

Verification
Strategies

Author: Rudolf Usselmann
rudi@asics.ws

Rev. 0.1
February 4, 2001

Preliminary Draft

Revision History

Rev. Date Author Description

0.1 4/2/01 Rudolf
Usselmann

First Draft

OpenCores Verification Strategies February 4, 2001

1
Introduction

This document describes the verification procedures and strategy for individual
IP Cores and for the entire integrated circuits.

To successfully verify a Device Under Test (DUT) it is essential to have a veri-
fication strategy and verification plan before starting to write a test bench. This
document will outline the overall strategy for verification. Each DUT, will have a
unique verification plan associated with it, addressing the capabilities and chal-
lenges for verification.
www.opencores.org Rev. 0.1 1 of 18

February 4, 2001 Verification Strategies OpenCores

(This page intentionally left blank)
2 of 18 Rev. 0.1 www.opencores.org

OpenCores Verification Strategies February 4, 2001

2
General Guidelines

The general guidelines address the overall architecture of a test bench for indi-
vidual building blocks (IP Cores) of a chip and an entire integrated circuit.

2.1. Reusability

In todays world of reusable IP Cores and constantly changing and improving
technology, it is essential that an IP Cores test bench can be reused, as the specifi-
cations and technological features advance.

The test bench and all of its building blocks must be able to grow and allow the
user to build on, new features and improvements as they become available. To
achieve this goal, the verification engineer must very carefully plan the overall
architecture of the verification environment. Below figure illustrates an example of
such an environment.

Figure 1: Reusable Test Bench

Lib.

BFMBFM DUT

Test
Case

Top Level

Logfile
www.opencores.org Rev. 0.1 3 of 18

February 4, 2001 Verification Strategies OpenCores

This sample verification environment consists of a Device Under Test (DUT),
two Bus Functional Models (BFM), a library, several test cases and the all enclos-
ing test bench.

2.2. Maximum Flexibility for Architectural Changes

To be able to add new feature and extend the building blocks of a test bench,
one should define a clear interface between the various building blocks and infor-
mation flow. As new features become available, and the DUT can perform addi-
tional functions, the previous test bench must be able to accommodate the new
features and functions without being compleatly ewritten.

Lets take a look at a typical test case and it’s flow.

Figure 2: Test Case Flow Diagram

Here we can clearly see, how the various blocks are interconnected.

2.2.1. Example

Lets analyze the above strategy with an example:
If our current device has a PCI 32 bit, 33Mhz interface, the BFM will emulate

the PCI functions. The library will provide upper level functions. When the device
is updated to PCI 64 bit, 66 Mhz, all that needs to be modified to get the existing
test bench up and running, is the BFM. Additional task are then added to the
library, and additional test cases can be written to test the new functionality. How-
ever, since PCI 64 bit, 66 Mhz is backwards compatible, we can use the existing
test cases and library routines to test those functions. In other word only test cases

Testing
Algorithm

Library
Pass/Fail
check

DUT Interface

Test
Case

BFM
4 of 18 Rev. 0.1 www.opencores.org

OpenCores Verification Strategies February 4, 2001

and library routines for new features need to be written, and the entire test bench
can be reused.

2.3. Maximum Flexibility for IP Core Integration

The same strategy as in the previous section can also be applied for IP Cores
that eventually will be integrated in to a larger chip.

Figure 3: IP Core Integration and Test Bench Reusability

Lib.

BFMBFM
DUT

Test
Case

(IP Core)

Lib.

BFMBFM
DUT

Test
Case

(IP Core)
Other
IP Core

IC containing multiple IP Cores

INTEGRATION

Module Level Test Bench

System/Chip Level Test Bench
www.opencores.org Rev. 0.1 5 of 18

February 4, 2001 Verification Strategies OpenCores

Here, one of the interfaces of the DUT, is now connected to another IP Core.
Now most likely the BFM and associated library routines must be rewritten to pro-
vide the same functionality as in the module level test bench. After the BFM has
been adjusted to the new interface, and the DUT instance has been updates, the
entire test bench can be reused.
6 of 18 Rev. 0.1 www.opencores.org

OpenCores Verification Strategies February 4, 2001

3
Test Bench

The test bench is the top level verification building block, that instantiates and
includes all building blocks of the verification environment. It also should provide
a way for the user to choose single test cases and provide a way to run all tests for
regression testing. This is typically accomplished by including a few command
line parsing statements that for example parse the plus arguments in Verilog-XL or
compatible verilog simulator.

Figure 4: HDL only Test Bench

In some cases, there might be two top level test benches. Specifically this is the
case when a separate verification language such as VERA from Synopsys is used.

HDL Top Level

Test
Selection

Start

Argument
Parsing

Done

Test Case
Execution

Instantiated Objects

- DUT
- BFMs

Included Objects

- Test functions Library
- Test Cases
www.opencores.org Rev. 0.1 7 of 18

February 4, 2001 Verification Strategies OpenCores

In this case, the Verilog Top Level, instantiates the DUT and a VERA top level.
The VERA top level instantiates the BFMs, library and test cases.

Figure 5: Multi Language Test Bench

3.1. Reusability Guidelines

Her are some pointers that should help in designing a test bench that can be
easily reused.

• Partition the Test Bench
Divide the test bench in to logically distinguished blocks:

• Startup Section
This is where the command line parsing and test case section is

- Test functions Library

Test
Selection

HDL Top Level

Start

Argument
Parsing

Done

Test Case
Execution

Instantiated Objects

- DUT

Included Objects
- BFM Models

- Test Cases

- Verification Extension Object (e.g. VERA)

Verification Extension Top Level
(e.g. VERA Top Level)
8 of 18 Rev. 0.1 www.opencores.org

OpenCores Verification Strategies February 4, 2001

• POR & Clock section
In this section all clocks and power on reset sequences are gen-
erated.

• DUT section
Here is where the DUT is instantiated

• BFM section
Here is where all BFMs go

• Create Modules for all functions
For example, clock generation and POR should be contained in a mod-
ule

• Create tasks/functions
Avoid in-line code, move it instead to a task or function. For example
command line argument parsing and test case section should in a task/
function.

• Place all tasks/functions in to a test bench library.
www.opencores.org Rev. 0.1 9 of 18

February 4, 2001 Verification Strategies OpenCores

(This page intentionally left blank)
10 of 18 Rev. 0.1 www.opencores.org

OpenCores Verification Strategies February 4, 2001

4
BFMs

Bus Functional Models (BFMs) create the iterface between a DUT and the test
bench. The main prupose is to hide interface specific transaction and provide a low
level generic task interface. This low level interface must be extreamly flexible and
generic. It must allow to setup and perform illegal and out of bounds operation to
check for proper erron handling of the DUT. Another very importend feature of
BFM is to monitor proper interface operations from the DUT and provide some
sort of self checking capabilities. The self checking capabilities become very
importand when the BFM is the reciever of a transaction. It must provides a means
to be informed what trabsaction to expect and another means to verify any associ-
ated data from the transaction.

Figure 6: BFM Architecture

Low Level
Task Interface

DUTinterface
protocol state mashine

Bus Monitor
Self Check
Engine

DUT

Test Bench
www.opencores.org Rev. 0.1 11 of 18

February 4, 2001 Verification Strategies OpenCores

4.1. Reusability Guidelines

Here are some pointers that should help in writing BFMs that can be reused.

• Partition the BFM in to logical sub modules

• Parameterize everything that might change in a feature release in the
interface (e.g. bus width 32 -> 64 bits).

• Keep the test bench interface unrestricted, so that new parameters can
be easily added.
12 of 18 Rev. 0.1 www.opencores.org

OpenCores Verification Strategies February 4, 2001

5
Libraries

Libraries are an essential part of portable and reusable test benches. They con-
tain higher level functions and operations that are required to perform specific
tasks. Those operations can be as simple as the calculation of a CRC, and as com-
plex as assembling IP packets or SONET frames.

It is essential, that all library functions are flexible and easy to use. The librar-
ies should be divided in to separate files, for each building block of the test bench
(e.g. each BFM should have it’s own library). Some common tasks and functions
may be placed in to a shared library that is used across different building blocks
and test benches.
www.opencores.org Rev. 0.1 13 of 18

February 4, 2001 Verification Strategies OpenCores

(This page intentionally left blank)
14 of 18 Rev. 0.1 www.opencores.org

OpenCores Verification Strategies February 4, 2001

6
Test Cases

Test Cases are the actual test programs that exercise a specific function of a
DUT. They must be deterministic and provide a unambiguous, clear text status
when they terminate. The preferred mechanism is to report “Test ABC PASSED”
or “Test ABC FAILED in operation XYZ”.

In addition test cases must provide some sort of status while executing. There
must be a way to determine if the simulation is hung or still running. This is not to
imply that a test case should clobber the screen with lots of useless information,
but that a test, that is known to run through, let’s say, 8 iteration that take 10 min-
utes to simulate each, will report which iteration is currently being simulated.

Each test case should provide a verbose execution mode, so in case of failure, it
is easy to determine where the error occured.

When a failure is found, the test case can either recover from the error and con-
tinue to execute or abort the simulation. The actual action that is taken will depend
on the test case. Test cases that can resume and continue, should allow for optional
discontinuation of the current test case. In this case the test encvironment may
advance to the next test case (if there any more available), or terminate the simula-
tion run.

The test case writer, should try to keep the run time of test cases to some rea-
sonable amount. Test cases that take days to complete are very difficult to debug,
and unesessarily occupy CPU time when a test case is rerun because a bug that
shows up after some 30 hours of simulation time has presumably been fixed. Many
short test cases can be easely distributed accross sveral compute servers and will
reduce the overall simulation time.
www.opencores.org Rev. 0.1 15 of 18

February 4, 2001 Verification Strategies OpenCores

(This page intentionally left blank)
16 of 18 Rev. 0.1 www.opencores.org

OpenCores Verification Strategies February 4, 2001

7
Miscellaneous

This section describes miscellaneous building blocks that can be used in a test
bench. They provide additional functionality and might not be applicable in every
case.

7.1. Simulation Reports and Log Files

It is strongly recommended that a test bench creates a log file, and logs
progress to that file. Long simulation runs, consisting of many test cases, can be
easily evaluated as to which test case has passed and which not. Sometimes screen
buffers hold only a limited number of lines, and might loose important informa-
tion. In addition, this will protect from complete reruns in case of power failures
and computer crashes.

In addition, the test bench should provide a overall simulation report after all
test cases have been executed. It is unreasonable to look though several megabytes
of a text file, to try to determine if all test cases have passed.

7.2. Verbose and Quiet Simulations Modes

The test bench must provide a global flag that determines if a test bench runs in
a quiet mode or in a verbose mode. Additional flags might be provided to deter-
mine the level of verbosity.

When initially debugging a DUT, it is important to have as much information
as possible, about what is currently going on. After the initial debug phase, and as
the DUT becomes more and more stable, the verbose level can be turned back.
Finally as the DUT has been mostly debugged, and mostly regression testing is
being performed, the quiet mode can be selected. This will not only limit the
amount of information (some might consider it garbage) that is displayed on the
screen, but will also increase the simulation time, as no (or very little) console IO
is required.

7.3. Simulation Watchdog

Sometimes, it is essential to know when a simulation is hung in an endless
loop, and it can’t be easily determined if it is or not. In such cases it might be nec-
www.opencores.org Rev. 0.1 17 of 18

February 4, 2001 Verification Strategies OpenCores

essary to build a simulation watchdog, which forces the simulation to stop, or pro-
vides some sort of notification to allow the operator to manually abort the
simulation. The watchdog can be monitoring specific interfaces, that are know to
have traffic or specific transaction. It is not recommended to reset the watchdog
from test cases, as they sometimes can not determine when a DUT is hung.

7.4. Performance Monitors

In some cases, sustaining a certain performance level is part of verification. In
others, it is just useful information that might help to improve the DUTs design.
Performance monitors can be as simple a bus monitors that calculate the number of
bytes per second, or as complex as IP packet monitors that provide an effective
interface throughput.
18 of 18 Rev. 0.1 www.opencores.org

	1 Introduction
	2 General Guidelines
	2.1. Reusability
	2.2. Maximum Flexibility for Architectural Changes
	2.2.1. Example

	2.3. Maximum Flexibility for IP Core Integration

	3 Test Bench
	3.1. Reusability Guidelines

	4 BFMs
	4.1. Reusability Guidelines

	5 Libraries
	6 Test Cases
	7 Miscellaneous
	7.1. Simulation Reports and Log Files
	7.2. Verbose and Quiet Simulations Modes
	7.3. Simulation Watchdog
	7.4. Performance Monitors

