XORP Router Manager Process (rtrmgr)
Version 1.4

XORP Project
International Computer Science Institute
Berkeley, CA 94704, USA
http://www.xorp.org/
feedback@xorp.org

March 20, 2007

1 Introduction

This document provides a high-level technical overviewts Router Manager (rtrmgr) code structure,
intended to aid anyone needing to understand or modify thie/aee. It is not a user manual.

The XORP software base consists of a number of routing polsod®@GP, OSPF, PIM-SM, etc), a
Routing Information Base (RIB) process, a Forwarding Eedibstraction (FEA) process, and a forwarding
path. Other management, monitoring or application pra&sessay also supplement this set. Figure 1
illustrates these processes and their principle commtioicahannels.

For research purposes, these processes may be startedlyjnanfram scripts, so long as the depen-
dencies between then are satisfied. But when using XORP irr@ operational environment, the network
manager typically does not wish to see the software strechut rather would like to interact with the router
as a whole Minimally, this consists of a configuration file for routeéagup, and a command line interface
to interact with the router during operation. The rtrmgrqass provides this unified view of the router.

The rtrmgr is normally the only process explicitly startedauter startup. The rtrmgr process includes
a built-in XRL finder, so no external finder process is reqlirdhe following sequence of actions then
OCCurs:

1. The rtrmgr reads all the template files in the router’s temepdirectory. Typically there is one tem-
plate file per XORP process that might be needed. A templateldéiscribes the functionality that is
provided by the corresponding process in terms of all of trdiguration parameters that may be set.
It also describes the dependencies that need to be satigfiedk lihe process can be started. After
reading the template files, the rtrmgr knows all the confiiomgparameters currently supportable on
this router, and it stores this information in tismplate tree After all template files are read, the
template tree is checked for erroesd.,invalid variable names, etc). The rtrmgr will exit if thewe i
an error.

2. The rtrmgr next reads the contents of the XRL directoryisoaler all the XRLs that are supported
by the processes on this router. These XRLs are then chedgatustithe XRLs in the template tree.
As it is normal for the XRLs in the XRL directory to be used tongeate stub code in the XORP

Management Processes

IPC router

finder manager CLl SNMP

BGP4+ PIM-SM
/ i

OSPF

7 -
RIP IGMP/MLD
/Multicast Routing

IS-1S FEA

Unicast Routing $ $ $

Forwarding Engine ‘:Smm[;l:é:'
o . l:E:Ii(:k ements
RIB = routing information base

FEA = forwarding engine abstraction

Figure 1. Overview of XORP processes

processes, this forms the definitive version of a partic§RL. Checking against this version detects
if a template file has somehow become out of sync with the rgsutedebase. Doing this check at
startup prevents subtle run time errors later. The rirmgjrexit if a mismatch is discovered.

. The rtrmgr then reads the router configuration file. All¢bafiguration options in the config file must
correspond to configurable functionality as described byt¢implate files. As it reads the config file,
the rtrmgr stores the intended configuration indtsfiguration tree At this point, the nodes in the
configuration tree are annotatedrag existing- that is this part of the configuration has not yet been
communicated to the process that will implement the fumétiidy.

. The rtrmgr next traverses the configuration tree to discthe list of processes that need to be started
to provide the required functionality. Typically not allettavailable software on the router will be
needed for a specific configuration.

. The rtrmgr traverses the template tree again to discaverder for starting the required processes
that satisfies all their dependencies.

. The rtrmgr starts the first process in the list of processég started.

. If no error occurs, the rtrmgr traverses the configuratier to build the list of commands that need
to be executed to configure the process just started. A cochigembe either an XRL or an external
program. These commands are then called, one after anuaiitlethe successful completion of one
command triggering the calling of the next. The commandsadered according to the command
semantics €.9.,see below the description of commands %create, %activete, & the semantics
of the commands do not specify the ordering, then the commtolidw the order they are defined
in the rtrmgr template files. Some processes may requirmgalltransaction start command before

2

configuration, and a transaction complete command aftefigtoation - the rtrmgr can do this if
required.

. If no error occurred during configuration, the next pracisstarted, and configured, and so forth,
until all the required processes are started and configured.

. At this point, the router is up and running. The rtrmgr widiw allow connections from the xorpsh
process to allow interactive operation.

2 Template Files

The router manager reads a directory of template files tmdéscthe configuration options that the router
supports. A fragment of such a configuration file might loddeli

protocols {
ospf {
router-id: ipv4;
mospf:. toggle = false;
flood_rate: i32;
area @: ipv4 {
stub: toggle = false;
interface @: txt {
disable: toggle = false;
hello-interval: u32 = 30;
dead-interval: u32 = 95;

}
}
}
}

This defines a subset of the configuration options for OSP&.cbhfiguration options form a tree, with
three types of nodes:

e Structural nodes such asotocol andospf that exist merely to provide scope.

e Named interior nodes such aarea @” and “interface @ ", where there can be multiple in-
stances of the node. Symb@indicates that a name is required; in the case of “area @ 'régnfent
above specifies that the name must be an IPv4 address.

e Leafnodes such dood _rate andhello-interval . These nodes are also typed, and may op-
tionally specify a default value. In the example abdwel]o-interval is of typeu32 (unsigned
32 bit integer), and takes the default value of 30.

Thus the template tree created from this template file wanoé like:

ROOT | protocols || ospf router—id |

larea @ stub |
interface @ disable |

hello-interval
dead-interval

The same node may occur multiple times in the template filés fitiight happen because the node can
take more than one type (for example, it might have an IPvadPa6 address), or it might happen because
the second definition adds information to the existing diedini

4

In addition to specifying the configurable options, the téatgfile should also specify what the rtrmgr
should do when an option is modified. These commands anngte template file begin with &. Thus
the template file above might also contain the following dateal version of the template tree:

protocols ospf {
%modinfo: provides ospf;
%modinfo: depends rib;
%modinfo: path "ospfd/xorp/ospfd";
%modinfo: default_targethame "ospf";
%mandatory: $(@.targetname), $(@.router-id);
targetname {

%set:;
}
router-id {
%set: xrl "$(ospf.targetname)/ospf/0.1/set_router_id? id:u32=$(@)";
%get: xrl "$(ospf.targetname)/ospf/0.1/get_router_id- >id:u32";
}
area @ {
%create: xrl "$(ospf.targetname)/ospf/0.1/add_or_conf igure_area?area_id:u32=%(a
%delete: xrl "$(ospf.targetname)/ospf/0.1/delete_area ?area_id:u32=%(area.@)";
}
mospf {
%set: xrl "$(ospf.targetname)/ospf/0.1/set_mospf?enab led:bool=$(@)";
%delete: xrl "$(ospf.targetname)/ospf/0.1/set_mospf?e nabled:bool=$(DEFAULT)";
%get: xrl "$(ospf.targetname)/ospf/0.1/get_mospf->ena bled:bool=$(@)";
}

}

The first four annotations apply to the “protocols ospf” noded specify the “%omodinfo” command,
which provides information about the module providing thiactionality. In this case they specify the
following:

e This functionality is provided by the module calledpf .
e This module depends on the module calldd .
e The program irospfd/xorp/ospfd should be run run to provide this module.

e XRL target nameospf should be used by default when validating an XRL specificatimt uses a
variable inside thespf module €.g9.$(ospf.targetname)) to specify the XRL target.

The “%mandatory” annotation contains the list of nodes araldes that must be configured in the
user configuration file or that must have a default value. &énahove example, this applies to variables
“targetname ”and “router-id "

The “protocols ospf targetname " node carries an annotation to specify the existence of vari
able name targethname " that can be used to specify the XRL target name of an OSPRriost The
specific value of targetname ” can be configured elsewhere.

The “protocols ospf router-id " node carries annotations to set the value of the router ID in
the ospf process, and to get the value back. The set command is

5

%set: xrl "$(ospf.targetname)/ospf/0.1/set_router_id? id:u32=$(@)";

This specifies that to set this value, the rtrmgr must callsipecified XRL. In this case it specifies a
variable expansion of variabl@ospf.targetname) and$(@) . All variables take the forr(...) .
The variableb(ospf.targetname) means the value of nodefotocols ospf targetname
The variables(@) means the value of the current node. Hence, if the targetime®t in the configuration
tree to (or had a default value in the template tred'afpf* , and the router ID node in the configuration

tree had the value 1.2.3.4, then the XRL to call would be:

”

ospflospf/0.1/set_router_id?id:u32=1.2.3.4

The %set command only applies to leaf nodes that have values and otihe ivalue is allowed to
be changed. For example, noderdtocols ospf router-id " has %set command because its
value can be changed. On contrary, nodmtocols ospf area @ ” does not havé&seset command,
because it defines a node that can have multiple instances. iistance has a value when the instance is
created, but that value cannot be changed later.

Internal nodes would typically use tRécreate command to create a new instance of the node, as
shown with the protocols ospf area @ " node. In the example above, tBécreate command
involves two variable expansion$(area.@) and$(@.stub) . The form$(area.@) means “this
area”, and so in this case it is directly equivalen${@) meaning “this node”. The variab®@.stub)
means the value of the leaf node calkdb that is a child node of “this node”.

Default template value of a variable can be specified by tieried DEFAULT For example$(DEFAULT)
or $(@.DEFAULT) would refer to the default template value of “this” node, l&fi(foo.bar. DEFAULT)
would refer to the default template value of ndéeo.bar"

Thus, the template tree specifies the following information

e The nodes of the tree specify all the configuration optiorssitde on the router.

e Some of the nodes are annotated with information to indieditieh software to run to provide the
functionality rooted at that node, to indicate which othevdules this software depends on being
running, and to provide additional information about thigdule.

e Most of the nodes are annotated with commands to be run wigevatbe of the node changes in the
configuration tree, when a new instance of the node is creatad instance of the node is deleted in
the configuration tree, or to get the current value of a node fthe running processes providing the
functionality.

Note that for verification purpuse all variable names mugrréo valid nodes in the template tree.
Hence, the template tree may contain dummy nodes that stidaednsed for configuration purpose. For
example, the internal variablED that can be used to store the transient transaction ID sheusghecified
as:

interfaces {
%modinfo: ...

TID {

Obcreate:;

}

2.1 Template Tree Node Types

The following types are currently supported for templagetnodes:

u32
Unsigned 32 bit integer

u32range
A range of unsigned 32 bit integers defined by an upper andrlowtisive boundary. Boundaries
are separated by two dots, e1l34..5678 . If upper and lower boundaries are equal it is sufficient
to specify only a single value, e.234 .

i32
Signed 32 bit integer

bool
Boolean - valid values arteue andfalse

toggle
Similar to boolean, but requires a default value. Displayhef config tree node is suppressed if the
value is the default.

ipv4
An IPv4 address in dotted decimal format.

ipv4net
An IPv4 address and prefix length in the conventional forrgag.: 1.2.3.4/24

ipv4range
A range of IPv4 addresses defined by an upper and lower imeldmundary. IPv4 addresses are
specified in dotted decimal format delimited by two dots, 4.8.3.4..5.6.7.8 . If upper and
lower boundaries are equal it is sufficient to specify onlyngle value, e.g1.2.3.4

ipv6
An IPv6 address in the canonical colon-separated humataipéa format.

ipvbnet
An IPv6 address and prefix in the conventional format. He0::1/64

ipvérange
Arange of IPv6 addresses defined by an upper and lower inelbsundary. IPv6 addresses are speci-
fied in colon-separated format and are delimited by two dotsfe80::1234..fe80::5678 f

upper and lower boundaries are equal it is sufficient to §pealy a single value, e.ge80::1234

macaddr
An MAC address in the conventional colon-separated hexdbria.g.:00:c0:4f:68:8¢:58

coma32
Unsigned 32 bit integer representing a BGP community tageat be specified either in a colon-
separated format using two 16 bit integers, 8001:1 , or as a single 32 bit unsigned integer.

It is likely that additional types will be added in the futuees they are found to be needed.

2.2 Template Tree Commands

This section provides a complete listing of all the temptete commands that the rtrmgr supports.

2.2.1 The%modinfo Command.
The sub-commands to t8émodinfo command are:

%modinfo: provides ModuleName
The provides subcommand takes one additional parameter, which givesahe of the module
providing the functionality rooted at this node.

%modinfo: depends list of modules
Thedepends subcommand takes at least one additional parameter, gidisgof the other modules
that must be running and configured before this module mayaoted.

%modinfo: path ProgramPath
The path subcommand takes one additional parameter giving the gatérof the software to be
run to provide this functionality. The pathname may be alisobr relative to the root of the XORP
tree. The ordering in computing the root of the tree is: (&) shell environment XORROOT
(if exists); (b) the parent directory the rtrmgr is run froonly if it contains the etc/templates and
the xrl/targets directories); (c) the XOBRROOT value as defined in config.h (currently this is the
installation directory, and defaults to “/usr/local/x8rp

%modinfo: default _targetname TargetName
Thedefault _targethame subcommand takes one additional parameter giving the \cdltiee
XRL target name that should be used by default when valigadim XRL specificationd.g.,if the
specification uses a variable inside that module to spee#fyxXiRL target name).

%modinfo: start _commit method argument
Thestart _commit subcommand takes two or more additional parameters, thaisad to specify
the mechanism to be call before performing any change to ehéguration of the module. The
only methods currently supported atd which takes an XRL specification as an argument, and
program which takes an executable program as an argument.

%modinfo: end _commit method argument
Theend _commit subcommand takes two or more additional parameters, thais@d to specify the
mechanism to be called to complete any change to the contiguiet the module. The only methods
currently supported aral which takes an XRL specification as an argument, gnogjram which
takes an executable program as an argument. &ath _commit andend commit are optional.
They provide a way to make batch changes to a module configuras an atomic operation.

8

%modinfo: status _method method argument
Thestatus _method subcommand takes two or more additional parameters, thasad to specify
the mechanism to be used to discover the status of the motléeonly methods current supported
arexrl which takes an XRL specification as an argument, rodiram which takes an executable
program as an argument.

%modinfo: startup _method method argument
Thestartup _method subcommand takes two or more additional parameters, thaisad to spec-
ify the mechanism to be used to gracefully startup the modUite only methods current supported
arexrl which takes an XRL specification as an argument, prodjram which takes an executable
program as an argument.

Before thestartup _method subcommand is called, itis expected that the proces$FRDCSTARTUP
state; after the subcommand is called the process shoulsittoa to thePROCREADYstate. Note
that this subcommand is optional and if it is not specifie@ntit is expected that the process will
transition on its own to theROCREAD Ystate.

%modinfo: shutdown _method method argument
The shutdown _method subcommand takes two or more additional parameters, thatised to
specify the mechanism to be used to gracefully shutdown thdute. The only methods current
supported argrl which takes an XRL specification as an argument, grodyram which takes an
executable program as an argument. If the process doesamdiréimsition ta°PROCSHUTDOWsKate,
the rtrmgr will then kill the process.

2.2.2 The%mandatory Command.

%mandatory is used to specify the list of nodes or variables that mustdodigured in the user config-
uration file or that must have a default value. This commamdagpear multiple times anywhere in the
template tree. If it appears multiple times within the sasmalate node, then all listed nodes are manda-
tory. However, note that it cannot be used to specify a nvallite node such as
$(interfaces.interface.@.vif. @.address.@)

2.2.3 The%create Command.

%create is used to create a new instance of an interior node in thegroafion tree.

e The first parameter indicates the form of action to take tdoper this action - typically it isxrl
which indicates an XRL should be called. To execute an eatgmrogram instead, the action should
beprogram .

e If the action isxrl , then the second parameter specifies the XRL to call to cteateew configura-
tion tree instance of this template tree node.

e If the action isprogram , then the second parameter specifies the program to execatedte the
new configuration tree instance of this template tree node.

Note that if a node has riibcreate command, then th&set command (if exists) for that node is used
instead (see below).

2.2.4 The%activate Command.

%activate is used to activate a new instance of an interior node in tméiguration tree. It is typi-
cally paired with%create - the%create command is executed before the relevant configuration of the
node’s children has been performed, whefagtivate is executed after the node’s children have been
configured. A particular interior node might have eitB&ereate , %activate or both.

e The first parameter indicates the form of action to take tdgper this action - typically it isxrl
which indicates an XRL should be called. To execute an eatgmogram instead, the action should
beprogram .

¢ If the action isxrl , then the second parameter specifies the XRL to call to aettii@ new configu-
ration tree instance of this template tree node.

e If the action isprogram , then the second parameter specifies the program to execatéivate the
new configuration tree instance of this template tree node.

For example, if the template tree held the following:

address @: ipv4d {
%create: xrl XRLZ
%activate: xrl XRL2
netmask: ipv4d {
%set: xrl XRL3

Then when an instance of address and netmask are createordiglied, the execution order of the
XRLs will be: XRL1, XRL3, XRL2

2.2.5 The%update Command.

%update is used to update an existing instance of a node in the coafigartree. It is typically paired
with %activate - the%activate command is executed after the node’s children have beergcoadi

for very first time €.g.,0n startup), wheregupdate is executed if some of the node’s children have been
modified €.g.,via xorpsh).

e The first parameter indicates the form of action to take tdoper this action - typically it isxrl
which indicates an XRL should be called. To execute an eatgmrogram instead, the action should
beprogram .

e If the action isxrl , then the second parameter specifies the XRL to call to ugdateonfiguration
tree instance of this template tree node.

e If the action isprogram , then the second parameter specifies the program to execupelate the
configuration tree instance of this template tree node.

Note that if the value of a node is maodified, only the clo$éspdate command up in the hierarchy is
executed. For example, if the template tree held the foligwi

10

address @: ipv4d {
%create: xrl XRLZ
%activate: xrl XRL2
%update: xrl XRL3
netmask: ipv4d {
%update: xrl XRL4
disable: bool {

%set:;
}
}
broadcast: ipv4 {
%set:;
}

Then when the value afisable is modified, onlyXRL4will be called. If the value obroadcast
is modified, therXRL3will be called.

2.2.6 The%list Command.

%list is called to obtain a list of all the configuration tree instas of a particular template tree node. For
example, a particular template tree node might represenintbrfaces on a router. The configuration tree
would then contain an instance of this node for each interGagrently configured. Th&list command

on this node would then return the list of interfaces.

e The first parameter indicates the form of action to take tdoper this action - typically it isxrl
which indicates an XRL should be called. To execute an eatgmrogram instead, the action should
beprogram .

e If the action isxrl , then the second parameter specifies the XRL to call to réiertist.

e If the action isprogram , then the second parameter specifies the program to execrdgutn the
list.

2.2.7 The%delete Command.

%delete is called to delete a configuration tree node and all its o#aiid A node that has ®#create or
%activate command should also havé/edelete command.

e The first parameter indicates the form of action to take tdoper this action - typically it isxrl
which indicates an XRL should be called. To execute an eatgmrogram instead, the action should
beprogram .

e If the action isxrl , then the second parameter specifies the XRL to call to déleteonfiguration
tree instance of this template tree node.

e If the action isprogram , then the second parameter specifies the program to execdtdete the
configuration tree instance of this template tree node.

11

If a node that is deleted does not havétdelete command, then th@&delete commands of its
children are called instead. This rule is applied reculgit@r each child that does not havedsdelete
command. For example, lets say A is a parent of B1 and B2, and Bparent of C1. Also, lets say that
only B2 and C1 havécdelete methods. If we delete A, then both B2's and C¥slelete methods
are invoked. If, however, Bl also ha®/&delete method, then deleting A will invoke only B1 and B2's
%delete methods.

2.2.8 The%set Command.

%set is called to set the value of a leaf node in the configuratiea.tr

e The first parameter indicates the form of action to take tdgper this action - typically it isxrl
which indicates an XRL should be called. To execute an eatgmrogram instead, the action should
beprogram .

¢ If the action isxrl , then the second parameter specifies the XRL to call to setalbe of configura-
tion tree instance of this template tree node.

¢ If the action isprogram , then the second parameter specifies the program to execsgethe value
of configuration tree instance of this template tree node.

Note that when a new instance of a node in the configuratieigrereated, if that node has #reate
command, then th&set command (if exists) for that node is used instead.

2.2.9 The%unset Command.

%unset is called to unset the value of a leaf node in the configuratfiea. The value will return to its
default value if a default value is specified.

e The first parameter indicates the form of action to take tdoper this action - typically it isxrl
which indicates an XRL should be called. To execute an eatgmogram instead, the action should
beprogram .

e If the action isxrl , then the second parameter specifies the XRL to call to unsetaiue of config-
uration tree instance of this template tree node.

e If the action isprogram , then the second parameter specifies the program to executesét the
value of configuration tree instance of this template tregeno

2.2.10 The%get Command.

%get is called to get the value of a leaf node in the configuratiee.tNormally the rtrmgr will know the
value if there is no external means to change the value, babget command provides a way for the rtrmgr
to re-sync if the value has changed.

e The first parameter indicates the form of action to take tdoper this action - typically it isxrl

which indicates an XRL should be called. To execute an eatgmogram instead, the action should
beprogram .

12

e If the action isxrl , then the second parameter specifies the XRL to call to getalue of configu-
ration tree instance of this template tree node.

¢ If the action isprogram , then the second parameter specifies the program to exeay¢ the value
of configuration tree instance of this template tree node.

2.2.11 The%allow Command.

The%allow command provides a way to restrict the value of certain ntmlepecific values.

e The first parameter gives the name of the variable to be ctedri
e The second parameter is a possible allowed value for thiablar
e The third parameter must be the “%help:” keyword.

e The fourth parameter is the help string for this value.

If there is more than one possible values, each of them shmilgpecified by a separa¥allow
command.

For example, a node might specify an address family, whichténded to be one of “inet” or “inet6”.
The type of the node it , which would allow any value, so the allow command mightwltbe rtrmgr
to restrict the legal values without having to communicati the process providing this functionality.

A more subtle use might be to allow certain nodes to exist rayparent node was of a certain value.

For example:

family @: txt {
%allow: $(@) "inet" %help: "IPv4 address family";
%allow: $(@) "inet6" %help: "IPv6 address family”;
address @: ipv4 {
%allow: $(family.@) "inet" %bhelp: "IPv4 address family";
broadcast: ipv4;
}
address @: ipv6 {
%allow: $(family.@) "inet6" %bhelp: "IPv6 address family";
}
}

In this case, there are two different typed versions of tidfess @ ” node, once for IPv4 and one
for IPv6. Only one of them has a leaf node calledadcast . The allow command permits the rtrmgr to
do type-checking to ensure that only the permitted comiginatare allowed.

2.2.12 The%allow-range Command.

The %allow-range command restricts the range of values an integer configuréteem may take. The
syntax is:
%allow-range: varName lowValue highValue %help: help-string

13

where the first parameterarName gives the name of the variable to be restricted. Thisi<glpi"$(@)" .
ThelowValueandhighValparameters specify the lower and upper bound of the alloevegier of values. The
%help: is a mandatory keyword and is followed by the help string. hiélp string is used for command-line
completion purpose.

An example of use appears in the interface address prefiXfispéon:

address @: ipv4 {
prefix-length: u32;
}

address @: ipv4 {
prefix-length {
%allow-range: $(@) "1" "32" %help: "The prefix length";
%set: xrl "...";
%get: xrl "...";
}
}

If there is more than orfballow-range command restricting the value of a variable, then the assign
value must belong to any of the specified ranges.

2.2.13 The%help Command.

The%help command specifies the CLI configuration-mode help string §yntax is:

%help: {short | long} "Help string";
where the first parameteshortor long, specifies whether this is the short-version or the longiverof the
help, and the second parameter is the help string itself.

2.2.14 The%deprecated Command.

The%deprecated command can be used to deprecate a template tree node amdbtitee Helow it. The
syntax is:

%deprecated: "String with reason”;

If the XORP startup configuration contains a statement teas & deprecated node in the template, the
rtrmgr prints an error with the string with the reason, anitsexf, however, a third-party user programg.,
other than xorpsh) sends to the rtrmgr configuration thatatos a deprecated statement, the rtrmgr returns
an error to xorpsh, and the error message will contain tlgstvith the reason.

2.2.15 The%user-hidden Command.

The%user-hidden command can be used to hide a template tree hode and theeshblosv it from the
user. Such node or a subtree can be used by the rtrmgr itsétitéonal purpose only and is not visible to
the user €.g.,via xorpsh or when saving the configuration to a file). The @yid:

%user-hidden: "String with reason”;

However, if the XORP startup configuration contains a statgnthat uses an user-hidden node, the
rtrmgr will accept the configuration. Similarly, if a thigghrty user programe(g.,other than xorpsh) sends

14

to the rtrmgr configuration that contains an user-hiddetestant, the rtrmgr would accept that statement.
This is an experimental feature may become permanent or mdishbled in the future.

2.2.16 The%read-only Command.

The%read-only command can be used to specify a template tree node as rgad-oe syntax is:

%read-only: "String with reason”;

or

%read-only:;

Only a leaf node that contains a value can be marked as rdpdiba node is marked as a read-only,
then its value cannot be changed from the default templdte v&or example, a read-only node could be
part of the startup configuration, but if its value is diffierérom the default template value the rtrmgr will
reject the configuration.

Note that by definition a read-only node is also permaner §ertion 2.2.17): it cannot be deleted
directly, but it will be removed if its parent is deleted.

2.2.17 TheY%permanent Command.

The%permanent command can be used to specify a template tree node as a pathmaxde that cannot
be deleted. The syntax is:

%permanent: "String with reason”;

or

%permanent:;

If a node is marked as permanent, the node itself cannot letedetlirectly. However, deleting the
parent node will delete the permanent node as well. Alsangdal deleting children of a permanent node
is allowed.

If a permanent node never should be deleted, then all itsstorseshould be marked as permanent.

2.2.18 The%order Command.

The %order command provides a way to specify the ordering of multipldesoof the same type in the
configuration. For example, if no ordering is specified intdraplate file, such as with interfaces:

interfaces {
interface @: txt {

}
}

Then this template would allow the configuration for eaulerface to be displayed and configured in
the order they were entered. For example, the configuratightrbe:

interfaces {
interface fxpl {
vif fxpl {
address: 10.0.0.1
}
}

15

interface dcO {
vif dcO {
address: 10.0.1.1
}
}

interface fxpO {
vif fxp0 {
address: 10.0.2.1
}
}
}

The ordering of thénterface sections here is arbitrary, in the order they were enteretiduser.

In many cases this is what is desired, but in some cases sutlewall rules, this is not desired, and the
%order command provides a way to enforce an ordering.

For example, a simple firewall (not the actual XORP firewaligim use a template such as:

firewall {
interface @: txt {
rule @: u32 {
%order: sorted-numeric;
permit @: txt;
deny @:txt;
}
}
}

Thus, some configured firewall rules might be:

firewall {
interface fxp0 {
rule 100 {
permit "net 10.0.0.0/24"

}
rule 300 {

deny "all"
}
}
}

The ordering here is now dictated byle number, in accordance with the tt %order command. If a new
rule 200 was subsequently inserted, it would always be displayedcanfigured afterule 100 and
beforerule 300

The available parameters for thgorder command are:

e unsorted - the default, ordered in the order of entry.

16

e sorted-numeric - sorted in increasing numeric interger order.

e sorted-alphabetic - sorted in increasing alphabetic order.

Note that ifsorted-numeric is applied to @xt field, the sort order for non-numeric values is undefined,
but numeric values will be sorted correctly.

2.3 Template Tree Command Actions

Template tree commands such as:
e %modinfo: start _commit <method>;
e %modinfo: end _commit <method>;
e %modinfo: status _method <method>;
e %modinfo: startup _method <method>;
e %modinfo: shutdown _method <method>;

are used to specify the mechanism to be call before any caoafign change of a module, the mecha-
nism to discover the status of a module, and so on. Temptgetmmands such #screate , %activate
and%set are used to specify the actions that need to be performed thikaouter configuration is created
or modified.

This section provides a complete listing of all the temptate actions that the rtrmgr supports.

2.3.1 Template Treexrl Action

Thexrl command action specifies the XRL to be executed. The XRL andrguments must be inside
guotes and it may contains variables that will be substituiith the particular values at execution time. For
example, if the template tree held the following:

bgp-id {
%set: xrl "$(bgp.targetname)/bgp/0.2/set_bgp_id?id:ip v4=$(@)";
}

Then when we set the value bfp-id , first the rtrmgr will substitutes(bgp.targetname) with
the particular value of that variable, af¢f@) with the value ofbgp-id . After the substitution it will call
XRL bgp/0.2/set _bgp_id with argumenid:ipv4 set to the value dbgp-id

We could userl actions to get the value of a particular variable, store #iaevinside the rtrmgr and
then use that value by other actions. For example, if the mfree held the following:

interface {
%modinfo: start_commit xrl "$(interface.targetname)/if mgr/0.1/
start_transaction->tid:u32=$(interface.TID)";
%modinfo: end_commit xrl "$(interface.targetname)/ifmg r/0.1/

commit_transaction?tid:u32=%$(interface.TID)";

17

TID {
Obcreate:;

}

interface @: txt {
%create: xrl "$(interface.targetname)/ifmgr/0.1/
create_interface?tid:u32=%(interface.TID)&ifname:tx t=$(@)";

Then whenever the interface configuration is changedstag _commit andend _commit XRLs
will be call before and after performing any change to thdigomation of the module. Thetart _commit
XRL will return the transaction I0id of type u32. The rtrmgr will store that value internally in the
$(interface.TID) local variable (note that this variable should be declare@ deaf node without
type). Then this value can be used by other actions such &&theate and theend _commit XRL
actions in the above example.

2.3.2 Template Tregprogram Action

Thexrl command action specifies the external program to be execiiteel program and its arguments
must be inside quotes and it may contains variables thatbsilbubstituted with the particular values at
execution time. For example, if the template tree held tHeving:

foo {
%set: program "/binfecho -n '$(@)’ >> /tmpffile.txt";
}

Then when we set the value fafo |, first the rtrmgr will substitut&(@) with the value offoo . After
the substitution it will call progranbin/echo with argumentn and the value dfoo . The result of this
command will be appended to fitanp/file.txt

We could useprogram actions to store thetdout andstderr output of a command inside the
rtrmgr and then use those values by other actions. For exaifhe template tree held the following:

rtrmgr {

CONFIG {
Obcreate:;

}
CONFIG_STDERR {

Obcreate:;

}

load {
Obcreate:;

18

%set: program "/bin/cat '$(@)" ->

stdout=$(rtrmgr.CONFIG)&stderr=$(rtrmgr.CONFIG_STDE RR)";
}
save {
%create:;
%set: program "/bin/echo -n '$(rtrmgr.CONFIG)’ > '$(@)™;
}

Then whenever we change the value of varidold , the external progrartbin/cat will be exe-
cuted with the value of that variable as its argument. Thagtrwill store the stdout and stderr output of
that program internally inside local variab®gtrmgr.CONFIG) and$(rtrmgr.CONFIG _STDERR)
respectively (note that those variables should be deckasddaf nodes either with or without type). Then
those values can be used by other actions such &gkeé action for thesave node in the above example.

19

3 The Configuration File

Whereas the template files inform the rtrmgr asgbssibleconfiguration of the router, the configuration file

provides the specific startup configuration to be used bysghesific router. The syntax is similar to, but not

the same as, that of template files - the differences aretioteh - template files are intended to be written

by software developers, whereas configuration files aradiee to be written by network managers. Hence
the syntax of configuration files is simpler and more inteitibut less powerful. However, both specify

the same sort of tree structure, and the nodes in the configuitaee must correspond to the nodes in the
template tree.

An example fragment of a configuration file might be:

protocols {
ospf {
router-id: 1.2.3.4
mospf
area 1.2.3.27 {
stub
interface fxpl {
hello-interval: 10
}
interface fxp2
}
}
}

Note that unlike in the template tree, semicolons are naidesén the configuration tree, and that line-
breaks are significant.

The example fragment of a configuration file above will camsttthe following configuration tree from
the template tree example given earlier:

ROOT I protocols || ospf router—id=1.2.3.4 |
area 1.2:3:27 stub=true|
interface fxpl hello-interval=10 |
dead-inteval=90
[interface fxp2 hello-interval=30 |

dead-interval=90

Note that configuration tree nodes have been createdefad-interval and (in the case of fxp1)
for hello-interval even though this was not mentioned in the configuration fileés s because the
template tree contains a default value for this leaf nodesoAh case of configuring a boolean variatdey(,
of typebool ortoggle) such asmospf, typing the variable name itselé(g., mospf) is equivalent to
assigning it value ofrue (e.g.,mospf: true).

20

4 Command Line Interface: xorpsh

The rtrmgr process is the core of a XORP router - it starts aopssprocesses and keeps track of the
configuration. To do its task, it must run as root, whereast wither XORP processes don't need privileged
operation and so can be sandboxed. This makes the rtrmgegzrdlce single most critical point from a
security point of view. Thus we would like the rtrmgr to be @mse as possibfe and to isolate it from
possibly hostile input as far as is reasonable.

For these reasons we do not build a command line interfaeettirinto the rtrmgr, but instead use an
external process calledrpsh to interact with the user, while limiting the rtrmgr’s ing&tion with xorpsh
to simple authentication mechanisms, and exchanges ofgtwafion tree data. Thus the command line
interface architecture looks like:

xorpsh processes
running from unprivileged
user accounts

Constrained

cL = interface
interaction
with rtrmgr
users process
_ 27 1N XRLs for

onfiguration

‘BGP HOSPF H PIM—SM‘

The interface between the rtrmgr and a xorpsh instance stensi XRLs that the xorpsh may call to
query or configure rtrmgr, and a few XRLs that the rtrmgr maynakronously call to alert the xorpsh
process to certain events.

The rtrmgr exports the following XRLs that may be called bypsh:

register _client
This XRL is used by a xorpsh instance to register with thegtrrm response, the rtrmgr provides the

name of a file containing a nonce - the xorpsh must read thiariidereturn the contents to the rtrmgr
to authenticate the user.

authenticate _client
Xorpsh uses this to complete the authentication process.

get _running _config
Xorpsh uses this to request the current running configurdtam the rtrmgr. The response is text in
the same syntax as the rtrmgr configuration file that provikdestrmgr’s view of the configuration.

enter _config _mode
A xorpsh process must be in configuration mode to submit cordtgpn changes to the rtrmgr. This
XRL requests that the rtrmgr allows the xorpsh to enter comdiion mode. Not all users have

permission to enter configuration mode, and it is also pestilat a request may be refused because
the configuration is locked.

IUnfortunately the router manager is not simple as we wol li

21

get _config _users
Xorpsh uses this to request the list of users who are cuyrentdonfiguration mode.

apply _config _change
Xorpsh uses this to submit a request to change the runninigooation of the router to the rtrmgr.
The change consists of a set of differences from the curtemting configuration.

lock _config
Xorpsh uses this to request an exclusive lock on configuratfanges. Typically this is done just
prior to submitting a set of changes.

unlock _config
Unlocks the rtrmgr configuration that was locked by a presicall tolock _config

lock _node
Xorpsh uses this to request a lock on configuration changespecific config tree node. Usually this
will be called because the user has made local changes tortlfig but not yet committed them, and
wishes to prevent another user making changes that corifticking is no substitute for human-to-
human configuration, but it can alert users to potential lerob.

Note: node locking is not implemented yet.

unlock _node
Xorpsh uses this to request a lock on a config tree node be szmov

save _config
Xorpsh uses this to request the configuration be saved to. artile actual save is performed by the
rtrmgr rather than by xorpsh, but the resulting file will bermd by the user running this instance of
xorpsh, and the file cannot overwrite files that this user @aowlt otherwise be able to overwrite.

load _config
Xorpsh uses this to request the rtrmgr reloads the routdigeoation from the named file. The file
must be readable by the user running this instance of xogushthe user must be in configuration
mode when the request is made.

leave _config _mode
Xorpsh uses this to inform rtrmgr that it is no longer in coaf@tion mode.

Each xorpsh process exports the following XRLs that thegtroan use to asynchronously communicate
with the xorpsh instance:

new_config _user
Rtrmgr uses this XRL to inform all xorpsh instances that areanfig mode than another user has
entered config mode.

config _change _done
When a xorpsh instance submits a request to the rtrmgr tagehi#we running config or to load a con-
fig from a file, the rtrmgr may have to perform a large number BiL¢alls to implement the config

22

change. Due to the single-threaded nature of XORP progegsestrmgr cannot do this while re-
maining in theapply _config _change XRL, so it only performs local checks on the sanity of the
request before returning success or failure - the configuratill not have actually been changed at
that point. When the rtrmgr finishes making the change, omwhidure occurs part way through mak-
ing the change, the rtrmgr will catlonfig _change _done on the xorpsh instance that requested
the change to inform it of the success or failure.

config _changed
When multiple xorpsh processes are connected to the rtangrone of them submits a successful
change to the configuration, the differences in the conftgurawill then be communicated to the
other xorpsh instances to keep their version of the configuran sync with the rtrmgr’s version.

4.1 Operational Commands and xorpsh

Up to this point, we have been dealing with changes to theeratdanfiguration. Indeed this is the role
of the rtrmgr process. However a router's command line fateris not only used to change or query the
router configuration, but also to learn about the dynami stbthe router, such as link utilization or routes
learned by a routing protocol. To keep it as simple and roasigiossible, the rtrmgr is not involved in these
operational modeommands. Instead these commands are executed directlydrpsh process itself.

To avoid the xorpsh implementation needing in-built kna¥ge of router commands, the information
about operational mode commands is loaded from anothef sshplate files. A simple example might be:

show interfaces $(interfaces.interface.*) {
%command: "path/to/show_interfaces -i $3" %help: HELP;
%module: fea;
%opt_parameter: "brief" %help: BRIEF;
%opt_parameter: "detail” %help: DETAIL;
%opt_parameter: "extensive" %help: EXTENSIVE;
%tag: HELP "Show network interface information”;
%tag: BRIEF "Show brief network interface information";
%tag: DETAIL "Show detailed network interface information ;

%tag: EXTENSIVE "Show extensive network interface informa tion";
}
show vif $(interfaces.interface.*.vif.*) {
%command: "path/to/show_vif -i $3" %help: "Show vif inform ation";
%module: fea;
%opt_parameter: "brief" %help: "Show brief vif informatio n";
%opt_parameter: "detail” %help: DETAIL;
%opt_parameter: "extensive" %bhelp: EXTENSIVE;
%tag: DETAIL "Show detailed vif information”;
%tag: EXTENSIVE "Show extensive vif information”;
}

”

This template file defines two operational mode commarsisow interfaces "and “show vif
The “show interfaces” command takes one mandatory parameéiese value must be the name of one
of the configuration tree nodes taken from the variable naitdeard expansio(interfaces.interface.*)

23

Thus if the router had config tree nodes calle@itérfaces interface xIO ", and “interfaces
interface xI1 ", then the value of the mandatory parameter must be exti@eror xI1 .

Additional optional parameters might beief ,detail ,orextensive -the set of allowed optional
parameters is specified by th&opt_parameter commands.

The %commandcommand indicates the program or script (and its arguméatbe executed to im-
plement this operational command - the script should refwman-readable output preceded by a MIME
content type indicating whether the text is structured df.n¢f the command specification contains any
positional argumente(g.$0, $1, $2) they are resolved by substituting them with the particslavstring
from the typed command line commangiO is substituted with the complete string from the command
line, $1 is substituted with the first token from the command li#i2,is substituted with the second token
from the command line, The resolved positional argumemtsgavith the remaining arguments (if any) are
passed to the executable command. For example, if the yses tghow interfaces xI0”, the xorpsh might
invoke theshow _interface command using the Unix command line:

path/to/show_interfaces -i xI0

The pathname to a command must be relative to the root of tHiRFXtbee. The ordering in computing
the root of the tree is: (a) the shell environment XQROOT (if exists); (b) the parent directory the xorpsh
is run from (only if it contains the etc/templates and thétargets directories); (c) the XORROOT value
as defined in config.h (currently this is the installatiorediory, and defaults to “/usr/local/xorp”).

The commandomodule indicates that this operational command should only bdaai through the
CLI when the router configuration has required that the namedule has been started. If temodule
command is missing, then this operational command is alwagbled.

The commandohelp is used to specify the CLI help for each CLI command or theomyati parameters.
It must be on the same line as tcommandr the%opt _parameter commands. If the argument after
the%help command is in quotes, then it contains the help string it€#erwise, the argument is the name
of the tag that contains the help string.

The commandstag is used to specify the help string associated with each tageXxample, statement:

%command: "path/to/show_vif -i $3" %help: HELP;
%tag: HELP "Show vif information”;

is equvalent with:
%command: "path/to/show_vif -i $3" %help: "Show vif inform ation";

Note: currently there is no security mechanism restriciicgess to operational mode commands beyond
the restrictions imposed by Unix file permissions. This tsmended to be the long-term situation.

A Modification History

e December 11, 2002: Initial version 0.1 completed.

e March 10, 2003: Updated the version to 0.2, and the date.

20nly text/plain is currently supported.

24

June 9, 2003: Updated to match XORP release 0.3.

August 28, 2003: Updated to match XORP release 0.4.
November 6, 2003: Updated the version to 0.5, and the date.
July 8, 2004: Updated to match XORP release 1.0.

January 27, 2005: Removed MFEA+MRIB-related text, becalnseMFEA does not deal with the
MRIB information anymore.

April 13, 2005: Updated to match XORP release 1.1.
March 8, 2006: Updated to match XORP release 1.2.
August 2, 2006: Updated the version to 1.3, and the date.
March 20, 2007: Updated the version to 1.4, and the date.

25

