XORP SNMP Agent
Version 0.3

XORP Project
International Computer Science Institute
Berkeley, CA 94704, USA
feedback@xorp.org

June 9, 2003

1 Introduction

The SNMP standards [4] define the protocol used to communimetiveen SNMP managers and agents, as
well as the structure of the management information beingssed (MIB). This document describes how
XORP runtime data is made accessible to the SNMP agent, hiswecomposed in separate MIB modules,
and how those modules are loaded/unloaded at runtime. ABBB development framework is presented,
which provides unified process to those writing new MIB medufor XORP.

2 The SNMP agent

XORP uses the extensible SNMP agent included in the Net-SRaMtRage [1]. Net-SNMP provides tools
and libraries supporting the Simple Network Managementdeab. The package is comprised of an exten-
sible agentgnnmpd), an SNMP library and a set of command line tools to commueieath SNMP agents
and managers.

Management information is viewed as a collection of manapelcts, residing in a virtual information
store, termed the Management Information Base (MIB). Alhaged objects in the MIB are arranged in a
hierarchical or tree structure. Collections of relatedeoty are defined in MIB modules. These modules
are written in the SNMP data definition language, a subset liftict Syntax Notation One (ASN.1).
New MIB modules that extend the Internet-standard MIB amgioaously being defined by various IETF
working groups.

In the context of this document, we'll extend the term MIB ratedto include the part of the code that
instantiates the objects declared in the MIB definition fllaus a MIB module consists of:

MIB module definition file This file is written in ASN.1 language, and is typically puhled as an RFC.

MIB module source code One or more source files that implement the data access esutiat allow the
SNMP agent to read or modify XORP’s configuration settings.

The oldest version of Net-SNMP that was tested with XORPQ65.If an older version is detected by
ourconf i gur e script, XORP MIB modules will not be built.

2.1 Dynamically loadable MIB modules

One of the guiding principles in XORP design is extenskiliProtocols are implemented as independent
Unix processes that may come and go. Each protocol will hageoo more associated MIB modules, so
those modules should be made available to the SNMP ageruwvitequiring recompilation. Net-SNMP
supports this strategy by allowing MIBs to be implementedrased objects. If your system supports shared
libraries, Net-SNMP will be compiled with support for dynaely loadable MIB modules by default. You
can test if your Net-SNMP installation supports that optigriooking fordl nod in the list printed by the
command:

$ net-snnp-config --snnpd-nodul e-1i st
There are three methods for loading/unloading MIB modules:

1. Using the dimod directive in snmpd.conf
2. Sending SNMP set requests to the agent
3. Using XORP’s IPC methods (XRLS)

The first option can only be used to load modules at startugs i$hvhat the man page for snmpd.conf
tells you...

DYNAM CALLY LOADABLE MODULES
If the agent is built with support for the UCD-DLMOD-M B it is capable
of loading agent MB nodules dynam cally at startup through the dl nod
directive and during runtinme through use of the UCD DLMOD-M B. The
following directive | oads the shared object nodule file PATH whi ch uses
t he nodul e nane prefix NAME

dl nod NAME PATH

To load MIBs using SNMP requests, a new row must be added to-DCRIOD-MIB::dlmodTable.
This involves finding an unused index to the table, settiegvidues of dimodName and dimodPath for that
row, and finally setting the column dimodStatus to 'load’.€$h steps are captured in the following lines:

$ snmpwal k | ocal host UCD- DLMOD- M B: : dl nodTabl e

UCD- DLMOD- M B: : dl nrodNane. 1 = STRING xorp_if_m b_nodul e

UCD- DLMOD- M B: : dl nodPat h. 1 = STRING /scratch/ xorp/ nibs/xorp_if_m b_nodul e. so
UCD- DLMOD- M B: : dl nodError.1 = STRI NG

UCD- DLMOD- M B: : dl nodSt atus. 1 = | NTEGER: | oaded(1)

$ snnpset | ocal host UCD-DLMOD-M B: : dl nbdStatus.2 i create
UCD- DLMOD- M B: : dl nodSt atus. 2 = | NTEGER: creat e(6)

$ snnpset | ocal host UCD- DLMOD- M B: : dl nodNane. 2 s "bgp4_m b_1657" \

> UCD- DLMOD- M B: : dl nodPat h. 2 s "/ scratch/ xorp/ m bs/ bgp4_m b_1657. so"
UCD- DLMOD- M B: : dl nrodNane. 2 = STRING bgp4_mi b_1657

UCD- DLMOD- M B: : dl nodPat h. 2 = STRI NG /scratch/ xorp/ m bs/bgp4_m b_1657. so

$ snnpset | ocal host UCD- DLMOD-M B: : dl nodSt atus. 2 i | oad
UCD- DLMOD- M B: : dl nodSt at us. 2 = | NTEGER: | oad(4)

$ snmpwal k | ocal host UCD- DLMOD- M B: : dl nodTabl e

UCD- DLMOD- M B: : dl nodNane. 1 STRING xorp_if_m b_nodul e

UCD- DLMOD- M B: : dl nrodNane. 2 = STRING bgp4_mi b_1657

UCD- DLMOD- M B: : dl nodPat h. 1 STRING /scratch/ xorp/ m bs/xorp_if_m b_nodul e. so
UCD- DLMOD- M B: : dl nodPat h. 2 STRING /scratch/ xorp/m bs/bgp4_m b_1657. so

UCD- DLMOD- M B: : dl nobdError.1 = STRI NG

UCD- DLMOD- M B: : dl nodError. 2 = STRI NG

UCD- DLMOD- M B: : dl nodSt atus. 1 = | NTEGER: | oaded(1)

UCD- DLMOD- M B: : dl nodSt atus. 2 = | NTEGER: | oaded(1)

So far we've seen how to load MIBs when the agent is started ,aamuntime using SNMP requests.
But XORP processes communicate to each other via XRLs, andutd be much more convenient for a
process to be able to use the same mechanism to communithtd&SNMP agent. For this reason each
MIB module should implement an Xrl target. The moduler p_i f _m b_nodul e implements an XRL
interface that allows loading and unloading MIBs. ThesetlaeeXRLs to use for that:

finder://xorp_if_mb/xorp_if_mb/0.1/1 oad_m b?nod_nane: t xt &bs_pat h: t xt
finder://xorp_if_mb/xorp_if_mb/0.1/unl oad_m b?m b_i ndex: u32

Dynamically loadable MIB modules written for the main SNMdreat can also be loaded by an SNMP
sub-agent that communicates with the master agent via tieatXgprotocol ([5]). This should be useful
in the event that you configure XORP to run distributed acroaffiple hosts but with one master SNMP
agent.

3 Connecting Net-SNMP with XORP

We have written a special MIB modulgdr p_ f _nmi b_nodul e) that coordinates the communication be-
tweensnnpd and XORP processes. This module provides several classeslittw XORP MIB modules
to be architected as if they were each executed as indepgmaeesses (although they all rungnnpd’s
process space). This should make MIB module design muchkretassomeone already familiar with the
architecture of XORP processes.

The class that does all the synchronization between XORMatbENMP is SnmpEventLoop, a sub-
class of EventLoop. This singleton class is responsibledgistering XORP event’s witannpd, so that
the agent can respond to XORP activity. Once this class iaritiated byxor p_i f _mi b_nodul e, it can
be used by all the other MIB modules as if it was their own Eveap. Without it, MIB modules could not
respond to XORP events, this is why this module must be lobdéate any other, and should be the last
XORP MIB module to be unloadet Typically you would use thennpd. conf file to load it at start up
time.

The XORP interface MIB module also implements the XRL tar@2}) that allows the loading and
unloading of other MIB modules.

Figure 1 illustrates the functionality implementedbyr p_i f _mi b_nodul e.

There is a second reason for this requirement. Some runtiaets will unload a dynamically linked library when the raked
that first loaded it disappears. In that case, unloadiogp_i f _m b_nodul e will also unload! i bnet snnpxor p. so which is
needed byll XORP modules. As you can imagine, that causes problems...

() (o

XORP finder XORP processes

rtrmgrj [ospf j

load_mib

XRL target
snmpd

xorp_if_mib_moduld

XORP libraries

) SnmpEventLoop

N N

bgp_mib

ospf_mib

Figure 1: Functionality of xorpf _mib_module

3.1 Modifying XORP’s configuration from within a MIB module

MIB modules use XORP’s IPC library [2] to communicate to XOR®Bcesses. Each MIB module has the
responsibility to pull the relevant management infornratitom the appropriate processd., BGP MIB
data from BGP process). For that effect, the MIB module msstthe XRL Interface supported by the XRL
targets it needs to communicate to (see [3] for details on twosubclass XRL Interface Client classes).
MIB modules, though, MUST not modify any configuration seds by accessing the process directly. The
current state of configuration is maintained by the routemagar process, so bypassing it would cause the
real and the recorded configurations to be out of sync. ldswanfiguration changes should be requested
to the router manager via configuration commands, that i4,9&dRich as the ones appearing in the template
files (see xorp/etc/templates/*.tp).

Figure 2 illustrates how the MIB modules should read and gh&fORP configuration.

4 Areference implementation of a MIB module

So far we've talked Net-SNMP configuration. In this sectiagilixover how to write a MIB module. In this
release (0.3) we provide a partial implementation of RFC71@% MIB for BGP4. You will find the MIB
module files in xorp/mibs/bgp#ib_1657*. What follows is a description the tools and procedisvieed to
implement this module. You should refer to the kdoc documtiort as well as the source itself for more
details.

4.1 The textual MIB definition file

The first step to write a MIB module should be writing or gaitilhe ASN.1 MIB definition file. If you
are implementing an existing protocol, chances are thaettealready a published RFC with the MIB

4

XRL Interface XRL target

‘ changes

request cfg changes configuration
SNMP agent MiB F MIB module router manager 9
*

read configuration
maintains up to date

XORP configuration

L

other processe

Figure 2: MIB module interactions with the router manager

definition for it. In this section we’ll use BGP4-MIB to illuste the process of writing a MIB module,
which is published in RFC 1657 and you will find in xorp/milestual/BGP4-MIB.txt.

You will also have to make your textual MIB file accessiblelte Net-SNMP tools. The easiest way is to
copy them to /usr/local/share/snmp/mibs (this may be adifft directory if you passed —prefix or —datadir
with the conf i gur e script. Alternative you could use the command line optioneiMhe environment
variable MIBDIRS (man snmpcmd(8)) to specify another divecto look for MIB definition files.

4.2 Net-SNMP handlers

Net-SNMP 5.x.x uses handlers to process SNMP requests. WkigB module is loaded, it registers one or
more handlers (callbacks) on a given OID in the OID tree. Wénesquest arrives for that OID subtree, the
registered handlers are called in sequence until the reguiedly processed. There are multiple pre-written
handlers (helpers, in Net-SNMP nomenclature) that dedl géttain parts of the processing.

4.3 Using mib2c

Net-SNMP provides what is usually termed as "MIB compileri p2c), a tool that will read MIB ASN.1
definition files and generate C code templates to ease théogavent of handleraxi b2c takes a configu-
ration file as a parameter that will determine which helperdters to use.

The MIB compiler is not installed by default with Net-SNMPybu have Net-SNMP installed in your
system and you invokei b2c you'll probably get this message:

ERROR: You don’t have the SNMP perl nodule installed. Please obtain
this by getting the latest source release of the net-snnp toolkit from
http://ww. net-snnp. org/ downl oad/ . Once you downl oad the source and
unpack it, the perl nodule is contained in the perl/SNWP directory.

See the INSTALL file there for instructions.

This is what it took to install it in a FreeBSD system:

$ pwd

[usr/ ports/net/net-snnp/work/net-snnp-5.0.8/perl
$ perl Makefile.PL ; gmake ; gnake install
Witing Makefile for Net SNMP:.:default_store
Witing Makefile for Net SNVP:: ASN

Witing Makefile for Net SNMP:.: O D

Now you can invokari b2c. The following command says "create a template C file for l&yphn,
which is a scalar, and name it bgpdib_1657 bgpversion”.

$ m b2c -c m b2c.scal ar.conf -f bgp4_m b_1657_bgpversi on bgpversi on
witing to bgp4_nib 1657 bgpversion. h

writing to bgp4_m b_1657_bgpversion.c

runni ng i ndent on bgp4 _ni b 1657 bgpversion. h

i ndent: Command |ine: unknown paraneter "-orig"

runni ng i ndent on bgp4_ni b 1657 bgpversion.c

i ndent: Command |ine: unknown paraneter "-orig"

In a similar way, if we want to generate C templates for a SN&tiet we would use:

$ mb2c -c mb2c.iterate.conf -f bgp4_m b_1657_bgppeert abl e bgpPeer Tabl e
writing to bgp4_m b_1657_ bgppeertabl e. h

witing to bgp4_nib 1657 bgppeertabl e.c

runni ng i ndent on bgp4_m b_1657_bgppeertabl e. h

i ndent: Command |ine: unknown paraneter "-orig"

runni ng i ndent on bgp4 _ni b 1657 bgppeertable.c

i ndent: Command |ine: unknown paraneter "-orig"

Note that although there are other conf files, only the twegméed in this section can be used with
XORP’s asynchronous architecture. You can find details osdlffiles by omitting the -c option when
invoking mi b2c.

4.4 Using delegated requests

The asynchronous nature of XORP communications prevemdldérs from processing SNMP requests
synchronously. Handlers initiate XRL requests for otherREprocesses, and return control to the SNMP
agent before the reply is received. Net-SNMP allows thatroyiding thedel egat ed flag in the SNMP
request structure. The agent will not send a reply to a rédoess long as that flag is set. In XORP
MIBs, you would normally set the delegated flag when your kemid called, and clear it whenever the
XRL callback who receives the data from a XORP process isutgdc There is an additional example of a
delegated request in

http://ww. net-snnp.org/tutorial-5/agent/del ayed _instance_8c-exanple. htm ?

2This example uses the functioet snnp_hand| er _check_cache() which you will see that it’s not used in our code. The
reason is that it is incompatible with the code generated ib2aiterate.conf

5 Launching Net-SNMP via the router manager

You can have the rtrmgr process start the SNMP agent. In ¢oddo that, you should modify your agent
snmpd.conf (by default in /usr/local/share/snmp) to loadoxf_module at start up. After that, you can
modify your config.boot file to load MIB modules when the agerstarted, or to do it whenever a particular
protocol comes up.

See xorp/etc/templates/snmp.tp for definition of the SNIRfiguration tree.

A Modification History

e March 14, 2003: Created.
e May 30, 2003: Version 0.3 released.

References

[1] The Net-SNMP Project. http://www.net-snmp.org.
[2] XORP Inter-Process Communication Library. XORP techhdocument. http://www.xorp.org/.
[3] XRL Interfaces: Specification and Tools. XORP technidatument. http://www.xorp.org/.

[4] D. Harrington, R. Presuhn, and B. Wijnen. STD 62: An Atebiure for Describing Simple Network
Management Protocol (SNMP) Management Frameworks, Desef02. This standard comprises
RFC3411, RFC3412, RFC3413, RFC3414 RFC3415, RFC3416, RFCRFC3418.

[5] M. Ellison M. Daniele, B. Wijnen and D. Francisco. AgenttEnsibility (AgentX) Protocol.Request
for Comments 2741, January 2000.

