Miscellaneous Issues Regarding the reposTools
Package

Jeff Gentry
January 23, 2004

1 Overview

This article will go over some miscellaneous issues that are handled by the
reposTools package that go beyond the direct handling of repositories. These
were things that were necessary to complete the reposTools code but were either
unimplemented currently in R or we felt that an improvement could be made
to the existing implementation.

For the purposes of demonstrating some functionality, we will be loading the
reposTools package.

> library(reposTools)

2 Version Numbers

Currently in R, version numbers are handled as character strings and can be
compared using the function compareVersion. As the reposTools package uses
version numbers heavily, we felt that it would be better to provide a richer set of
operations for versions. To do this, a S4 class was constructed, VersionNumber.
It allows for standard comparison operators (e.g. ==, > <=, etc), max/min
finding, etc.

A constructor function has been provided to simplify the process of creating
a VersionNumber object. The function buildVersionNumber is passed a string
representing a version number and will output the created VersionNumber ob-
ject.

> a <- buildVersionNumber("1.2-3")
> a

[1] "1.2-3"

A note about the format of version numbers. In the VersionNumber class,
valid separator characters between version subsections are . and -. It will take
the first section and treat it as the major version, the second subsection as the

minor version and any remaining subsections as the revision. There must be at
least a major version, but anything else is optional.

> a <- buildVersionNumber("1")

> a

[1] |l1l|

> b <- buildVersionNumber("1.2")
> b

[1] "y on

> ¢ <- buildVersionNumber("1.2.3")
> c

[1] "1.2.3"

> d <- buildVersionNumber("1-2.3-4.5.6-7")
> d

[1] "1-2.3-4.5.6-7"

Also as noted, VersionNumber objects can be compared using standard op-
erators:

> a

(1] "1~
>b

(1] "1.2"
>a>hb

[1] FALSE
>ac<b

[1] TRUE

> a ==

[1] TRUE
>al=hb
(1] TRUE

> max(a, b)
(1] "1.2"
> min(a, b)

[1] Il1||

3 Package Information

Quite often it is useful to tie a version number to a package name. It is likely
that one won'’t just need a particular package, but also a particular version of
that package. To facilitate this, we’'ve provided a small class pkgInfo. As with
VersionNumber it provides a constructor function buildPkgInfo.

>b

[1] "y on

> z <- buildPkgInfo(name = "Biobase'", vers = b)
> z

[1] "Biobase: 1.2"

4 Dependencies

An important aspect to maintaining a user’s R library is insuring that for any
given package that any packages it depends on are also installed and that the
user has the proper R version installed. Currently, the standard for writing R
packages declares that in the DESCRIPTION file, any package dependencies
should be noted with the Depends: field. We’ve first constructed a system that
provides for more granularity regarding the severity of a dependency. Next,
we’ve provided a set of tools that allow the user greater control over handling,
resolving and dealing with dependency issues.
We have defined three levels of dependencies:

depends The item directly depends on the package specified, and will be con-
sidered broken if it is not installed.

suggests The item uses the specified package, but only in tangential ways.
A user will generally be able to achieve normal functionality without it
installed.

uses The item is only using the specified package in examples, and the user will
have full access to all functionality without it installed.

These three types of dependencies are used for both packages and vignette
files. For packages, one can label them in much the same manner as previously
(putting in ’depends’, ’suggests’ and ’uses’ fields into the DESCRIPTION file
of a package) and for vignettes one should use the header fields %VignetteDe-
pends{<packagel>,<package2>}, %VignetteSuggests{} and %VignetteUses{}.
These dependencies are listed exactly like the current syntax (A comma sepa-
rated list in the format <name> followed by optional version requirements, e.g.
(>=1.0)).

There are provided a pair of functions that allow a user to directly interact
with dependency issues. The first is unresolved.depends. This function will

take a package name, and will return a listing of what packages are not currently
installed for all three levels of dependencies:

> unresolved.depends ("Biobase")
list Q)

Alternatively, one can use the load.depends function. This is similar to
unresolved.depends, except that it will attempt to load any dependencies and
return with an error if any are not installed.

> load.depends ("Biobase")

Both of these functions have a similar signature: load.depends(x,suggests=TRUE,uses=TRUE,Rversion=T1
Also, in both cases, an output of NULL implies that there are either no

unresolved dependencies or that there are no dependencies to load, respectively.
An explanation of the parameters:

x The package or vignette to check
suggests If TRUE, the system will check/load suggests level dependencies.
uses If TRUE, the system will check/load uses level dependencies.

Rversion If TRUE, the system will check any listed dependencies on the R
version to the user’s version of R.

A similar function is resolve.depends. This isn’t primarily intended for end
users (although there’s no reason why one can’t call it directly) but rather mainly
used by the reposTools install/update/remove suite of commands. This function
is given a pkgInfo object, and will see if it would break any dependencies from
currently installed packages to install (or remove) this package. For instance, if
package X depends on package Y and the user wishes to remove package Y, this
would be a situation detected by resolve.depends. For instance, if we wish to
remove package Biobase from our system:

>z
[1] "Biobase: 1.2"
resolve.depends (z, remove=TRUE)

Error in resolve.depends(z, remove = TRUE)
Can not continue:

affy version 1.2.1 depends on Biobase

annotate version 1.0 depends on Biobase

Or to view this in a more normal usage:

remove.packages2("Biobase")

Note: argument '1ib' is missing: using /home/jgentry/R/library

Error in resolve.depends(buildPkgInfo(pkg), force, remove = TRUE)
Can not continue:

affy version 1.2.1 depends on Biobase

annotate version 1.0 depends on Biobase

As you can see, the remove . packages2 function will not allow us to remove
Biobase from our system. These functions do allow a parameter force (default
is FALSE), which if TRUE will ignore any dependencies.

	Overview
	Version Numbers
	Package Information
	Dependencies

