cycles of recursion
in the call graph. A cycle exists if a function calls another function that
(directly or indirectly) calls (or appears to call) the original function. For
example: if a calls b, and b calls a, then a and b form a cycle.

Whenever there are call paths both ways between a pair of functions,
they belong to the same cycle. If a and b call each other and b and c call
each other, all three make one cycle. Note that even if b only calls a if it
was not called from a, gprof cannot determine this, so a and b are still
considered a cycle.

Chapter 5: Interpreting gprof’s Output 21

The cycles are numbered with consecutive integers. When a function
belongs to a cycle, each time the function name appears in the call graph it
is followed by ‘<cycle number>’.

The reason cycles matter is that they make the time values in the call
graph paradoxical. The “time spent in children” of a should include the time
spent in its subroutine b and in b’s subroutines—but one of b’s subroutines
is a! How much of a’s time should be included in the children of a, when a
is indirectly recursive?

The way gprof resolves this paradox is by creating a single entry for the
cycle as a whole. The primary line of this entry describes the total time
spent directly in the functions of the cycle. The “subroutines” of the cycle
are the individual functions of the cycle, and all other functions that were
called directly by them. The “callers” of the cycle are the functions, outside
the cycle, that called functions in the cycle.

Here is an example portion of a call graph which shows a cycle containing
functions a and b. The cycle was entered by a call to a from main; both a
and b called c.

index % time self children called name

--

1.77 0 1/1 main [2]

[3] 91.71 1.77 0 1+5 <cycle 1 as a whole> [3]

1.02 0 3 b <cycle 1> [4]

0.75 0 2 a <cycle 1> [5]

--

3 a <cycle 1> [5]

[4] 52.85 1.02 0 0 b <cycle 1> [4]

2 a <cycle 1> [5]

0 0 3/6 c [6]

--

1.77 0 1/1 main [2]

2 b <cycle 1> [4]

[5] 38.86 0.75 0 1 a <cycle 1> [5]

3 b <cycle 1> [4]

0 0 3/6 c [6]

--

(The entire call graph for this program contains in addition an entry for
main, which calls a, and an entry for c, with callers a and b.)

index % time self children called name

<spontaneous>

[1] 100.00 0 1.93 0 start [1]

0.16 1.77 1/1 main [2]

--

0.16 1.77 1/1 start [1]

[2] 100.00 0.16 1.77 1 main [2]

1.77 0 1/1 a <cycle 1> [5]

--

1.77 0 1/1 main [2]

[3] 91.71 1.77 0 1+5 <cycle 1 as a whole> [3]

22 GNU gprof

1.02 0 3 b <cycle 1> [4]

0.75 0 2 a <cycle 1> [5]

0 0 6/6 c [6]

--

3 a <cycle 1> [5]

[4] 52.85 1.02 0 0 b <cycle 1> [4]

2 a <cycle 1> [5]

0 0 3/6 c [6]

--

1.77 0 1/1 main [2]

2 b <cycle 1> [4]

[5] 38.86 0.75 0 1 a <cycle 1> [5]

3 b <cycle 1> [4]

0 0 3/6 c [6]

--

0 0 3/6 b <cycle 1> [4]

0 0 3/6 a <cycle 1> [5]

[6] 0.00 0 0 6 c [6]

--

The self field of the cycle’s primary line is the total time spent in all the
functions of the cycle. It equals the sum of the self fields for the individual
functions in the cycle, found in the entry in the subroutine lines for these
functions.

The children fields of the cycle’s primary line and subroutine lines count
only subroutines outside the cycle. Even though a calls b, the time spent
in those calls to b is not counted in a’s children time. Thus, we do not
encounter the problem of what to do when the time in those calls to b
includes indirect recursive calls back to a.

The children field of a caller-line in the cycle’s entry estimates the
amount of time spent in the whole cycle, and its other subroutines, on the
times when that caller called a function in the cycle.

The calls field in the primary line for the cycle has two numbers: first,
the number of times functions in the cycle were called by functions outside
the cycle; second, the number of times they were called by functions in the
cycle (including times when a function in the cycle calls itself). This is a
generalization of the usual split into non-recursive and recursive calls.

The calls field of a subroutine-line for a cycle member in the cycle’s
entry says how many time that function was called from functions in the
cycle. The total of all these is the second number in the primary line’s
calls field.

In the individual entry for a function in a cycle, the other functions in
the same cycle can appear as subroutines and as callers. These lines show
how many times each function in the cycle called or was called from each
other function in the cycle. The self and children fields in these lines are
blank because of the difficulty of defining meanings for them when recursion
is going on.

Chapter 5: Interpreting gprof’s Output 23

5.3 Line-by-line Profiling

gprof’s ‘-l’ option causes the program to perform line-by-line profiling.
In this mode, histogram samples are assigned not to functions, but to indi-
vidual lines of source code. The program usually must be compiled with a
‘-g’ option, in addition to ‘-pg’, in order to generate debugging symbols for
tracking source code lines.

The flat profile is the most useful output table in line-by-line mode. The
call graph isn’t as useful as normal, since the current version of gprof does
not propagate call graph arcs from source code lines to the enclosing func-
tion. The call graph does, however, show each line of code that called each
function, along with a count.

Here is a section of gprof’s output, without line-by-line profiling. Note
that ct_init accounted for four histogram hits, and 13327 calls to init_
block.

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls us/call us/call name

30.77 0.13 0.04 6335 6.31 6.31 ct_init

Call graph (explanation follows)

granularity: each sample hit covers 4 byte(s) for 7.69% of 0.13 seconds

index % time self children called name

0.00 0.00 1/13496 name_too_long

0.00 0.00 40/13496 deflate

0.00 0.00 128/13496 deflate_fast

0.00 0.00 13327/13496 ct_init

[7] 0.0 0.00 0.00 13496 init_block

Now let’s look at some of gprof’s output from the same program run, this
time with line-by-line profiling enabled. Note that ct_init’s four histogram
hits are broken down into four lines of source code - one hit occurred on each
of lines 349, 351, 382 and 385. In the call graph, note how ct_init’s 13327
calls to init_block are broken down into one call from line 396, 3071 calls
from line 384, 3730 calls from line 385, and 6525 calls from 387.

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self

time seconds seconds calls name

7.69 0.10 0.01 ct_init (trees.c:349)

24 GNU gprof

7.69 0.11 0.01 ct_init (trees.c:351)

7.69 0.12 0.01 ct_init (trees.c:382)

7.69 0.13 0.01 ct_init (trees.c:385)

Call graph (explanation follows)

granularity: each sample hit covers 4 byte(s) for 7.69% of 0.13 seconds

% time self children called name

0.00 0.00 1/13496 name_too_long (gzip.c:1440)

0.00 0.00 1/13496 deflate (deflate.c:763)

0.00 0.00 1/13496 ct_init (trees.c:396)

0.00 0.00 2/13496 deflate (deflate.c:727)

0.00 0.00 4/13496 deflate (deflate.c:686)

0.00 0.00 5/13496 deflate (deflate.c:675)

0.00 0.00 12/13496 deflate (deflate.c:679)

0.00 0.00 16/13496 deflate (deflate.c:730)

0.00 0.00 128/13496 deflate_fast (deflate.c:654)

0.00 0.00 3071/13496 ct_init (trees.c:384)

0.00 0.00 3730/13496 ct_init (trees.c:385)

0.00 0.00 6525/13496 ct_init (trees.c:387)

[6] 0.0 0.00 0.00 13496 init_block (trees.c:408)

5.4 The Annotated Source Listing

gprof’s ‘-A’ option triggers an annotated source listing, which lists the
program’s source code, each function labeled with the number of times it
was called. You may also need to specify the ‘-I’ option, if gprof can’t find
the source code files.

Compiling with ‘gcc ... -g -pg -a’ augments your program with basic-
block counting code, in addition to function counting code. This enables
gprof to determine how many times each line of code was executed. For
example, consider the following function, taken from gzip, with line numbers
added:

1 ulg updcrc(s, n)

2 uch *s;

3 unsigned n;

4 {

5 register ulg c;

6

7 static ulg crc = (ulg)0xffffffffL;

8

9 if (s == NULL) {

10 c = 0xffffffffL;

11 } else {

Chapter 5: Interpreting gprof’s Output 25

12 c = crc;

13 if (n) do {

14 c = crc_32_tab[...];

15 } while (--n);

16 }

17 crc = c;

18 return c ^ 0xffffffffL;

19 }

updcrc has at least five basic-blocks. One is the function itself. The if
statement on line 9 generates two more basic-blocks, one for each branch of
the if. A fourth basic-block results from the if on line 13, and the contents
of the do loop form the fifth basic-block. The compiler may also generate
additional basic-blocks to handle various special cases.

A program augmented for basic-block counting can be analyzed with
‘gprof -l -A’. I also suggest use of the ‘-x’ option, which ensures that each
line of code is labeled at least once. Here is updcrc’s annotated source listing
for a sample gzip run:

ulg updcrc(s, n)

uch *s;

unsigned n;

2 ->{

register ulg c;

static ulg crc = (ulg)0xffffffffL;

2 -> if (s == NULL) {

1 -> c = 0xffffffffL;

1 -> } else {

1 -> c = crc;

1 -> if (n) do {

26312 -> c = crc_32_tab[...];

26312,1,26311 -> } while (--n);

}

2 -> crc = c;

2 -> return c ^ 0xffffffffL;

2 ->}

In this example, the function was called twice, passing once through each
branch of the if statement. The body of the do loop was executed a total of
26312 times. Note how the while statement is annotated. It began execution
26312 times, once for each iteration through the loop. One of those times
(the last time) it exited, while it branched back to the beginning of the loop
26311 times.

26 GNU gprof

Chapter 6: Inaccuracy of gprof Output 27

6 Inaccuracy of gprof Output

6.1 Statistical Sampling Error

The run-time figures that gprof gives you are based on a sampling pro-
cess, so they are subject to statistical inaccuracy. If a function runs only a
small amount of time, so that on the average the sampling process ought to
catch that function in the act only once, there is a pretty good chance it will
actually find that function zero times, or twice.

By contrast, the number-of-calls and basic-block figures are derived by
counting, not sampling. They are completely accurate and will not vary
from run to run if your program is deterministic.

The sampling period that is printed at the beginning of the flat profile
says how often samples are taken. The rule of thumb is that a run-time
figure is accurate if it is considerably bigger than the sampling period.

The actual amount of error can be predicted. For n samples, the expected
error is the square-root of n. For example, if the sampling period is 0.01
seconds and foo’s run-time is 1 second, n is 100 samples (1 second/0.01
seconds), sqrt(n) is 10 samples, so the expected error in foo’s run-time is
0.1 seconds (10*0.01 seconds), or ten percent of the observed value. Again,
if the sampling period is 0.01 seconds and bar’s run-time is 100 seconds,
n is 10000 samples, sqrt(n) is 100 samples, so the expected error in bar’s
run-time is 1 second, or one percent of the observed value. It is likely to vary
this much on the average from one profiling run to the next. (Sometimes it
will vary more.)

This does not mean that a small run-time figure is devoid of information.
If the program’s total run-time is large, a small run-time for one function
does tell you that that function used an insignificant fraction of the whole
program’s time. Usually this means it is not worth optimizing.

One way to get more accuracy is to give your program more (but similar)
input data so it will take longer. Another way is to combine the data from
several runs, using the ‘-s’ option of gprof. Here is how:
1. Run your program once.
2. Issue the command ‘mv gmon.out gmon.sum’.
3. Run your program again, the same as before.
4. Merge the new data in ‘gmon.out’ into ‘gmon.sum’ with this command:

gprof -s executable-file gmon.out gmon.sum

5. Repeat the last two steps as often as you wish.
6. Analyze the cumulative data using this command:

gprof executable-file gmon.sum > output-file

28 GNU gprof

6.2 Estimating children Times

Some of the figures in the call graph are estimates—for example, the
children time values and all the time figures in caller and subroutine lines.

There is no direct information about these measurements in the profile
data itself. Instead, gprof estimates them by making an assumption about
your program that might or might not be true.

The assumption made is that the average time spent in each call to any
function foo is not correlated with who called foo. If foo used 5 seconds in
all, and 2/5 of the calls to foo came from a, then foo contributes 2 seconds
to a’s children time, by assumption.

This assumption is usually true enough, but for some programs it is far
from true. Suppose that foo returns very quickly when its argument is zero;
suppose that a always passes zero as an argument, while other callers of foo
pass other arguments. In this program, all the time spent in foo is in the
calls from callers other than a. But gprof has no way of knowing this; it
will blindly and incorrectly charge 2 seconds of time in foo to the children
of a.

We hope some day to put more complete data into ‘gmon.out’, so that
this assumption is no longer needed, if we can figure out how. For the nonce,
the estimated figures are usually more useful than misleading.

Chapter 7: Answers to Common Questions 29

7 Answers to Common Questions

How can I get more exact information about hot spots in my program?
Looking at the per-line call counts only tells part of the story.
Because gprof can only report call times and counts by func-
tion, the best way to get finer-grained information on where the
program is spending its time is to re-factor large functions into
sequences of calls to smaller ones. Beware however that this can
introduce artifical hot spots since compiling with ‘-pg’ adds a
significant overhead to function calls. An alternative solution is
to use a non-intrusive profiler, e.g. oprofile.

How do I find which lines in my program were executed the most times?
Compile your program with basic-block counting enabled, run
it, then use the following pipeline:

gprof -l -C objfile | sort -k 3 -n -r

This listing will show you the lines in your code executed most
often, but not necessarily those that consumed the most time.

How do I find which lines in my program called a particular function?
Use ‘gprof -l’ and lookup the function in the call graph. The
callers will be broken down by function and line number.

How do I analyze a program that runs for less than a second?
Try using a shell script like this one:

for i in ‘seq 1 100‘; do
fastprog
mv gmon.out gmon.out.$i

done

gprof -s fastprog gmon.out.*

gprof fastprog gmon.sum

If your program is completely deterministic, all the call counts
will be simple multiples of 100 (i.e. a function called once in
each run will appear with a call count of 100).

30 GNU gprof

Chapter 8: Incompatibilities with Unix gprof 31

8 Incompatibilities with Unix gprof

gnu gprof and Berkeley Unix gprof use the same data file ‘gmon.out’,
and provide essentially the same information. But there are a few differences.
• gnu gprof uses a new, generalized file format with support for basic-

block execution counts and non-realtime histograms. A magic cookie
and version number allows gprof to easily identify new style files. Old
BSD-style files can still be read. See Section 9.2 [File Format], page 35.

• For a recursive function, Unix gprof lists the function as a parent and
as a child, with a calls field that lists the number of recursive calls.
gnu gprof omits these lines and puts the number of recursive calls in
the primary line.

• When a function is suppressed from the call graph with ‘-e’, gnu gprof
still lists it as a subroutine of functions that call it.

• gnu gprof accepts the ‘-k’ with its argument in the form ‘from/to’,
instead of ‘from to’.

• In the annotated source listing, if there are multiple basic blocks on the
same line, gnu gprof prints all of their counts, separated by commas.

• The blurbs, field widths, and output formats are different. gnu gprof
prints blurbs after the tables, so that you can see the tables without
skipping the blurbs.

32 GNU gprof

Chapter 9: Details of Profiling 33

9 Details of Profiling

9.1 Implementation of Profiling

Profiling works by changing how every function in your program is com-
piled so that when it is called, it will stash away some information about
where it was called from. From this, the profiler can figure out what function
called it, and can count how many times it was called. This change is made
by the compiler when your program is compiled with the ‘-pg’ option, which
causes every function to call mcount (or _mcount, or __mcount, depending
on the OS and compiler) as one of its first operations.

The mcount routine, included in the profiling library, is responsible for
recording in an in-memory call graph table both its parent routine (the child)
and its parent’s parent. This is typically done by examining the stack frame
to find both the address of the child, and the return address in the original
parent. Since this is a very machine-dependent operation, mcount itself is
typically a short assembly-language stub routine that extracts the required
information, and then calls __mcount_internal (a normal C function) with
two arguments - frompc and selfpc. __mcount_internal is responsible for
maintaining the in-memory call graph, which records frompc, selfpc, and
the number of times each of these call arcs was traversed.

GCC Version 2 provides a magical function (__builtin_return_
address), which allows a generic mcount function to extract the required
information from the stack frame. However, on some architectures, most
notably the SPARC, using this builtin can be very computationally
expensive, and an assembly language version of mcount is used for
performance reasons.

Number-of-calls information for library routines is collected by using a
special version of the C library. The programs in it are the same as in the
usual C library, but they were compiled with ‘-pg’. If you link your program
with ‘gcc ... -pg’, it automatically uses the profiling version of the library.

Profiling also involves watching your program as it runs, and keeping a
histogram of where the program counter happens to be every now and then.
Typically the program counter is looked at around 100 times per second of
run time, but the exact frequency may vary from system to system.

This is done is one of two ways. Most UNIX-like operating systems pro-
vide a profil() system call, which registers a memory array with the kernel,
along with a scale factor that determines how the program’s address space
maps into the array. Typical scaling values cause every 2 to 8 bytes of ad-
dress space to map into a single array slot. On every tick of the system
clock (assuming the profiled program is running), the value of the program
counter is examined and the corresponding slot in the memory array is incre-
mented. Since this is done in the kernel, which had to interrupt the process

34 GNU gprof

anyway to handle the clock interrupt, very little additional system overhead
is required.

However, some operating systems, most notably Linux 2.0 (and earlier),
do not provide a profil() system call. On such a system, arrangements are
made for the kernel to periodically deliver a signal to the process (typically
via setitimer()), which then performs the same operation of examining the
program counter and incrementing a slot in the memory array. Since this
method requires a signal to be delivered to user space every time a sample is
taken, it uses considerably more overhead than kernel-based profiling. Also,
due to the added delay required to deliver the signal, this method is less
accurate as well.

A special startup routine allocates memory for the histogram and either
calls profil() or sets up a clock signal handler. This routine (monstartup)
can be invoked in several ways. On Linux systems, a special profiling startup
file gcrt0.o, which invokes monstartup before main, is used instead of the
default crt0.o. Use of this special startup file is one of the effects of using
‘gcc ... -pg’ to link. On SPARC systems, no special startup files are used.
Rather, the mcount routine, when it is invoked for the first time (typically
when main is called), calls monstartup.

If the compiler’s ‘-a’ option was used, basic-block counting is also en-
abled. Each object file is then compiled with a static array of counts, ini-
tially zero. In the executable code, every time a new basic-block begins (i.e.
when an if statement appears), an extra instruction is inserted to increment
the corresponding count in the array. At compile time, a paired array was
constructed that recorded the starting address of each basic-block. Taken
together, the two arrays record the starting address of every basic-block,
along with the number of times it was executed.

The profiling library also includes a function (mcleanup) which is typ-
ically registered using atexit() to be called as the program exits, and is
responsible for writing the file ‘gmon.out’. Profiling is turned off, various
headers are output, and the histogram is written, followed by the call-graph
arcs and the basic-block counts.

The output from gprof gives no indication of parts of your program
that are limited by I/O or swapping bandwidth. This is because samples of
the program counter are taken at fixed intervals of the program’s run time.
Therefore, the time measurements in gprof output say nothing about time
that your program was not running. For example, a part of the program
that creates so much data that it cannot all fit in physical memory at once
may run very slowly due to thrashing, but gprof will say it uses little time.
On the other hand, sampling by run time has the advantage that the amount
of load due to other users won’t directly affect the output you get.

Chapter 9: Details of Profiling 35

9.2 Profiling Data File Format

The old BSD-derived file format used for profile data does not contain a
magic cookie that allows to check whether a data file really is a gprof file.
Furthermore, it does not provide a version number, thus rendering changes
to the file format almost impossible. gnu gprof uses a new file format that
provides these features. For backward compatibility, gnu gprof continues
to support the old BSD-derived format, but not all features are supported
with it. For example, basic-block execution counts cannot be accommodated
by the old file format.

The new file format is defined in header file ‘gmon_out.h’. It consists of
a header containing the magic cookie and a version number, as well as some
spare bytes available for future extensions. All data in a profile data file is
in the native format of the target for which the profile was collected. gnu
gprof adapts automatically to the byte-order in use.

In the new file format, the header is followed by a sequence of records.
Currently, there are three different record types: histogram records, call-
graph arc records, and basic-block execution count records. Each file can
contain any number of each record type. When reading a file, gnu gprof will
ensure records of the same type are compatible with each other and compute
the union of all records. For example, for basic-block execution counts, the
union is simply the sum of all execution counts for each basic-block.

9.2.1 Histogram Records

Histogram records consist of a header that is followed by an array of bins.
The header contains the text-segment range that the histogram spans, the
size of the histogram in bytes (unlike in the old BSD format, this does not in-
clude the size of the header), the rate of the profiling clock, and the physical
dimension that the bin counts represent after being scaled by the profiling
clock rate. The physical dimension is specified in two parts: a long name of
up to 15 characters and a single character abbreviation. For example, a his-
togram representing real-time would specify the long name as "seconds" and
the abbreviation as "s". This feature is useful for architectures that support
performance monitor hardware (which, fortunately, is becoming increasingly
common). For example, under DEC OSF/1, the "uprofile" command can
be used to produce a histogram of, say, instruction cache misses. In this
case, the dimension in the histogram header could be set to "i-cache misses"
and the abbreviation could be set to "1" (because it is simply a count, not
a physical dimension). Also, the profiling rate would have to be set to 1 in
this case.

Histogram bins are 16-bit numbers and each bin represent an equal
amount of text-space. For example, if the text-segment is one thousand
bytes long and if there are ten bins in the histogram, each bin represents one
hundred bytes.

36 GNU gprof

9.2.2 Call-Graph Records

Call-graph records have a format that is identical to the one used in
the BSD-derived file format. It consists of an arc in the call graph and a
count indicating the number of times the arc was traversed during program
execution. Arcs are specified by a pair of addresses: the first must be within
caller’s function and the second must be within the callee’s function. When
performing profiling at the function level, these addresses can point anywhere
within the respective function. However, when profiling at the line-level, it
is better if the addresses are as close to the call-site/entry-point as possible.
This will ensure that the line-level call-graph is able to identify exactly which
line of source code performed calls to a function.

9.2.3 Basic-Block Execution Count Records

Basic-block execution count records consist of a header followed by a
sequence of address/count pairs. The header simply specifies the length of
the sequence. In an address/count pair, the address identifies a basic-block
and the count specifies the number of times that basic-block was executed.
Any address within the basic-address can be used.

9.3 gprof’s Internal Operation

Like most programs, gprof begins by processing its options. During
this stage, it may building its symspec list (sym_ids.c:sym_id_
add), if options are specified which use symspecs. gprof maintains
a single linked list of symspecs, which will eventually get turned
into 12 symbol tables, organized into six include/exclude pairs -
one pair each for the flat profile (INCL FLAT/EXCL FLAT), the
call graph arcs (INCL ARCS/EXCL ARCS), printing in the call
graph (INCL GRAPH/EXCL GRAPH), timing propagation in the
call graph (INCL TIME/EXCL TIME), the annotated source list-
ing (INCL ANNO/EXCL ANNO), and the execution count listing
(INCL EXEC/EXCL EXEC).

After option processing, gprof finishes building the symspec list by
adding all the symspecs in default_excluded_list to the exclude lists
EXCL TIME and EXCL GRAPH, and if line-by-line profiling is speci-
fied, EXCL FLAT as well. These default excludes are not added to
EXCL ANNO, EXCL ARCS, and EXCL EXEC.

Next, the BFD library is called to open the object file, verify that it is
an object file, and read its symbol table (core.c:core_init), using bfd_
canonicalize_symtab after mallocing an appropriately sized array of sym-
bols. At this point, function mappings are read (if the ‘--file-ordering’
option has been specified), and the core text space is read into memory (if
the ‘-c’ option was given).

Chapter 9: Details of Profiling 37

gprof’s own symbol table, an array of Sym structures, is now built. This
is done in one of two ways, by one of two routines, depending on whether
line-by-line profiling (‘-l’ option) has been enabled. For normal profiling, the
BFD canonical symbol table is scanned. For line-by-line profiling, every text
space address is examined, and a new symbol table entry gets created every
time the line number changes. In either case, two passes are made through
the symbol table - one to count the size of the symbol table required, and the
other to actually read the symbols. In between the two passes, a single array
of type Sym is created of the appropriate length. Finally, symtab.c:symtab_
finalize is called to sort the symbol table and remove duplicate entries
(entries with the same memory address).

The symbol table must be a contiguous array for two reasons. First, the
qsort library function (which sorts an array) will be used to sort the symbol
table. Also, the symbol lookup routine (symtab.c:sym_lookup), which finds
symbols based on memory address, uses a binary search algorithm which re-
quires the symbol table to be a sorted array. Function symbols are indicated
with an is_func flag. Line number symbols have no special flags set. Addi-
tionally, a symbol can have an is_static flag to indicate that it is a local
symbol.

With the symbol table read, the symspecs can now be translated into
Syms (sym_ids.c:sym_id_parse). Remember that a single symspec can
match multiple symbols. An array of symbol tables (syms) is created, each
entry of which is a symbol table of Syms to be included or excluded from a
particular listing. The master symbol table and the symspecs are examined
by nested loops, and every symbol that matches a symspec is inserted into
the appropriate syms table. This is done twice, once to count the size of
each required symbol table, and again to build the tables, which have been
malloced between passes. From now on, to determine whether a symbol is
on an include or exclude symspec list, gprof simply uses its standard symbol
lookup routine on the appropriate table in the syms array.

Now the profile data file(s) themselves are read (gmon_io.c:gmon_out_
read), first by checking for a new-style ‘gmon.out’ header, then assuming
this is an old-style BSD ‘gmon.out’ if the magic number test failed.

New-style histogram records are read by hist.c:hist_read_rec. For the
first histogram record, allocate a memory array to hold all the bins, and read
them in. When multiple profile data files (or files with multiple histogram
records) are read, the starting address, ending address, number of bins and
sampling rate must match between the various histograms, or a fatal error
will result. If everything matches, just sum the additional histograms into
the existing in-memory array.

As each call graph record is read (call_graph.c:cg_read_rec), the par-
ent and child addresses are matched to symbol table entries, and a call graph
arc is created by cg_arcs.c:arc_add, unless the arc fails a symspec check
against INCL ARCS/EXCL ARCS. As each arc is added, a linked list is
maintained of the parent’s child arcs, and of the child’s parent arcs. Both

38 GNU gprof

the child’s call count and the arc’s call count are incremented by the record’s
call count.

Basic-block records are read (basic_blocks.c:bb_read_rec), but only if
line-by-line profiling has been selected. Each basic-block address is matched
to a corresponding line symbol in the symbol table, and an entry made in the
symbol’s bb addr and bb calls arrays. Again, if multiple basic-block records
are present for the same address, the call counts are cumulative.

A gmon.sum file is dumped, if requested (gmon_io.c:gmon_out_write).

If histograms were present in the data files, assign them to symbols
(hist.c:hist_assign_samples) by iterating over all the sample bins and
assigning them to symbols. Since the symbol table is sorted in order of as-
cending memory addresses, we can simple follow along in the symbol table as
we make our pass over the sample bins. This step includes a symspec check
against INCL FLAT/EXCL FLAT. Depending on the histogram scale fac-
tor, a sample bin may span multiple symbols, in which case a fraction of the
sample count is allocated to each symbol, proportional to the degree of over-
lap. This effect is rare for normal profiling, but overlaps are more common
during line-by-line profiling, and can cause each of two adjacent lines to be
credited with half a hit, for example.

If call graph data is present, cg_arcs.c:cg_assemble is called. First, if
‘-c’ was specified, a machine-dependent routine (find_call) scans through
each symbol’s machine code, looking for subroutine call instructions, and
adding them to the call graph with a zero call count. A topological sort
is performed by depth-first numbering all the symbols (cg_dfn.c:cg_dfn),
so that children are always numbered less than their parents, then mak-
ing a array of pointers into the symbol table and sorting it into numeri-
cal order, which is reverse topological order (children appear before par-
ents). Cycles are also detected at this point, all members of which are
assigned the same topological number. Two passes are now made through
this sorted array of symbol pointers. The first pass, from end to begin-
ning (parents to children), computes the fraction of child time to propagate
to each parent and a print flag. The print flag reflects symspec handling of
INCL GRAPH/EXCL GRAPH, with a parent’s include or exclude (print or
no print) property being propagated to its children, unless they themselves
explicitly appear in INCL GRAPH or EXCL GRAPH. A second pass, from
beginning to end (children to parents) actually propagates the timings along
the call graph, subject to a check against INCL TIME/EXCL TIME. With
the print flag, fractions, and timings now stored in the symbol structures,
the topological sort array is now discarded, and a new array of pointers is
assembled, this time sorted by propagated time.

Finally, print the various outputs the user requested, which is now fairly
straightforward. The call graph (cg_print.c:cg_print) and flat profile
(hist.c:hist_print) are regurgitations of values already computed. The
annotated source listing (basic_blocks.c:print_annotated_source) uses

Chapter 9: Details of Profiling 39

basic-block information, if present, to label each line of code with call counts,
otherwise only the function call counts are presented.

The function ordering code is marginally well documented in the source
code itself (cg_print.c). Basically, the functions with the most use and the
most parents are placed first, followed by other functions with the most use,
followed by lower use functions, followed by unused functions at the end.

9.3.1 Debugging gprof

If gprof was compiled with debugging enabled, the ‘-d’ option triggers
debugging output (to stdout) which can be helpful in understanding its op-
eration. The debugging number specified is interpreted as a sum of the
following options:

2 - Topological sort
Monitor depth-first numbering of symbols during call graph
analysis

4 - Cycles Shows symbols as they are identified as cycle heads

16 - Tallying
As the call graph arcs are read, show each arc and how the total
calls to each function are tallied

32 - Call graph arc sorting
Details sorting individual parents/children within each call
graph entry

64 - Reading histogram and call graph records
Shows address ranges of histograms as they are read, and each
call graph arc

128 - Symbol table
Reading, classifying, and sorting the symbol table from the ob-
ject file. For line-by-line profiling (‘-l’ option), also shows line
numbers being assigned to memory addresses.

256 - Static call graph
Trace operation of ‘-c’ option

512 - Symbol table and arc table lookups
Detail operation of lookup routines

1024 - Call graph propagation
Shows how function times are propagated along the call graph

2048 - Basic-blocks
Shows basic-block records as they are read from profile data
(only meaningful with ‘-l’ option)

4096 - Symspecs
Shows symspec-to-symbol pattern matching operation

40 GNU gprof

8192 - Annotate source
Tracks operation of ‘-A’ option

Chapter 10: GNU Free Documentation License 41

10 GNU Free Documentation License

GNU Free Documentation License
Version 1.1, March 2000
Copyright (C) 2000 Free Software Foundation, Inc. 59 Temple Place,

Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this

license document, but changing it is not allowed.
0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other

written document "free" in the sense of freedom: to assure everyone the
effective freedom to copy and redistribute it, with or without modifying it,
either commercially or noncommercially. Secondarily, this License preserves
for the author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works
of the document must themselves be free in the same sense. It complements
the GNU General Public License, which is a copyleft license designed for free
software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free program
should come with manuals providing the same freedoms that the software
does. But this License is not limited to software manuals; it can be used
for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose
purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work that contains a notice

placed by the copyright holder saying it can be distributed under the terms
of this License. The "Document", below, refers to any such manual or work.
Any member of the public is a licensee, and is addressed as "you".

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifications
and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the publishers
or authors of the Document to the Document’s overall subject (or to related
matters) and contains nothing that could fall directly within that overall
subject. (For example, if the Document is in part a textbook of mathematics,
a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

42 GNU gprof

The "Invariant Sections" are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says that
the Document is released under this License.

The "Cover Texts" are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the
Document is released under this License.

A "Transparent" copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general pub-
lic, whose contents can be viewed and edited directly and straightforwardly
with generic text editors or (for images composed of pixels) generic paint
programs or (for drawings) some widely available drawing editor, and that
is suitable for input to text formatters or for automatic translation to a
variety of formats suitable for input to text formatters. A copy made in
an otherwise Transparent file format whose markup has been designed to
thwart or discourage subsequent modification by readers is not Transparent.
A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTeX input format, SGML or XML
using a publicly available DTD, and standard-conforming simple HTML
designed for human modification. Opaque formats include PostScript, PDF,
proprietary formats that can be read and edited only by proprietary word
processors, SGML or XML for which the DTD and/or processing tools are
not generally available, and the machine-generated HTML produced by some
word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus
such following pages as are needed to hold, legibly, the material this License
requires to appear in the title page. For works in formats which do not have
any title page as such, "Title Page" means the text near the most prominent
appearance of the work’s title, preceding the beginning of the body of the
text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either com-
mercially or noncommercially, provided that this License, the copyright no-
tices, and the license notice saying this License applies to the Document are
reproduced in all copies, and that you add no other conditions whatsoever
to those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you dis-
tribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

Chapter 10: GNU Free Documentation License 43

If you publish printed copies of the Document numbering more than 100,
and the Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-
Cover Texts on the front cover, and Back-Cover Texts on the back cover.
Both covers must also clearly and legibly identify you as the publisher of
these copies. The front cover must present the full title with all words of
the title equally prominent and visible. You may add other material on the
covers in addition. Copying with changes limited to the covers, as long as
they preserve the title of the Document and satisfy these conditions, can be
treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual
cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy a
publicly-accessible computer-network location containing a complete Trans-
parent copy of the Document, free of added material, which the general
network-using public has access to download anonymously at no charge us-
ing public-standard network protocols. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers)
of that edition to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under

the conditions of sections 2 and 3 above, provided that you release the Mod-
ified Version under precisely this License, with the Modified Version filling
the role of the Document, thus licensing distribution and modification of the
Modified Version to whoever possesses a copy of it. In addition, you must
do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from
that of the Document, and from those of previous versions (which should,
if there were any, be listed in the History section of the Document). You
may use the same title as a previous version if the original publisher of
that version gives permission. B. List on the Title Page, as authors, one
or more persons or entities responsible for authorship of the modifications
in the Modified Version, together with at least five of the principal authors
of the Document (all of its principal authors, if it has less than five). C.
State on the Title page the name of the publisher of the Modified Version,
as the publisher. D. Preserve all the copyright notices of the Document. E.

44 GNU gprof

Add an appropriate copyright notice for your modifications adjacent to the
other copyright notices. F. Include, immediately after the copyright notices,
a license notice giving the public permission to use the Modified Version
under the terms of this License, in the form shown in the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections and
required Cover Texts given in the Document’s license notice. H. Include an
unaltered copy of this License. I. Preserve the section entitled "History", and
its title, and add to it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. If there is no
section entitled "History" in the Document, create one stating the title, year,
authors, and publisher of the Document as given on its Title Page, then add
an item describing the Modified Version as stated in the previous sentence. J.
Preserve the network location, if any, given in the Document for public access
to a Transparent copy of the Document, and likewise the network locations
given in the Document for previous versions it was based on. These may
be placed in the "History" section. You may omit a network location for
a work that was published at least four years before the Document itself,
or if the original publisher of the version it refers to gives permission. K.
In any section entitled "Acknowledgements" or "Dedications", preserve the
section’s title, and preserve in the section all the substance and tone of each
of the contributor acknowledgements and/or dedications given therein. L.
Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered part
of the section titles. M. Delete any section entitled "Endorsements". Such a
section may not be included in the Modified Version. N. Do not retitle any
existing section as "Endorsements" or to conflict in title with any Invariant
Section.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from the
Document, you may at your option designate some or all of these sections
as invariant. To do this, add their titles to the list of Invariant Sections in
the Modified Version’s license notice. These titles must be distinct from any
other section titles.

You may add a section entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by various parties–for
example, statements of peer review or that the text has been approved by
an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and
a passage of up to 25 words as a Back-Cover Text, to the end of the list of
Cover Texts in the Modified Version. Only one passage of Front-Cover Text
and one of Back-Cover Text may be added by (or through arrangements
made by) any one entity. If the Document already includes a cover text for
the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you

Chapter 10: GNU Free Documentation License 45

may replace the old one, on explicit permission from the previous publisher
that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under

this License, under the terms defined in section 4 above for modified versions,
provided that you include in the combination all of the Invariant Sections
of all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and mul-
tiple identical Invariant Sections may be replaced with a single copy. If there
are multiple Invariant Sections with the same name but different contents,
make the title of each such section unique by adding at the end of it, in
parentheses, the name of the original author or publisher of that section if
known, or else a unique number. Make the same adjustment to the section
titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections entitled "History"
in the various original documents, forming one section entitled "History";
likewise combine any sections entitled "Acknowledgements", and any sec-
tions entitled "Dedications". You must delete all sections entitled "En-
dorsements."

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other docu-

ments released under this License, and replace the individual copies of this
License in the various documents with a single copy that is included in the
collection, provided that you follow the rules of this License for verbatim
copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this License
into the extracted document, and follow this License in all other respects
regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate

and independent documents or works, in or on a volume of a storage or dis-
tribution medium, does not as a whole count as a Modified Version of the
Document, provided no compilation copyright is claimed for the compila-
tion. Such a compilation is called an "aggregate", and this License does not
apply to the other self-contained works thus compiled with the Document,
on account of their being thus compiled, if they are not themselves derivative
works of the Document.

46 GNU gprof

If the Cover Text requirement of section 3 is applicable to these copies
of the Document, then if the Document is less than one quarter of the en-
tire aggregate, the Document’s Cover Texts may be placed on covers that
surround only the Document within the aggregate. Otherwise they must
appear on covers around the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute

translations of the Document under the terms of section 4. Replacing Invari-
ant Sections with translations requires special permission from their copy-
right holders, but you may include translations of some or all Invariant
Sections in addition to the original versions of these Invariant Sections. You
may include a translation of this License provided that you also include the
original English version of this License. In case of a disagreement between
the translation and the original English version of this License, the original
English version will prevail.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except

as expressly provided for under this License. Any other attempt to copy,
modify, sublicense or distribute the Document is void, and will automatically
terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the

GNU Free Documentation License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If
the Document specifies that a particular numbered version of this License
"or any later version" applies to it, you have the option of following the terms
and conditions either of that specified version or of any later version that
has been published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may choose
any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents
To use this License in a document you have written, include a copy of the

License in the document and put the following copyright and license notices
just after the title page:

Copyright (c) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.1

or any later version published by the Free Software Foundation;

with the Invariant Sections being LIST THEIR TITLES, with the

Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

A copy of the license is included in the section entitled "GNU

Chapter 10: GNU Free Documentation License 47

Free Documentation License".

If you have no Invariant Sections, write "with no Invariant Sections"
instead of saying which ones are invariant. If you have no Front-Cover Texts,
write "no Front-Cover Texts" instead of "Front-Cover Texts being LIST";
likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we rec-
ommend releasing these examples in parallel under your choice of free soft-
ware license, such as the GNU General Public License, to permit their use
in free software.

48 GNU gprof

i

Table of Contents

1 Introduction to Profiling 1

2 Compiling a Program for Profiling 3

3 Executing the Program . 5

4 gprof Command Summary 7
4.1 Output Options . 7
4.2 Analysis Options . 10
4.3 Miscellaneous Options . 12
4.4 Deprecated Options . 12
4.5 Symspecs . 13

5 Interpreting gprof’s Output 15
5.1 The Flat Profile . 15
5.2 The Call Graph . 16

5.2.1 The Primary Line . 17
5.2.2 Lines for a Function’s Callers 19
5.2.3 Lines for a Function’s Subroutines 19
5.2.4 How Mutually Recursive Functions Are Described

. 20
5.3 Line-by-line Profiling . 22
5.4 The Annotated Source Listing . 24

6 Inaccuracy of gprof Output. 27
6.1 Statistical Sampling Error . 27
6.2 Estimating children Times . 27

7 Answers to Common Questions 29

8 Incompatibilities with Unix gprof 31

9 Details of Profiling . 33
9.1 Implementation of Profiling . 33
9.2 Profiling Data File Format . 34

9.2.1 Histogram Records . 35
9.2.2 Call-Graph Records . 35
9.2.3 Basic-Block Execution Count Records 36

9.3 gprof’s Internal Operation . 36
9.3.1 Debugging gprof . 39

ii GNU gprof

10 GNU Free Documentation License 41

