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ISPRS Intercommission Workshop, Interlaken, June 1987

A Fast Operator for Detection and Precise Location of
Distinct Points, Corners and Centres of Circular Features

by W. Fdrstner and E. Glilch -
Institute for Photogrammetry gﬁgﬁﬂﬁf&
Stuttgart University ) ;“mﬁa lf@*

Summary:

Feature extraction is a basic step for image matching and image
analysis. The paper describes a fast operator for the detection and
precise location of distinct points, corners and centres of circular
image features. Distinct points are needed for feature based image
matching or for tracking in image sequences. A special class of these
distinct points are corners, which, besides edges, are the basic ele-
ment for the analysis of polyhedra. Finally centres of circular fea-
tures cover small targeted points and holes, disks or rings, which
play an important réle in one-dimensional image analysis. The extrac-
tion consists of two steps: window selection and feature location. The
speed of the non-iterative operator results from parallelism on the
arithmetic as well on the process level. Specifically the operator can

be split into arithmetic operations on and between images, convolu-
tions, partly with boxfilters, and finally vector and matrix opera-
tions. The operator provides a measure for the precision of the loca-
tion.

0. Introduction

Feature extraction is a basic step for image matching and image
analysis. This paper deals with the extraction of point type features.
They are essential for quite some tasks in analysing single or multi-
ple images. The detection of corners, blobs, circular features - be-
sides lines and areas - is needed for the anlysis of single images, e.
g. for the determination of targeted points in aerial images, for the
detection of holes during inspection or the analysis of images of
polyhedra in industrial applications. The extraction of such features
may, on the other hand be the basis for feature based matching algo-
rithms, thus for stereo vision or for the analysis of image sequences.
In both cases quite some algorithms have been proposed which rely on
the extraction of point like features.

Also the operator presented here has been developed for the use of
image matching (PADERES et. al. 1984, FORSTNER 1986). In its original
form it was just meant to find distinct points, 1like the MORAVEC-Ope-
rator (1977), which was used e. g. in the feature based matching algo-
rithm by BARNARD and THOMPSON (19881). It, however, turned out to be
much more powerful. One reason for this was, that the operator in its
original form just selected optimal windows, not points. Taking the
centres of the selected windows as feature points is a misinterpreta-
tion, which explains the bias of the original operator as well as of
MORAVEC'’s operator. The essential second step is to determine the op-
timal points within the selected windows. The other reason for the
usefullness of the new operator is that it selects optimal windows for



- 282 -

template or least squares matching, for corner detection or for the
extraction of +the centres of circularily symmetrical features without
needing to prespecify what type of feature is searched for. The clas-
sification can be done afterwards if necessary.

This paper has two tasks. It wants to discuss the operator for fea-
ture point selection (section 1) and - following the 1line of the
workshop - discuss the numerical properties with respect to computa-
tional speed in detail (section 2).

1. The Interest Operator

The selection principle of a point selection operator should full-
£ill the following requirements (cf. FORSTNER 1986):

- Distinctness:
The points should be distinct, i. e. be different from neighbouring
points. E. g. points on edges should not be selected if in feature
based matching the epipolar geometry constraint is not wused; also
points in flat areas should not be selected. MORAVEC’s and HANNAH'’s
operators (1974) follows this aim: MORAVEC’s operator searches for
points with the largest minimum variance of gray level differences
in 4 directions, while HANNAH’s operator searches for points where
the autocorrelation function of the gray level function is steep in
all directions.

- Invariance:
The selection as well as the selected position should be invariant
with respect to the expected geometric and radiomatric distortions.

This, besides the distinctness, probably is the most important re-
quirement. The degree of invariance directly influences the preci-
sion and the reliability of the further steps in image analysis.

- Stability:
The selection should be robust with respect to noise.

- Beldomness:

Whereas distinctness guarantees local separability of points sel-
domness aims at global separability. This is essential in images
with partially repetetive patterns. In order to avoid confusion in
the further steps of the analysis elements of repetetive patterns
should not be selected or at least should get a low weight. Thus
the selection of seldom or interesting points leads to reliable re-
sults, explaining the notion "interest operator”.
- Interpretability:

The selection principle should be interpretable in some sense, e.
g. looking for edges, corners, blobs or other simple but labelled
features. This requirement is not essential for matching.

The operator described below fullfills all these criteria to a high
degree. It follows a two step procedure:

1. point detection by searching for optimal windows,
2. point location by determining the optimal point within the
selected windows.

We first describe the location step, as the selection of the optimal
windows is based on the precision of the point location, namely the
expected standard deviation or weight of the points.
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1.1 Point location
1.1.1 Mathematical Model

We take into consideration four different tasks which can be writ-
ten as least squares problems in the form of a Gauss-Markoff-Model for
the n observerd values contained in the vector x and the u unknowns
contained in the vector y:

x +e = Ay, D(x) = C = go?® W-1 (1)
with normal equations for the estimates y

Ny =nh (2)
with

N =z A" WA, h=A"Wy (3)
and the estimate for the variance factor

co® = e’ We / r, (4)
derived from the residuals e, where r = n - u is the redundancy of the
system (cf. MIKHAIL/ACKERMANN 1976). The n x u design matrix A is
assumed to have full rank. The weight matrix W is assumed to be known.

It may be derived from the variances cii in the covariance matrix C
assuming an arbitrary variance factor oco®.

All chosen tasks have in common that the only unknowns are the row
ro and the column co of a point, thus y’ = (ro, co), and that each pi-
xel (r,c) within a small window, say between 5 x 5 and 16 x 16 pixels,
contributes to the solution in the same manner.

a. Least Squares Matching

Let the graylevels go(r,c) within a window be a noisy and shifted
copy of a given object g(r,c). Then for each pixel the nonlinear model
reads as

go(r,c) = g(r + ro,c + co) + n(r,c) (5)

After linearization at approximate values =zero for both unknown
shifts, which thus are assumed to be small, one obtains

dg(r,c) - n(r,c) = gr(r,c) = ro + ge(r,c) * co (6a)

The variance of the graylevels go is identical to that of the noise n.
As the noise variance can be assumed to be constant within an image
for our purposes, a reasonable value for oo is the standard deviation
of the noise on in the image. Thus the weight is

wag (r,c) = 1 (6b)

for all pixels, yielding W = I.

b. Intersection of Edge Elements, Corners

Let the edge element (edgel) at each pixel be defined as a straight
line passing through the centre of the pixel with an orientation de-
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rived from the gradient wg'(r,c) = (g (r,c), ge(r,c)), using any
appropriate operator for determining the partial derivatives of g (cf.
Fig. 1). A corner C(ro,co) can then be estimated from the intersection
of all edgels. The straight line can be represented by r cos & + c sin
-1 = 0, where 1l is the distance of the origin from the line and %
is the angle of this direction. Note that vg’ = |vg| * (cos &, sin &).
The linear model for the intersection point then can be writen as

1(r,c) + e (r,c) = cos d(r,c) * ro + sin &(r,c) * co (7Ta)

The weight of the edgel intuitively is proportional +to the absolute
gradient square

w{r,c) = |vg|’. (7b)
This can be proven by again assuming the variance of the graylevel
noise to be on?®, thus constant, and observing that |vg| :ldg/dl]thus
or = on / |vg|.

c. Weighted centre of gravity

Let each pixel in a window contribute to the centre of gravity of
that window by using the gradient as weight. We immediately obtain the
linear model

r + er = ¥o
(8a)
c + e = Co
The weight of each coordinate, r and ¢, depends on the direction of
the local gradient wg(r,c). By rotating the vector (|vg|,0) into
vg(r,c), using the rotation matrix R¢ one obtains the weight matrix
for the pixel (r,c)
cos2 & cos & « sin ¥
Wre(r,c) = |vg|2
cos & ¢ sin ¥ sin2 &
gre(r,c) gr (r,c) » ge(r,c)
= vg » vg' = (8b)
gr (r,c) * ge(r,c) ge2(r,c)

If e. g. the edgel is horizontal, then & = 0 and only the row coordi-
nate contributes to the centre of gravity.

Remark:

The derivation of the singular weight matrix uses the propagation of
weight matrices. The covariance matrix of y = A x is Cyy = A Czxx A’ if
% has covarince matrix Cxx. Thus we can use Wyy = (A’)-1 Wxx A-1, if
an inverse of A exists. The gradient vg results from rotation of e =
(| ve] »0) by

cos & -sin &
Re =
sin & cos &

Tl
Wi
t)

11
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Thus vg = Re * (|ve ,0). If now the component of e in r-direction has
weight }vg]2 and the component in column direction has weight zero
then

|vg|2 0
Wee =
0 0

With A = Re this finally leads to Wre = (Ro®’)-1 Wee (R®)-1 in eq. (8b)
(PADERES et. al. 1984).

d. Intersection of Slope Elements, Centre of Circular Features

In contrast to the intersection of edgels we also can intersect the
local slope elements (slopels). In case of circular symmetrically fea-
tures within the window we then obtain an estimate for the centre of
that feature, e. g. the centre of a ring or of a disk. The slopel can
again be defined as the straight line through the centre of the pixel
with an orientation 90° different to &. Analogously to (7a,b) we thus
obtain the linear model for the centre (ro,co)

l(r,c) + e (r,c) = -sin &(xr,c) = ro + cos &(r,c) = co (9a)

w (r,c) = |vg|2. (9b)

1.1.2 Normal Equations

The reason, why these 4 tasks are chosen, will become evident if we
investigate the corresponding normal equation systems:

a: least squares matching

Z gr2 2 gr Egc|| ro Z gr dg
= ( 6¢c )
2 gr gc Z gecll|co Z ge dg
b and ¢: corner and weighted centre of gravity
Z gr2 Z gr ge||ro 2 gr2 r + Z gr Be C
= (7c,8c)
2 gr gc 2 gc? Co Z gr gc r + 2 ge 2 ¢
d: centre of circular features
Z ge? -2 gr 8e||ro 2 ge2 r - Z gr gc C
= (9c)
~Z gr gc 2 gra2 Co -% gr gc r + 2 gr2 c

The sums have to be taken over all pixels within the window.
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Discussion:

1.

The normal equation matrices for the first three tasks are identi-
cal. Moreover, the eigenvalues of all four normal equation matrices
are identical. As the selection of the optimal windows 1is based on
the properties of the normal equation matrices the selection is op-
timal for all four tasks at the same time. One does not need any a
priori knowledge for the window selection.

The normal equation of b. and c. are identical. Thus the weighted
centre of gravity is identical to the intersection of the edgels.
Both interpretations have their advantage. The intersection point
is geometrically intuitive. The formulation as weighted centre of
gravity is more simple, as the design matrix A consists only of 2 x
2 unit matrices.

The determination of the intersection of edgels is invariant to ro-
tations of a corner of a polyhedron in space around the corner.
Moreover, the estimation of the intersection points does not need
any a priori knowledge on the number of rays.

Similarily, the determination of the centre of a circular symmetri-
cally feature need no prespecification of the number of rings.

The intersection of edgels can also be interpreted as linear re-
gression in Hough space. Each edgel at (r,c) corresponds to a point
(tan &(r,c), 1(r,c)/cos &(r,c)) in Hough space. The edgels of one
edge form a cluster in Hough space. If several edges intersect the
corresponding clusters 1ly on a straight line. The model used here
is to take the slope tan & of the edgel fixed and the intercept a =
1/cos & as observed value (cf. Fig. 1), with a standard deviation
ga =01 / cos & = 1/|gr . Then the linear model for the fitting
line in Hough space can be written as

a(r,c) + ea(r,c) = ro + tan f(r,c) *» co (74d)
with weights

wa(r,c) = gr2(r,c) (7e)
which leads to the same normal equation system as eq.(7a,b).
The intersection of slopels can also be formulated as a weighted
centre of gravity, but with a different weight matrix. Let tg be

the tangent vector orthogonal to vg, thus tg *» vg = 0, and | tg| =
|vg|. Then the linear model (8a) with the weight matrix

ge2(r,c) -gr (r,c) * ge(r,c)
Wee(r,c) = tg » tg' =
-gr (r,c) * ge(r,c) gr2(r,c)

leads to the normal equation system (8c). This again can be used to
simplify derivations.

P ~ 58 0o
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The estimated precision of the point (ro, co) can be derived from

D = on2 = N-1 (10)

where on2 can be calculated from (4) using the relation

e’ We=1"W1l-y"h (11)
with y' = (roe, co) and h being the right hand sides of the normal
equation system. E. g. for the weighted centre of gravity one obtains

e’Wezigr2r2+22grgcrc+2gc2c2—y’h (84d)
If the observations are assumed to be Gaussian then the estimated
point also is Gaussian with covariance matrix (10). The distribution
can be represented by the error or confidence ellipse. This gives

means for interpreting the precision based on the normal egquation ma-

trix N.

Fig. 2 shows the result of +the estimation process applied to
various artificial windows. The edgels or the slopels are shown toge-
ther with the selected point and its 99 % confidence ellipse.

We will now use (10) for discussing the properties of the precision
of the estimated point, based on the assumption that we deal with only
one of the different tasks. As we can assume the noise variance to be
constant in the image, the decisive information is contained in the
normal eguation matrix. It can be described by three parameters:

1. The size of the error ellipse

Using the eigenvalues ui and pz of N, with ut > u2, the semiaxis of
the error ellipse are on /41 and on/dpz. The weight of the point

can be defined as
w = 1/tr N-1 = tr N / det N (12)

with the determinant det N. Thus the weight of a point easily can
be derived and predicted from the elements of the normal equation

matrix N, without inversion.
2 The direction of the major axis of the error ellipse

The direction of the error ellipse can be derived from

tan 2% = 2 N1z / (Ni1 - N22) (13)

Thus if the window lies on an edge, ® is the direction of the edge,
or if +the texture within the window has a predominant direction

this direction can be determined from (13).

3. The form of the error ellipse

There are at least two ways to measure the roundness of the error

ellipse.

a. The ratio of the two eigenvalues. This ratioc 1is independent gf
whether one uses the eigenvalues of N or of N-1. Thus the ratio
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can be interpreted as the signal to noise ratio at an edge, one
eigenvalue describing the variance of the gradient in edge di-
rection the other the variance along the edge:

SNR2 = p1 / p2 { >= 1) (14)
The advantage of this measure is the ability to test the round-
ness using a Fisher-Test. The disadvantage of this measure is

the necessitiy to calculate the eigenvalues of N.

b. The roundness of the ellipse can directly be measured by the

value
q =1 - [(u - p2)/(m + p2)l2
= tr2 N / (4 det N)
=1 - [(SNR2 - 1)/(SNR2 + 1)]2 (15)
The roundness measure q lies in the range between 0 and 1. If q

= 1 the error ellipse is a circle, as the eigenvalues ar identi-
cal and SNR = 1. If g = 0, then one of the eigenvalues is 0, SNR
-~ @ and the window lies on an ideal edge! q can be determined
from the elements of N without solving for the eigenvalues or
inversion. Inversion of (14) yields SNR2 = (1+4T=g9) /(1-41-q) .

The roundness measure can be used to describe the likelihood of a
point to be an edge or a texture to have a predominant direction.
We will use it to avoid selected points to ly on edges.

1.1.3 Colour Images

An extension of the +tasks for colour images is easily possible.
We only mention it here for the sake of completeness.

Instead of the scalar valued function g(r,c) we have a vector valu-
ed function g(r,c) = [gt(r,c), g2(r,c), .. ., gx(r,c)]. The gradient
then is the matrix of partial derivatives

gir g2r . Ekr
vg = (18)
gle g2c Bkec
Each channel 1, ... , k contributes to the solution according to its

noise level and its gradient content. Let the k x k matrix Cnn be the
covariance matrix of the noise in the k channels then for determining
the weighted centre of gravity one has to use the weight matrix

W = vg (Con)-1 vg’ (17)

This is a direct generalization of (8b).

In case g has two channels which are independent and have noise va-
riances o012 and 022 one obtains
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gir2 /012 + gar2/o22 glr*glc/a12 + gareg2c/o22

% gic2 /012 + g2c? /022

Wi /o12 + W2 /022 (18)

Thus the channel with the large noise variance contributes less. If o1
- g2 and one channel does not contribute, the loss in weight is a fac-
tor %. If intensity and chroma are two channels, changes in colour do
definitely contribute to point location, especially if intensity chan-
ges are small.

In case both channels have the same gradients and the same noise
variance, but the noise components have a correlation of r then

W=Wo » 2/(1 + r) (20)

where Wo is the weight matrix from (8b). Thus only if the channels are

not correlated too much one cbtains an increase in precision, as to be
expected.

We are now prepared +to discuss the selection of optimal windows
based on the accuracy measures for the point location.

1.2 Selecting Optimal Windows

The interest operator has to find points which are optimal in some
specified way. The basic requirement is the distinctness of the selec-
ted points. Thus the selected points should be easily distinguishable
locally. The following two requirements are based on the expected pre-
cision of point transfer, corner detection or determining the weighted

centre of gravity. As shown in the previous section the semiaxis of
the error ellipse one would obtain from one of the four +tasks are
identical. Therefore without specifying the task in concern we re-
gquire:

C1: The error ellipse should be close to a circle.
C2: The error ellipse should be small.

Measures of both requirements should, in a simple way, be derivable
from the gray level function of the image, as they have to be deter-
mined for all pixels, i. e. all possible positions of small windows

within the images. The measures g (eq.(14)) and w (eq.(12)) for the
roundness and the size of the error ellipse fullfill this reguirement
as they can be derived from the three elements of the normal equation
matrices of +the local windows. This will be discussed in detail in
section 2.

The selection of +the optimal windows can therefore be accomplished
in the following steps (cf. Fig. 3):

1. Determination the elements of N.

This essentially needs three convolutions, namely of the three de-
rived images gr? (r,c), ge?(r,c) and gr (r,c)*ge(r,c) with a box fil-
ter.
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A free parameter in this step is the window size of +the convolu-
tion. For feature based matching windows of 5 x 5 or 7 x 7 pixels
in all cases lead to satisfying results.

Remark:

Instead of a box filter, for the derived images gr?(r,c), ge®*(r,c)
and gr (r,c)ege(r,c), also a triangle filter, a Gaussian or an ap-
proximation for a Gaussian may be used. These filters have the ad-
vantage of giving a unique, at least stable maxima in step 4 (non-
maximum suppression) in the presence of step edges. Then an addi-
tional parameter, namely the width of the Gaussian has to be speci-
fied. '

Determination of q(r,c) and of w(r,c) using eq.(12) and (14) for
all possible (r,c).

Determination of the interest value, being a preliminary weight for
each window position:

w(r,c) if g(r,c) > qlim
and w(r,c) > wWlim
w¥(r,c) = (19)

0 else

The lower bound qlim for the roundness is a free parameter in this
thresholding step. Experiments suggest that values Qim between 0.5
and 0.75 work quite well. These values correspond to ratios 2 and
{TJ of the semiaxes of the error ellipse.

The threshold wiim is to suppress windows containing only flat
areas. This threshold should at least be made dependent on the glo-
bal image content. Experiences were made in relating it to the ave-
rage wmean of the weights of all window positions in the image by
Wwiim = f * wmean, with f in the range between 0.5 and 1.5. The
disadvantage of this threshold is that it in a non predictable man-
ner depends on the edge content, the sharpness of the edges and the
noise level in the image.

A better solution is to relate the threshold to the average weight
of the flat areas only. As in normal imagery the flat areas cover
significantly more than 50 % of the image a reliable estimate for
the average weight is the median wmed of the weights taken over the
whole image. The number of comparisons needed for determining the
median is approximately two times the number of all possible window
positions. A reasonable threshold then is wiim = C * Wmed, C being
a kind of critical value. Good experiences were made with ¢ = 5.

Suppression of all local non-maxima by setting the function w¥(r,c)
to 0 at local non-maxima.

Here the size of the neighbourhood has to be specified within the
function has to be a relative maximum. The smallest possible window
size of 3 x 3 will yield selected windows whose centres are separa-
ted by at least one pixel. A stronger separation of the selected
windows can be achieved by using larger windows for the non-maximum
suppression.

The algorithmic solution for this step is discussed in section Z.

Finally, all windows for which w¥(r,c) is not 0 are extracted.
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Remark:

There is a direct relation of this type of window selection to the
corner finder of Dreschler (1981) and Nagel/Enkelmann (1983). Maximi-
zing g2 + gc2 is the essential part of w neglecting the convolution,
i. e. the regularization and the normalization with the determinant at
the moment. It corresponds to solving

grr gre | gr
. =Hevg=0
ger gece ge
which for gr2 + ge2 > 0 leads to the requirement det|H| = 0. Rotating

the coordinate system this can be written as

guu 0 0
0] 0 Ev

showing that the second derivative gvv in the v-direction is zeroc, in-
dication an inflection point in the direction of steepest descent,
while having maximum curvature across. These conditions are identical
to those given by Dreschler and Nagel. For a maximum of gr2 + gc?2 also
the product gvvv * gv has to be negative.

There are however, two main differences between the two approaches:

1. Our derivation does not model the gray level function explicitely
and therefore can handle all types of corners, whereas Dreschler/
Nagels approach is restricted to intersections of two edges.

2. The precise determination of the corner point, though requiring a
second step in both procedures, in our case can be based on larger
windows. This on one hand suggests that our estimation procedure is
unbiased, on the other hand it is much less noise sensitive.

Fig. 4 shows a blow up of all 32 selected windows with the located
points and their 99 % error ellipses. The comparison of the two fi-
gures in Fig. 5 demonstrates, that the points lie much better at the
corners of the toy parts than the centres of the windows. Observe,
that also fictitious corners between the edge of a toy and the hori-
zontal background edge have been found. At the right side of the back-
ground edge two selected windows overlap and yield the same point.

2. Implementation of the Interestoperatox

Three examples are given how the described algorithm is or could be
implemented on computers of different type, namely the implementation
on a serial computer, a SKY WARRIOR (a vector processing device) agd a
pipeline processor . Only the selection of optimal windows within a

gray value image is taken into consideration. The main aim of this
section is to analyse the algorithm with respect to its paralellism.

According to HOCKNEY and JESSHOPE (1982) four levels of parallelism
can be distinguished:
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1) Job level
(i) between Jjobs
(ii) between phases of a job

x 2) Program level
(i) between parts of a program
(ii) within DO-Loops

3) Instruction level
(i) Dbetween phases of instruction execution

4) Arithmetic and Bit level
(i) between elements of a vector operation
(ii) within arithmetic logic circuits

We are not concerned here with level 1 as the interest operator on-
ly is a small routine. On the other hand levels 3 and 4 usually are
not reachable from a program. Thus our interest is focussed on level
2) the program level, which can be influenced to a great extent by the
design of the program code.

In a program there might be parts of code that are quite indepen-
dent of each other and could be executed in parallel on different pro-
cessors. If the interest operator is the first step of a feature based
matching algorithm it can be applied to each image in parallel, total-
ly independent from the others (program level i). Also the convolution
on different derived images can be performed in parallel. On the other
hand arithmetic parts of the interest operator as for example convolu-
tions or gradient computations could be done in parallel (program le-
vel ii). A special case are DO-Loops which can be replaced by vector
operations and be executed much more effectively by especially deve-
loped machine instructions (see 2.2, SKY WARRIOR).

2.1 Implementation on a serial computer

The implementation on a serial computer can be done in several
ways. One possibility is described by the flowchart in Fig. 6. It con-
sists of the operating steps with type of operation and result. The
required number of operations per pixel for each computation step
are shown on the right hand side of the flowchart. It already reveils
the basic possibilities to increase speed: parallelism of operations
on different images (horizontally) and parallelism within the images
(arithmetic, convolutions).

If realized on a serial computer the flow goes from left to right
and from top to bottom:

Starting from the matrix G(m*n), which represents the original gray
value image, four arrays of the same dimension (n¥n) are required to
compute the selected windows.

In contrast to chapter 1 the gradients are not computed in column
and row direction, but the Roberts gradient (d/du,d/dv) is applied on
G which gives the gradient images Gu and Gv. The results are unchanged
by this modification, but by a factor 2 less operations are required.
Nevertheless the operation scheme is exactly the same as described in
chapter 1.2.
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The squared gradient images GuGu and GvGv and the mixed product
GuCv are derived from Gu and Gv by elementwise matrix multiplication.

The elements of the normal equation matrix N are computed by 2-di-
mensional convolution on GuGu, GvGv and GuGv with a box filter. As the
9-D box filter can be separated into two 1-D box filters, the convolu-
tions are done in column and row direction. The 1-D convolution with
the box filter is done recursively which means only two additions per
pixel. Thus the convolution time is independent from the size of the
box filter. This feature of the convolution can also be used on a pa-
rallel processor (cf. below).

Further multiplications and an addition are needed to compute the
trace (trN) and the determinant (detN) to derive the roundness (q) and
the weight (w). Actually q/4 is computed.

By comparing g/4 and w to the thresholds qiim/ 4 and wlim and com-
bining the result with the weights, the interest values (w*) are de-

termined.

Tn w* non-maxima are suppressed locally. The solution is done in

two steps. In a 3%3 window the values of the neighbouring pixels are
compared to the centre pixel value in spiral manner (cf. Fig. 7a). If
a value is larger than the centre value, the comparison stops, the

centre value is set to zero and the window is moved to the next centre
pixel. In a second step the same procedure starts again for the remai-
ning relative maxima with a window size of 5%5 or larger (cf. Fig.
7b), thus avoiding clustering of relative maxima. The dividing up into
two steps reduces computationtime for the relative maxima in a large
window.

As a result we obtain a list of selected windows with their row and
column coordinates and their weight.

Remarks:

- The total sum of operations per pixel refers to relative maxima de-
termination with 3%3 window and describes the worst case. In gene-
ral the CPU time for the selection of optimal windows is approxi-
mately proportional to the number of pixels:

CPU time = n?

- All arrays can be of type INTEGER.
This requires a normalization of the vectors during the operation
sequence and adaption to the Integer value range to minimize the
influence of rounding errors.

- The convolution time is independent of the size of the box filter
when applying recursive computation. Thus only few additions more
are required for applying the box filter several times to reach
triangle or Gaussian filters. The needed time is tolerable compared
to the total time for the interest operator.

A benchmarktest was run to compare the performance of the window
selection on several sequential computers. The algorithm was applied
to a 70%x70 pixel image. The algorithm was run in the core memory
without intermediate disc read or write operations. The test results
are as follows:
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Commodore AT 6.7 seconds
Harris H100 9.4 seconds
SUN 3/75 2.1 seconds
HP1000-A900 x 4.2 seconds

X this time is derived from 40%40 pixel image computation
due to the limited core memory.

These times can be related to the time required for the feature
based matching algorithm (FORSTNER 1986) with the selection of optimal
windows as it’s first step. The interest operator (without computation
of optimal points) applied on two images needs about B85 % of the total
time, indicating the need for speeding up this operation.

2.2 Implementation on the SKY WARRIOR

The SKY-WARRIOR is an array processing device that performs 32-bit
and 84-bit floating-point operations with a throughput of up to 15
megaflops. It is a low cost processor which can be attached to host
computers via Q-Bus or VME-Bus. It has an overlapped/pipelined archi-
tecture. This hardware technique provides for parallelism of arithme-
tic and I/0 operations. The WARRIOR has the ability to simultaneously
perform several operations, i.e. arithmetic processing of the current
data set, output of the previous data set, and input of the next data
set. According to the classification of HOCKNEY and JESSHOPE this is
parallalism on the instruction level wusing a pipeline. At the same
time the host microcomputer can be executing additional tasks. The
Arithmetic Logical Unit (ALU) consists of two 32-bit floating-point
pipeline adders and one floating-point pipeline multiplier. In addi-
tion a 16-bit multiplier and bit slice processors are used to perform
logical, integer and 84-bit floating-point operations.

The software consists of * the Vector Subroutine Library, which is
coded in the host language and operates on the host’s operating
system. All routines are FORTRAN callable refering to the following
form:

CALL func (<scalar>,<v1(i),incl>,<v2(i),inc2>,<v3(i),in03>,#elem,
<type>, <prec>)

with:

fune : function

scalar: variable,constant

vi(i) : indicates the starting array element

incl : increment, or next element to be processed in the
array

#elem : number of elements to be processed

type type of data (e.g. REAL, COMPLEX)

prec precision of data (e.g. INTEGER, DOUBLE PRECISION)

The interest operator can be installed on the WARRIOR by vectori-
sing the operations taking advantage of the vector processing capabi-
lities of the hardware. The same flowchart as in chapter 2.1 is the
basis for the computation of the selected optimal windows. The re-
quired 4 matrices, stored as vectors are of precision type REAL. Thus
problems of normalization and adaption to the range as they occur with
INTEGER array computation do not exist.

The following Vector Routines are used for the interest operator:

[T
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VADD Vector Addition

vsUB Vector Subtraction

VMUL Vector Multiplication

VDIV Vector Division

VSQR Vector Element Squared

VMOV Move Routine (i.e. copy routine)

VCMP Vector Comparison. Compare elements of two vectors and
form a third integer result vector.

VMAXG Maximum Value Index Vector. Find the maximum value in a

vector. An Integer vector is formed containing the indi-
ces of all occurences.

VSUM Sum Routine

VSET Set Vector To Scalar

VSADD Scalar-Vector Addition

VSMUL Scalar-Vector Multiplication
VSCMP Scalar-Vector Comparison
VI2SF Integer*2 To Realx4

VWAIT WARRIOR-Host Synchronization

Several operations can be applied to the whole vector array at
once. Others have to be divided into column and row direction and some
operations can be vectorized only to a certain extent. The following
three examples describe the different cases:

Example 1: Computation of Roberts gradient

This operation is applied to the original gray value image G(n*n).
Gu and Gv are defined by (cf. Fig. 8):

Gu(i) = G(i+n) - G(i+l) and Gv(i) = G(i) - G(i+n+l)

The indices refer to the vector type storage of the n x n matrix. The
routine VSUB is used to determine Gu and Gv. The vector Gu can be com-
puted by one call only as follows:

CALL VSUB ( G(1l+n) ,1, G(2) ,1, Gu(1l) ,1, nkx(n-1)-1 ,...... )

Out of vector G two subvectors are extracted with starting address
(14n) and (2). The subtraction of both subvectors is performed for
n¥(n-1)-1 vector elements. The result is sequentially stored in vector
Gu with starting address (1). The call for computing Gv has this form:

CALL VSUB ( G(1) ,1, G(n+2) ,1, Gv(1) ,1, n¥x(n-1)-1 ,...... )

Most operations in the flowchart (e.g. additions, multiplications,
comparisons etc.) can be processed according to this example by a sin-
gle routine call.

Example 2: Recursive vector convolution with boxfilter

The two dimensional boxfilter 1is performed by two 1-dimensional
convolutions in row and column direction. Those operations can also be
performed recursively by the SKY WARRIOR, working on whole columns for

the row convoclution and vice versa.

The following example shows a 4%4 boxfilter and its separation:

x 1/4 [ 1111 ]

1/16 = 1/4

o
Ll
N
el
e



_296_

The steps for the row convolution with a kernel of 4, necessary for
the gradients in a selected window size of 5 x 5, are the following:
a) Initialisation

In the initial step the first four columns are summed up element
by element (horizontally), the sum being stored in column 3 for
each row of 4 values (cf. Fig. 9a). The routine used is VADD.
b) Recursion (Loop)

The recursion starts with addition of the corresponding elements
of column 5 to column 3 (vector routine VADD). From the resulting
vector the corresponding elements of column 1 are subtracted (vec-
tor routine VSUB) and the result is stored in column 4 (cf. Fig.
9b). Then the loop starts again by shifting to storing column 5
(cf. Fig. 9¢).

By performing the convolution of rows in the described way whole
columns can be treated by one single call. The convolution of columns
is done in the same way, working on the convolved array resulting from
the first l-dimensional convolution as described above.

Example 3: Non maxima supression

The non maxima supression can also be vectorized. One possibility
of implementation is described. If a 3 x 3 window is specified there
are 9 subvectors extracted from the interest value vector w*, by defi-
ning 9 different starting array elements, representing w* itself and
w* shifted to the 8 neighbouring positions.

8 vector to vector comparisons (vector routine VCMP) are necessary.
Each comparison results in an Integer vector where for each element
the logical decision, whether the value is greater than the correspon-
ding one or not, is stored. This is done by setting the element to 1
or 0. The 8 Integer vectors are sequentially summed up using VADD.
Then a routine is applied to the resulting decision vector to find the
maxima (with value 8 in the described example) and list all occurences
(vector routine VMAXG). This directly provides the coordinates of the
centres of the optimal windows.

By looking for a lower value (e.g. 7) in +the decision vector in-
stead of the maximum, blobs (i. e. high’s) can be extracted. This can
be done by applying similar vector routines. This operation leads to
the approach of ZIMMERMANN and KORIES (1984,19886).

This implementation wusing the vector operations might need more
time compared to serial computing, at least for larger windows indica-
ting the limitation of this type of implementation.

The benchmarktest for a SKY WARRIOR is in preparation.

2.3 Implementation on a pipeline processor

Processed on a pipeline processor the interest operator could pro-
vide for results with a delay of a few video lines. One possible way
of implementation, which is not realized, is described in a flowchart
(ef. Fig. 10).

The convolutions and the non-maxima supression require the same
structure of delay and arithmetic operations. Only the ALU has to per-
form different operations.
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For an example with 5%5 convolution and 5E%5 non maxima supression a
delay of 11 video lines can be expected thus showing attractive real-
time performance.

3. Conclusions

The paper presented the theoretical basis and the implementation of
an operator for automatically selecting point type features in digital
images. The operator consists of two steps namely window selection and
feature location. The selection is optimal for finding distinct points
for matching, for detecting corners of polyhedra and for finding cir-
cular symmetrically features as circles or discs without needing to
prespecify the type of selected feature. The selection can be evalua-
ted by the standard deviation of the estimated position. The operator
allows a fast implementation on special computers of different type.
The implementation on an array Pprocessor and on a pipeline processor
were discussed.

The paper did not discuss the seldomness measure, as this essen-
tially requires a matrix inversion, which in a straight forward manner
can be parallelized. On the other hand the classification of the se-
lected features has not been adressed. This topic needs further in-
vestigations.

References:

BARNARD S. T., THOMPSON W. B. (1981): Disparity Analysis of Images,
IEEE, Vol. PAMI -2, 1981, pp. 333-340

DRESCHLER L. (1981): Ermittlung markanter Punkte auf den Bildern be-
wegter Objekte und Berechnung einer 3D-Beschreibung auf dieser
Grundlage, Diss. Fachber. Informatik, Univ. Hamburg, 1981

FORSTNER W. (1986): A Feature Based Correspondence Algorithm for Image
Matching, Int. Arch. for Photogr. and Remote Sensing, Vol. 26-3/3,
pp. 150-186

HANNAH M. J. (1974): Computer Matching of Areas in Stero Images, PH.
D. Thesis, Memo AIM 219, Stanford University, Stanford/CA

HOCKNEY R. W., JESSHOPE C. R. (1981): Parallel Computers, Adam Hilger
Ltd, Bristol, 1981

KORIES R. R. (19886): Bildzuordnungsverfahren fiir die Auswertung von
Bildfolgen, Schriftenr. d. Inst. f. Photogrammetrie, Heft 11,
Stuttgart 1986

MIKHAIL E. M., ACKERMANN F. (1976): Observations and Least Squares,
Dun-Donnely, New York 1976

MORAVEC H. P. (1977): Towards Automatic Visual Obstacle Avoidance,
IJCAI-T77, p 584

NAGEL H.-H., ENKELMANN W. (19868): An Investigation of Smoothness Con-
straints for +the Estimation of Displacements vector Fields from
Image Seguences, IEEE, Vol. PAMI-8, No. 5, pp. 565-593

PADERES F. C., MIKHAIL E. M., FORSTNER W. (1984): Rectification of
Single and Multiple Frames of Satellite Scanner Imagery using
Points and Edges as Control, NASA Sympos. on Mathematical Pattern
Recognition and Image Analysis, June 1984, Houston

ZIMMERMANN G., KORIES R. (1984): Eine Familie von Bildmerkmalen fiir
die Bewegungsbestimmung in Bildfolgen, Inf. Fachb., 1987, Springer,
1984, S. 147-153



Fig. 1

LEFT

Fig. 5

- 298 -

O

(r_,c)

a \ (r,c) 0’0

wr

Edge element (edgel) at position (r,c) for determining
the intersection point (ro,co)

SELECTED WINDOWS LEFT SELECTED POINTS

Centres of selected windows (a.)
Located Points (b.)



JOo 313 wolJ pajewris? asdr1® 92UIPTIUOD-% 66
ITO JO SI9IUSD I0J SIUBULTD adots

iopow 03 sTaAd] Aeab
/_uoT3}o9sIdUT 107 sjuswe19~abps

(9861 WANISYQA °30)
(o) sosTp pue S3TD

(%) sjutod-I8UI0d
elep peleInuis
Jo0308T9s uTod jo 3Insay

SMOPUTM PO308TaS JUaI9IITP UOC paseq 2 -bta

29y

x (91

x (81 ‘ X (LT

£ (6

x (€1

"o (o1




DetN

\

R,

TrN

relative maxima

selected windows

26l



g

T"""‘JW

e

Fig. 4

SELECTED WINDOWS

Blowup of selected windows and located points
99 % confidence ellipses




v v [eetn]
________ [/ 1 1 DIV
[ ox ] —— _{ a/4 1 MUL
el B
]
[ MEAN ] I L L
0 0
— [ >Wlim ]---< [ >qlim ]---< 2 CMP
1 1
T |
[ * ] - 1 MUL
L
0
[ % ] ———— 1 MUL
1
L

[___¥___]

[ Rel. Maxima ] 9 CMP
[ 7 ADD
[L1st of selected windows ]
Total sum 23 ADD
(with rel. 9 MUL
maxima 3*3) 1 DIV
' 11 CMP
with
ADD Addition/Subtraction W, Convolution Columns
MUL Multiplication W, Convolution Rows

DIV Division
CMP Comparison



_303_
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Fig. 8 Robertsgradient in 5 x 5 window
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Fig. 9 Recursive Convolution in row direction
Initialization (a.)
1. step in loop (b.)
2. step in loop (c.)



