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1. Introduction 

Limma is a package for the analysis of gene expression microarray data, especially the use of linear 
models for analysing designed experiments and the assessment of differential expression. Limma 
provides the ability to analyse comparisons between many RNA targets simultaneously. The 
normalization and data analysis functions are for two-colour spotted microarrays. The linear model 
and differential expression functions apply to all microarrays including Affymetrix and other multi-
array oligonucleotide experiments. 
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The Bioconductor packages marrayClasses, marrayInput and marrayNorm provide alternative 
functions for reading and normalizing spotted microarray data. If you are using limma in conjunction 
with these packages, see Section 10. The package affy provides functions for reading and 
normalizing Affymetrix microarray data. If you are using the affy package, see Sections 7.2 and 11. 

This tutorial was prepared using R Version 1.8.0 for Windows and limma version 1.3.0. The latest 
version of limma is always available from http://www.bioconductor.org under "Developmental 
Packages" or from http://bioinf.wehi.edu.au/limma/. If you are using Windows, you can install the 
last official Bioconductor release of limma from the drop-down menu in R, simply select Packages 
then Install package(s) from Bioconductor.... Note however that this is updated only once 
every 6 months. The data sets used in the case study examples can be downloaded from 
http://bioinf.wehi.edu.au/marray/genstat2002/. Help with limma is available by sending questions or 
problems to bioconductor@stat.math.ethz.ch. 

This guide describes limma as a command-driven package. A menu-driven interface called 
limmaGUI is also available to most commonly used functions in limma. LimmaGUI is available 
from http://bioinf.wehi.edu.au/limmaGUI. Although using limmaGUI is easy, installing limmaGUI is 
at the time of writing a job for an IT professional or for a very experienced computer user because it 
depends on tck/tk extensions which are not part of standard R. 

2. A Few Preliminaries on R 

R is a program for statistical computing. It is a command-driven language meaning that you have to 
type commands into it rather than pointing and clicking. A good way to get started is to type 

  help.start() 

at the R prompt or, if you're using Windows, to follow the drop-down menu [Help > Html help]. 
Following the links [Packages > limma] from the html help page will lead you to the contents page 
of help topics for commands in limma. 

Before you can use any limma commands you have to load the package by typing 

  library(limma) 

at the R prompt. You can get help on any function in any loaded package by typing ? and the 
function name at the R prompt, for example 

  ?read.maimages 

for detailed help on the read.maimages function. Anything that you create in R is an "object". 
Objects might include data sets, variables, functions, anything at all. For example 

  x <- 2 

will create a variable x and will assign it the value 2. At any stage of your R session you can type 

  objects() 
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to get a list of all the objects you have created. You see show the contents of any object by typing the 
name of the object at the prompt, for example either of the following commands will print out the 
contents of x: 

  show(x) 
  x 

We hope that you can use limma without having to spend a lot of time learning about the R language 
itself but a little knowledge in this direction will be very helpful, especially when you want to do 
something not explicitly provided for in limma or in the other Bioconductor packages. For more 
details about the R language see An Introduction to R which is available from the online help. 

3. Quick Start 

For those who want to see very quickly what a limma analysis might look like for cDNA data, here is 
a quick analysis of four replicate arrays (including two dye-swaps). The data has been scanned using 
an Axon scanner, producing a Gene Allocation List (GAL) file, and then the intensities have been 
captured from the images using SPOT software. The GAL file and the image analysis files are in the 
current working directory of R. For more detail about the data see the Swirl Data example below. 

> files <- dir(pattern="*.spot")            # Get the names of the files 
containing the intensity data 
> RG <- read.maimages(files, source="spot") # Read in the data 
> RG$genes <- readGAL()                     # Read in GAL file containing gene 
names 
> RG$printer <- getLayout(RG$genes)         # Set printer layout information 
> MA <- normalizeWithinArrays(RG)           # Print-tip group loess normalization 
> MA <- normalizeBetweenArrays(MA)          # Scale normalization between arrays, 
optional 
> fit <- lmFit(MA, design=c(-1,1,-1,1))     # Estimate all the fold changes by 
fitting a linear model. 
                                            # The design matrix indicates which 
arrays are dye-swaps 
> fit <- eBayes(fit)                        # Apply Bayesian smoothing to the 
standard errors (very important!) 
> options(digits=3) 
> topTable(fit, n=30, adjust="fdr")         # Show the top 30 genes, control 
false discovery rate 
     Block Row Column      ID   Name     M    A     t  P.Value    B 
3721     8   2      1 control   BMP2 -2.21 12.1 -21.1 0.000357 7.96 
1609     4   2      1 control   BMP2 -2.30 13.1 -20.3 0.000357 7.78 
3723     8   2      3 control   Dlx3 -2.18 13.3 -20.0 0.000357 7.71 
1611     4   2      3 control   Dlx3 -2.18 13.5 -19.6 0.000357 7.62 
8295    16  16     15 fb94h06 20-L12  1.27 12.0  14.1 0.002067 5.78 
7036    14   8      4 fb40h07  7-D14  1.35 13.8  13.5 0.002067 5.54 
515      1  22     11 fc22a09 27-E17  1.27 13.2  13.4 0.002067 5.48 
5075    10  14     11 fb85f09 18-G18  1.28 14.4  13.4 0.002067 5.48 
7307    14  19     11 fc10h09 24-H18  1.20 13.4  13.2 0.002067 5.40 
319      1  14      7 fb85a01  18-E1 -1.29 12.5 -13.1 0.002067 5.32 
2961     6  14      9 fb85d05 18-F10 -2.69 10.3 -13.0 0.002067 5.29 
4032     8  14     24 fb87d12 18-N24  1.27 14.2  12.8 0.002067 5.22 
6903    14   2     15 control    Vox -1.26 13.4 -12.8 0.002067 5.20 
4546     9  14     10 fb85e07 18-G13  1.23 14.2  12.8 0.002067 5.18 
683      2   7     11 fb37b09  6-E18  1.31 13.3  12.4 0.002182 5.02 
1697     4   5     17 fb26b10  3-I20  1.09 13.3  12.4 0.002182 4.97 
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7491    15   5      3 fb24g06  3-D11  1.33 13.6  12.3 0.002182 4.96 
4188     8  21     12 fc18d12 26-F24 -1.25 12.1 -12.2 0.002209 4.89 
4380     9   7     12 fb37e11  6-G21  1.23 14.0  12.0 0.002216 4.80 
3726     8   2      6 control  fli-1 -1.32 10.3 -11.9 0.002216 4.76 
2679     6   2     15 control    Vox -1.25 13.4 -11.9 0.002216 4.71 
5931    12   6      3 fb32f06  5-C12 -1.10 13.0 -11.7 0.002216 4.63 
7602    15   9     18 fb50g12  9-L23  1.16 14.0  11.7 0.002216 4.63 
2151     5   2     15 control   vent -1.40 12.7 -11.7 0.002216 4.62 
3790     8   4     22 fb23d08  2-N16  1.16 12.5  11.6 0.002221 4.58 
7542    15   7      6 fb36g12  6-D23  1.12 13.5  11.0 0.003000 4.27 
4263     9   2     15 control   vent -1.41 12.7 -10.8 0.003326 4.13 
6375    13   2     15 control   vent -1.37 12.5 -10.5 0.004026 3.91 
1146     3   4     18 fb22a12  2-I23  1.05 13.7  10.2 0.004242 3.76 
157      1   7     13 fb38a01   6-I1 -1.82 10.8 -10.2 0.004242 3.75 

4. Reading Data into Limma 

4.1 Recommended Files 

We assume that an experiment has been conducted with one or more microarrays, all printed with the 
same library of probes. Each array has been scanned to produce a TIFF image. The TIFF images 
have then been processed using an image analysis program such a ArrayVision, ImageGene, 
GenePix, QuantArray or SPOT to acquire the red and green foreground and background intensities 
for each spot. The spot intensities have then been exported from the image analysis program into a 
series of text files. There should be one file for each array or, in the case of Imagene, two files for 
each array.  

You will need to have (i) a file which describes the probes, often called the Gene List, and (ii) the 
image analysis output files. It most cases it is also desirable to have a Targets File which describes 
which RNA sample was hybridized to each channel of each array. A further optional file is the Spot 
Types file which identifies special probes such as control spots. 

4.2 Reading in Intensity Data 

Let files be a character vector containing the names of the image analysis output files. The 
foreground and background intensities can be read into an RGList object using a command of the 
form 

  RG <- read.maimages(files, source="<imageanalysisprogram>", path="<directory>") 

where <imageanalysisprogram> is the name of the image analysis program and <directory> is 
the full path of the directory containing the files. If the files are in the current R working directory 
then the argument path can be omitted; see the help entry for setwd for how to set the current 
working directory. For example, if the files are SPOT output and have common extension "spot" 
then they can be read using 

  files <- dir(pattern="*\\.spot") 
  RG <- read.maimages(files, source="spot") 

The object files is then a character vector containing all the spot file names in alphabetical order. If 
the files are GenePix output files and have extension "gpr" then they can be read using 
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  files <- dir(pattern="*\\.gpr") 
  RG <- read.maimages(files, source="genepix") 

Consult the help entry for read.maimages to see which other image analysis programs are 
supported. Files are assumed by default to be tab-delimited. If the files use a different separator this 
may be specified using the sep= argument. For example if the Genepix files were comma-separated 
(csv) then the read command would be 

  RG <- read.maimages(files, source="genepix", sep=",") 

What should you do if your image analysis program is not currently supported by limma? If your 
output files are of a standard format, you can supply the column names corresponding to the 
intensities yourself. For example,  

  RG <- read.maimages(files, columns=list(Rf="F635 Mean",Gf="F532 Mean",Rb="B635 
Median",Gb="B532 Median")) 

is exactly equivalent to the earlier command with source="genepix". "Standard format" means here 
that there is a unique column name identifying each column of interest and that there are no lines in 
the file following the last line of data. Header information at the start of the file is ok.  

It is a good idea to look at your data to check that it has been read in correctly. Type 

  show(RG) 

to see a print out the first few lines of data. Also try 

  summary(RG$R) 

to see a five-number summary of the red intensities for each array, and so on. 

It is possible to read the data in several steps. If RG1 and RG2 are two data sets corresponding to 
different sets of arrays then 

  RG <- cbind(RG1, RG2) 

will combine them into one large data set. Data sets can also be subsetted. For example RG[,1] is the 
data for the first array while RG[1:100,] is the data on the first 100 genes.  

4.3. Spot Quality Weights 

It is desirable to use the image analysis to compute a weight for each spot between 0 and 1 which 
indicates the reliability of the acquired intensities at that spot. For example, if the SPOT image 
analysis program is used and the size of an ideal perfectly circular spot is known to be 100 pixels, 
then one might use 

> RG <- read.maimages(files,source="spot",wt.fun=wtarea(100)) 

The function wtarea(100) gives full weight to spots with area 100 pixels and down-weights smaller 
and larger spots. Spots which have zero area or are more than twice the ideal size are given zero 
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weight. This will create a component called weights in the RG list. The weights will be used 
automatically by functions such as normalizeWithinArrays which operate on the RG-list. 

With GenePix data 

> RG <- read.maimages(files,source="genepix",wt.fun=wtflags(0.1)) 

will give weight 0.1 to any spot which receives a negative flag from the GenePix program. 

Computing quality weights depends on the image analysis program. Consult the help entry 
QualityWeights to see what quality weight functions are available. 

4.4 The Targets File 

Although not necessary to use limma it is usually a good idea to construct a targets file which lists 
the RNA target hybridized to each channel of each array.  The Targets File is normally in tab-
delimited text format. The file should contain a row for each microarray. It should contain FileName 
column, giving the file from image-analysis containing raw foreground and background intensities 
for each slide, a Cy3 column giving the RNA type reverse transcribed and labelled with Cy3 dye for 
that slide (e.g. Wild Type) and a Cy5 column giving the RNA type reverse transcribed and labelled 
with Cy5 dye for that slide. For ImaGene files, the FileName column is split into a FileNameCy3 
column and a FileNameCy5. As well as the essential columns, you can have a Name column giving 
an alternative slide name to the default name, "Slide n", where n is the SlideNumber and you can 
have a Date column, listing the date of the hybridization, and as many extra columns as you like, as 
long as the column names are unique. 

Some examples are shown below. 

The ImaGene Targets file below shows the special case of the ImaGene image-processing software 
which gives two (tab-delimited text) output files for each slide, one for the Cy3 (Green) channel and 
one for the Cy5 (Red) channel. So instead of having a single FileName column, there are two file 
name columns: a FileNameCy3 column and a FileNameCy5 column. 

 

The Date column is optional and is not currently used in limma. 
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A Name column can be included, giving each array a name which can be used for plotting. In this 
case, a short name is used so that a boxplot of all sixteen arrays can be plotted with labels for all 
arrays along the horizontal axis. If no Name column is given, then a default name will be given to 
each slide, e.g. "Slide 1". 

 

The Targets file below is from an experiment with four different RNA sources. The main Targets file 
is not shown. The one below is used to analyse the spiked-in scorecard controls. Spike-in controls 
will generally be analysed separately from genes because the follow different rules, e.g. for genes, 
the log-ratio between A and B plus the log-ratio between B and C should equal the log-ratio between 
A and C, but for scorecard controls, all three log (red/green) ratios may be the same. 
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The Targets File can be read using readTargets(). The file can have any name but the default name 
is Targets.txt. Very often the targets file will be first thing read because it contains the image 
analysis output file names, e.g., 

> targets <- readTargets() 
> RG <- read.maimages(targets$FileName) 

4.5 Reading the Gene List 

If the arrays have been scanned with an Axon scanner, then the gene names will be available in a 
GenePix Array List (GAL) file. If the GAL file has extension "gal" and is in the current working 
directory, then it may be read into a data.frame by 

> RG$genes <- readGAL() 

The print layout of the arrays can be extracted from the GAL by 

> RG$printer <- getLayout(RG$genes) 

Non-Genepix gene lists can be read into R using the function read.table from R base. If you have 
Imagene or SMD image analysis output, then the gene list will be extracted from the image analysis 
output files by read.images. 

4.6 The Spot Types File 

The Spot Types file (another tab-delimited text file) is optional but it is very useful in distinguishing 
between genes, controls and blanks when using the Color-Coded M A Plot (with legend) feature. 
Certain spot types (e.g. scorecard controls) can be excluded from a linear model fit if desired. For a 
given spot type, e.g. "Ratio_control_*", spot sub-types "Ratio_control_1", "Ratio_control_2" can be 
determined automatically to give a series of box-plots comparing the moderated t-statistics or B 
statistics (log odds of differential expression) between the controls, which may help in deciding 
which genes are truly differentially expressed, i.e. what moderated t statistic is significant. 
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Every SpotType must have a SpotType column, for which each entry should be unique. It must also 
have an ID column, a Name column and a default Color column. The rows of the SpotTypes file 
should be read as a list of rules (in order) for defining spot types. First, we say everything is a gene, 
then we rename certain spots according to what is find in the ID or Name column of the GAL file. 
The color given here is just a suggested color to associate with the spot type. 

Again, do not change the capitalization or spelling of the column names and do not insert extra 
spaces. 

Here is a short spot types file. 

 

The spot types file below defines the scorecard control spots. The asterisks are wildcards which can 
represent anything. 
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You can read the spot types files using readSpotTypes(). For example, if the file has the default name 
SpotTypes.txt you can use 

> spottypes <- readSpotTypes() 

The spot types file is used by the spotStatus() function to set the status of each spot on the array, for 
example 

> RG$genes$Status <- spotStatus(spottypes) 

5. Data Exploration 

It is advisable to display your data in various ways as a quality check and to check for unexpected 
effects. We recommend an imageplot of the raw log-ratios and an MA-plot of the raw data for each 
array as a minimum routine displays. See the Swirl data case study for examples. 

6. Normalization and Background Correction 

Limma implements a range of normalization methods for spotted microarrays. Smyth and Speed 
(2003) describe of the mostly commonly used methods. Most of the examples given in this manual 
use print-tip loess normalization as the major method. Print-tip loess normalization is performed by 

> MA <- normalizeWithinArrays(RG) 

By default, limma will subtract the background from the foreground intensities as part of the 
normalization process using normalizeWithinArrays so there is no need for any special action on 
the part of users. If you want to over-ride this default background correct, for example to ensure that 
all the corrected intensities are positive, then use the backgroundCorrect function. For example use 

> RG <- backgroundCorrect(RG, method="minimum") 

to reset zero or negative intensities to half the value of the minimum value of the positive intensities. 
No further background correction will be performed when normalizeWithinArrays is used 
subsequently to normalize the intensities. 

Limma contains some more sophisticated normalization methods. Normalization of absolute 
expression levels as well as just log-ratios is covered in Section 11 at the end of this guide. 

7. Differential Expression 

7.1 Linear Models 

The package limma uses an approach called linear models to analyse designed microarray 
experiments. This approach allows very general experiments to be analysed just as easily as a simple 
replicated experiment. The approach is outlined in Smyth (2003) and Yang and Speed (2002). The 
approach requires one or two matrices to be specified. The first is the design matrix which indicates 
in effect which RNA samples have been applied to each array. The second is the contrast matrix 
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which specifies which comparisons you would like to make between the RNA samples. For very 
simple experiments, you may not need to specify the contrast matrix. 

If you have data from Affymetrix experiments, from single-channel spotted microarrays or from 
spotted microarrays using a common reference, then linear modeling is the same a ordinary analysis 
of variance or multiple regression except that a model is fitted for every gene. With data of this type 
you can create design matrices as one would do for ordinary modeling with univariate data. If you 
have data from spotted microarrays using a direct design, i.e., a connected design with no common 
reference, then the linear modeling approach is very powerful but the creation of the design matrix 
may require more statistical knowledge. 

For statistical analysis and assessing differential expression, limma uses an empirical Bayes method 
to moderate the standard errors of the estimated log-fold changes. This results in more stable 
inference and improved power, especially for experiments with small numbers of arrays (Smyth, 
2003). For arrays with within-array replicate spots, limma uses a pooled correlation method to make 
full use of the duplicate spots (Smyth et al, 2003). 

7.2 Affymetrix and Other Single-Channel Designs 

Affymetrix data will usually be normalized using the affy package. We will assume here that the data 
is available as an exprSet object called eset. Such an object will have an slot containing the log-
expression values for each gene on each array which can be extracted using exprs(eset). 
Affymetrix and other single-channel microarray data may be analysed very much like ordinary linear 
models or anova models. The difference with microarray data is that it is almost always necessary to 
extract particular contrasts of interest and so the standard parametrizations provided for factors in R 
are not usually adequate. 

There are many ways to approach the analysis of a complex experiment in limma. A straightforward 
strategy is to set up the simplest possible design matrix and then to extract from the fit the contrasts 
of interest. 

Suppose that there are three RNA sources to be compared. Suppose that the first three arrays are 
hybridized with RNA1, the next two with RNA2 and the next three with RNA3. Suppose that all 
pair-wise comparisons between the RNA sources are of interest. We assume that the data has been 
normalized and stored in an exprSet object, for example by 

> data <- ReadAffy() 
> eset <- rma(data) 

An appropriate design matrix can be created and a linear model fitted using 

> design <- model.matrix(~ -1+factor(c(1,1,1,2,2,3,3,3))) 
> colnames(design) <- c("group1", "group2", "group3") 
> fit <- lmFit(eset, design) 

To make all pair-wise comparisons between the three groups the appropriate contrast matrix can be 
created by 

> contrast.matrix <- makeContrasts(group2-group1, group3-group3, group3-group1, 
levels=design) 
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> fit2 <- contrasts.fit(fit, contrast.matrix) 
> fit2 <- eBayes(fit2) 

A list of top genes differential expressed in group2 versus group1 can be obtained from 

> topTable(fit2, coef=1, adjust="fdr") 

You may classify each gene according to the three pair-wise comparisons using 

> clas <- classifyTests(fit2) 

A Venn diagram showing numbers of genes significant in each comparison can be obtained from 

> vennDiagram(clas) 

7.3 Common Reference Designs 

Now consider two-color microarray experiments in which a common reference has been used on all 
the arrays. Such experiments can be analysed very similarly to Affymetrix experiments except that 
allowance must be made for dye-swaps. The simplest method is to setup the design matrix using the 
designMatrix() function and the targets file. As an example, we consider part of an experiment 
conducted by Jöelle Michaud, Catherine Carmichael and Dr Hamish Scott at the Walter and Eliza 
Hall Institute to compare the effects of transcription factors in a human cell line. The targets file is as 
follows: 

> targets <- readTargets("runxtargets.txt") 
> targets 
   SlideNumber       Cy3       Cy5 
1         2144      EGFP      AML1 
2         2145      EGFP      AML1 
3         2146      AML1      EGFP 
4         2147      EGFP AML1.CBFb 
5         2148      EGFP AML1.CBFb 
6         2149 AML1.CBFb      EGFP 
7         2158      EGFP      CBFb 
8         2159      CBFb      EGFP 
9         2160      EGFP AML1.CBFb 
10        2161 AML1.CBFb      EGFP 
11        2162      EGFP AML1.CBFb 
12        2163 AML1.CBFb      EGFP 
13        2166      EGFP      CBFb 
14        2167      CBFb      EGFP 

In the experiment, green fluorescent protein (EGFP) has been used as a common reference. An 
adenovirus system was used to transport various transcription factors into the nuclei of HeLa cells. 
Here we consider the transcription factors AML1, CBFbeta or both. A simple design matrix was 
formed and a linear model fit: 

> design <- designMatrix(targets,ref="EGFP") 
> design 
   AML1 AML1.CBFb CBFb 
1     1         0    0 
2     1         0    0 
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3    -1         0    0 
4     0         1    0 
5     0         1    0 
6     0        -1    0 
7     0         0    1 
8     0         0   -1 
9     0         1    0 
10    0        -1    0 
11    0         1    0 
12    0        -1    0 
13    0         0    1 
14    0         0   -1 
> fit <- lmFit(RG, design) 

It is of interest to compare each of the transcription factors to EGFP and also to compare the 
combination transcription factor with AML1 and CBFb individually. An appropriate contrast matrix 
was formed as follows: 

> contrast.matrix <- makeContrasts(AML1,CBFb,AML1.CBFb,AML1.CBFb-AML1,AML1.CBFb-
CBFb,levels=design) 
> contrast.matrix 
          AML1 CBFb AML1.CBFb AML1.CBFb - AML1 AML1.CBFb - CBFb 
AML1         1    0         0               -1                0 
AML1.CBFb    0    0         1                1                1 
CBFb         0    1         0                0               -1 

The linear model fit can now be expanded and empirical Bayes statistics computed: 

> fit2 <- contrasts.fit(fit, contrasts.matrix) 
> fit2 <- eBayes(fit2) 

7.3 Direct Two-Color Designs 

Two-colour designs without a common reference require the most statistical knowledge to choose 
the appropriate design matrix. As an example, we consider an experiment conducted by Dr Mireille 
Lahoud at the Walter and Eliza Hall Institute to compare gene expression in three different 
populations of dendritric cells (DC). 
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This experiment involved six cDNA microarrays in three dye-swap pairs, with each pair used to 
compare two DC types. The design is shown diagrammatically above. The targets file was as 
follows: 

> targets 
  SlideNumber     FileName Cy3 Cy5 
1          12 ml12med.spot CD4 CD8 
2          13 ml13med.spot CD8 CD4 
3          14 ml14med.spot  DN CD8 
4          15 ml15med.spot CD8  DN 
5          16 ml16med.spot CD4  DN 
6          17 ml17med.spot  DN CD4 

There are many valid choices for a design matrix for such an experiment and no single correct 
choice. We chose to setup the design matrix as follows: 

> design <- cbind("CD8-CD4"=c(1,-1,1,-1,0,0),"DN-CD4"=c(0,0,-1,1,1,-1)) 
> rownames(design) <- removeExt(targets$FileName) 
> design 
 
        CD8-CD4 DN-CD4 
ml12med       1      0 
ml13med      -1      0 
ml14med       1     -1 
ml15med      -1      1 
ml16med       0      1 
ml17med       0     -1 

In this design matrix, the CD8 and DN populations have been compared back to the CD4 population. 
The coefficients estimated by the linear model will correspond to the log-ratios of CD8 vs CD4 (first 
column) and DN vs CD4 (second column). After appropriate normalization of the expression data, a 
linear model was fit using 

> fit <- lmFit(MA, design, ndups=2) 

The use of ndups is to specify that the arrays contained duplicates of each gene, see Section 9. 

The linear model can now be interrogated to answer any questions of interest. For this experiment it 
was of interest to make all pairwise comparisons between the three DC populations. This was 
accomplished using the contrast matrix 

> contrast.matrix <- cbind("CD8-CD4"=c(1,0),"DN-CD4"=c(0,1),"CD8-DN"=c(1,-1)) 
> rownames(contrast.matrix) <- colnames(design) 
> contrast.matrix 
        CD8-CD4 DN-CD4 CD8-DN 
CD8-CD4       1      0      1 
DN-CD4        0      1     -1 

The contrast matrix can be used to expand the linear model fit and then to compute empirical Bayes 
statistics: 

> fit2 <- constrast.fit(fit, contrast.matrix) 
> fit2 <- eBayes(fit2) 



 15 

8. Case Studies 

8.1. Swirl Zebrafish: A Single-Sample Experiment 

In this section we consider a case study in which two RNA sources are compared directly on a set of 
replicate or dye-swap arrays. The case study includes reading in the data, data display and 
exploration, as well as normalization and differential expression analysis. The analysis of differential 
expression is analogous to a classical one-sample test of location for each gene. 

In this example we assume that the data is provided as a GAL file called fish.gal and raw SPOT 
output files and that these files are in the current working directory. 

Background. The experiment was carried out using zebrafish as a model organism to study the early 
development in vertebrates. Swirl is a point mutant in the BMP2 gene that affects the dorsal/ventral 
body axis. The main goal of the Swirl experiment is to identify genes with altered expression in the 
Swirl mutant compared to wild-type zebrafish. 

The hybridizations. Two sets of dye-swap experiments were performed making a total of four 
replicate hybridizations. Each of the arrays compares RNA from swirl fish with RNA from normal 
("wild type") fish. The experimenters have prepared a tab-delimited targets file called 
"SwirlSamples.txt" which describes the four hybridizations: 

> targets <- readTargets("SwirlSample.txt") 
> targets 
  SlideNumber     FileName       Cy3       Cy5      Date 
1          81 swirl.1.spot     swirl wild type 2001/9/20 
2          82 swirl.2.spot wild type     swirl 2001/9/20 
3          93 swirl.3.spot     swirl wild type 2001/11/8 
4          94 swirl.4.spot wild type     swirl 2001/11/8 

We see that slide numbers 81, 82, 93 and 94 were used to make the arrays. On slides 81 and 93, swirl 
RNA was labelled with green (Cy3) dye and wild type RNA was labelled with red (Cy5) dye. On 
slides 82 and 94, the labelling was the other way around.  

Each of the four hybridized arrays was scanned on an Axon scanner to produce a TIFF image, which 
was then processed using the image analysis software SPOT. The data from the arrays are stored in 
the four output files listed under FileName. Now we read the intensity data into an RGList object in 
R. The default for SPOT output is that Rmean and Gmean are used as foreground intensities and 
morphR and morphG are used as background intensities: 

> RG <- read.maimages(targets$FileName, source="spot") 
Read swirl.1.spot  
Read swirl.2.spot  
Read swirl.3.spot  
Read swirl.4.spot 
> RG 
An object of class "RGList" 
$R 
       swirl.1   swirl.2   swirl.3    swirl.4 
[1,] 19538.470 16138.720 2895.1600 14054.5400 
[2,] 23619.820 17247.670 2976.6230 20112.2600 
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[3,] 21579.950 17317.150 2735.6190 12945.8500 
[4,]  8905.143  6794.381  318.9524   524.0476 
[5,]  8676.095  6043.542  780.6667   304.6190 
8443 more rows ... 
 
$G 
       swirl.1   swirl.2   swirl.3    swirl.4 
[1,] 22028.260 19278.770 2727.5600 19930.6500 
[2,] 25613.200 21438.960 2787.0330 25426.5800 
[3,] 22652.390 20386.470 2419.8810 16225.9500 
[4,]  8929.286  6677.619  383.2381   786.9048 
[5,]  8746.476  6576.292  901.0000   468.0476 
8443 more rows ... 
 
$Rb 
     swirl.1 swirl.2 swirl.3 swirl.4 
[1,]     174     136      82      48 
[2,]     174     133      82      48 
[3,]     174     133      76      48 
[4,]     163     105      61      48 
[5,]     140     105      61      49 
8443 more rows ... 
 
$Gb 
     swirl.1 swirl.2 swirl.3 swirl.4 
[1,]     182     175      86      97 
[2,]     171     183      86      85 
[3,]     153     183      86      85 
[4,]     153     142      71      87 
[5,]     153     142      71      87 
8443 more rows ... 

The arrays. The microarrays used in this experiment were printed with 8448 probes (spots), 
including 768 control spots. The array printer uses a print head with a 4x4 arrangement of print-tips 
and so the microarrays are partitioned into a 4x4 grid of tip groups. Each grid consists of 22x24 spots 
that were printed with a single print-tip. The gene name associated with each spot is recorded in a 
GenePix array list (GAL) file: 

> RG$genes <- readGAL("fish.gal") 
> RG$genes[1:30,] 
   Block Row Column      ID     Name 
1      1   1      1 control    geno1 
2      1   1      2 control    geno2 
3      1   1      3 control    geno3 
4      1   1      4 control    3XSSC 
5      1   1      5 control    3XSSC 
6      1   1      6 control     EST1 
7      1   1      7 control    geno1 
8      1   1      8 control    geno2 
9      1   1      9 control    geno3 
10     1   1     10 control    3XSSC 
11     1   1     11 control    3XSSC 
12     1   1     12 control    3XSSC 
13     1   1     13 control     EST2 
14     1   1     14 control     EST3 
15     1   1     15 control     EST4 
16     1   1     16 control    3XSSC 
17     1   1     17 control    Actin 
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18     1   1     18 control    Actin 
19     1   1     19 control    3XSSC 
20     1   1     20 control    3XSSC 
21     1   1     21 control    3XSSC 
22     1   1     22 control    3XSSC 
23     1   1     23 control    Actin 
24     1   1     24 control    Actin 
25     1   2      1 control     ath1 
26     1   2      2 control    Cad-1 
27     1   2      3 control   DeltaB 
28     1   2      4 control     Dlx4 
29     1   2      5 control ephrinA4 
30     1   2      6 control     FGF8 

The 4x4x22x24 print layout also needs to be set. The easiest way to do this is to infer it from the 
GAL file: 

> RG$printer <- getLayout(RG$genes) 

Image plots. It is interesting to look at the variation of background values over the array. Consider 
image plots of the red and green background for the first array: 

> imageplot(log2(RG$Rb[,1]), RG$printer, low="white", high="red") 
> imageplot(log2(RG$Gb[,1]), RG$printer, low="white", high="green") 
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Image plot of the un-normalized log-ratios or M-values for the first array: 

> MA <- normalizeWithinArrays(RG, method="none") 
> imageplot(MA$M[,1], RG$printer, zlim=c(-3,3)) 
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The imageplot function lies the slide on its side, so the first print-tip group is bottom left in this 
plot. We can see a red streak across the middle two grids of the 3rd row caused by a scratch or dust 
on the array. Spots which are affected by this artefact will have suspect M-values. The streak also 
shows up as darker regions in the background plots. 

MA-plots. An MA-plot plots the log-ratio of R vs G against the overall intensity of each spot. The 
log-ratio is represented by the M-value, M = log2(R)-log2(G), and the overall intensity by the A-
value, A = log2(R)+log2(G). Here is the MA-plot of the un-normalized values for the first array: 

> plotMA(MA) 

 

The red streak seen on the image plot can be seen as a line of spots in the upper right of this plot. 
Now we plot the individual MA-plots for each of the print-tip groups on this array, together with the 
loess curves which will be used for normalization: 

> plotPrintTipLoess(MA) 
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Normalization. Print-tip loess normalization: 

> MA <- normalizeWithinArrays(RG) 
> plotPrintTipLoess(MA) 
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We have normalized the M-values with each array. A further question is whether normalization is 
required between the arrays. The following plot shows overall boxplots of the M-values for the four 
arrays. 

> boxplot(MA$M~col(MA$M),names=colnames(MA$M)) 
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There is some evidence that the different arrays have different spreads of M-values, so we will scale 
normalize between the arrays. 

> MA <- normalizeBetweenArrays(MA) 
> boxplot(MA$M~col(MA$M),names=colnames(MA$M)) 
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Linear model. Now estimate the average M-value for each gene. We do this by fitting a simple 
linear model for each gene. The negative numbers in the design matrix indicate the dye-swaps. 

> design <- c(-1,1,-1,1) 
> fit <- lmFit(MA,design) 
> fit 
An object of class "MArrayLM" 
$coefficients 
[1] -0.3943421 -0.3656843 -0.3912506 -0.2505729 -0.3432590 
8443 more elements ... 
 
$stdev.unscaled 
[1] 0.5 0.5 0.5 0.5 0.5 
8443 more elements ... 
 
$sigma 
[1] 0.3805154 0.4047829 0.4672451 0.3206071 0.2838043 
8443 more elements ... 
 
$df.residual 
[1] 3 3 3 3 3 
8443 more elements ... 
 
$method 
[1] "ls" 
 
$design 
     [,1] 
[1,]   -1 
[2,]    1 
[3,]   -1 
[4,]    1 
 
$genes 
  Block Row Column      ID  Name 
1     1   1      1 control geno1 
2     1   1      2 control geno2 
3     1   1      3 control geno3 
4     1   1      4 control 3XSSC 
5     1   1      5 control 3XSSC 
8443 more rows ... 
 
$Amean 
[1] 13.46481 13.67631 13.42665 10.77730 10.88446 
8443 more elements ... 

In the above fit object, coefficients is the average M-value for each gene and sigma is the sample 
standard deviations for each gene. Ordinary t-statistics for comparing mutant to wt could be 
computed by 

> ordinary.t <- fit$coef / fit$stdev.unscaled / fit$sigma 

We prefer though to use empirical Bayes moderated t-statistics which are computed below. Now 
create an MA-plot of the average M and A-values for each gene. 

> M <- fit$coef 
> A <- fit$Amean 
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> plot(A,M,pch=16,cex=0.1) 
> abline(0,0,col="blue") 

 

Empirical Bayes analysis. We will now go on and compute empirical Bayes statistics for 
differential expression. The moderated t-statistics use sample standard deviations which have been 
shrunk towards a pooled standard deviation value. 

> fit <- eBayes(fit) 
> qqt(fit$t,df=fit$df.prior+fit$df.residual,pch=16,cex=0.1) 
> abline(0,1) 
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Visually there seems to be plenty of genes which are differentially expressed. We will obtain a 
summary table of some key statistics for the top genes. 

> options(digits=3) 
> topTable(fit,number=30,adjust="fdr") 
     Block Row Column      ID   Name     M    A     t  P.Value    B 
3721     8   2      1 control   BMP2 -2.21 12.1 -21.1 0.000357 7.96 
1609     4   2      1 control   BMP2 -2.30 13.1 -20.3 0.000357 7.78 
3723     8   2      3 control   Dlx3 -2.18 13.3 -20.0 0.000357 7.71 
1611     4   2      3 control   Dlx3 -2.18 13.5 -19.6 0.000357 7.62 
8295    16  16     15 fb94h06 20-L12  1.27 12.0  14.1 0.002067 5.78 
7036    14   8      4 fb40h07  7-D14  1.35 13.8  13.5 0.002067 5.54 
515      1  22     11 fc22a09 27-E17  1.27 13.2  13.4 0.002067 5.48 
5075    10  14     11 fb85f09 18-G18  1.28 14.4  13.4 0.002067 5.48 
7307    14  19     11 fc10h09 24-H18  1.20 13.4  13.2 0.002067 5.40 
319      1  14      7 fb85a01  18-E1 -1.29 12.5 -13.1 0.002067 5.32 
2961     6  14      9 fb85d05 18-F10 -2.69 10.3 -13.0 0.002067 5.29 
4032     8  14     24 fb87d12 18-N24  1.27 14.2  12.8 0.002067 5.22 
6903    14   2     15 control    Vox -1.26 13.4 -12.8 0.002067 5.20 
4546     9  14     10 fb85e07 18-G13  1.23 14.2  12.8 0.002067 5.18 
683      2   7     11 fb37b09  6-E18  1.31 13.3  12.4 0.002182 5.02 
1697     4   5     17 fb26b10  3-I20  1.09 13.3  12.4 0.002182 4.97 
7491    15   5      3 fb24g06  3-D11  1.33 13.6  12.3 0.002182 4.96 
4188     8  21     12 fc18d12 26-F24 -1.25 12.1 -12.2 0.002209 4.89 
4380     9   7     12 fb37e11  6-G21  1.23 14.0  12.0 0.002216 4.80 
3726     8   2      6 control  fli-1 -1.32 10.3 -11.9 0.002216 4.76 
2679     6   2     15 control    Vox -1.25 13.4 -11.9 0.002216 4.71 
5931    12   6      3 fb32f06  5-C12 -1.10 13.0 -11.7 0.002216 4.63 
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7602    15   9     18 fb50g12  9-L23  1.16 14.0  11.7 0.002216 4.63 
2151     5   2     15 control   vent -1.40 12.7 -11.7 0.002216 4.62 
3790     8   4     22 fb23d08  2-N16  1.16 12.5  11.6 0.002221 4.58 
7542    15   7      6 fb36g12  6-D23  1.12 13.5  11.0 0.003000 4.27 
4263     9   2     15 control   vent -1.41 12.7 -10.8 0.003326 4.13 
6375    13   2     15 control   vent -1.37 12.5 -10.5 0.004026 3.91 
1146     3   4     18 fb22a12  2-I23  1.05 13.7  10.2 0.004242 3.76 
157      1   7     13 fb38a01   6-I1 -1.82 10.8 -10.2 0.004242 3.75 

The top gene is BMP2 which is significantly down-regulated in the Swirl zebrafish, as it should be 
because the Swirl fish are mutant in this gene. Other positive controls also appear in the top 50 genes 
in terms. 

In the table, t is the empirical Bayes moderated t-statistic, the corresponding P-values have been 
adjusted to control the false discovery rate and B is the empirical Bayes log odds of differential 
expression. Beware that the Benjamini and Hochberg method used to control the false discovery rate 
assumes independent statistics which we do not have here (see help(p.adjust)). 

> ord <- order(fit$lods,decreasing=TRUE) 
> top30 <- ord[1:30] 
> plot(A,M,pch=16,cex=0.1) 
> text(A[top30],M[top30],labels=MA$genes[top30,"Name"],cex=0.8,col="blue") 
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8.2 ApoAI Knockout Data: A Two-Sample Experiment 

In this section we consider a case study where two RNA sources are compared through a common 
reference RNA. The analysis of the log-ratios involves a two-sample comparison of means for each 
gene. 

In this example we assume that the data is available as an RG list in the data file ApoAI.RData. 

Background. The data is from a study of lipid metabolism by Callow et al (2000). The 
apolipoprotein AI (ApoAI) gene is known to play a pivotal role in high density lipoprotein (HDL) 
metabolism. Mouse which have the ApoAI gene knocked out have very low HDL cholesterol levels. 
The purpose of this experiment is to determine how ApoAI deficiency affects the action of other 
genes in the liver, with the idea that this will help determine the molecular pathways through which 
ApoAI operates.  

Hybridizations. The experiment compared 8 ApoAI knockout mice with 8 normal C57BL/6 ("black 
six") mice, the control mice. For each of these 16 mice, target mRNA was obtained from liver tissue 
and labelled using a Cy5 dye. The RNA from each mouse was hybridized to a separate microarray. 
Common reference RNA was labelled with Cy3 dye and used for all the arrays. The reference RNA 
was obtained by pooling RNA extracted from the 8 control mice. 

Number of arrays Red Green 
8 Normal "black six" mice Pooled reference 
8 ApoAI knockout Pooled reference 

This is an example of a single comparison experiment using a common reference. The fact that the 
comparison is made by way of a common reference rather than directly as for the swirl experiment 
makes this, for each gene, a two-sample rather than a single-sample setup. 

> load("ApoAI.RData") 
> objects() 
[1] "design"   "genelist" "layout"   "RG" 
> RG$R[1:4,] 
       c1      c2      c3      c4      c5      c6      c7     c8      k1      k2      k3 
1 2765.58 1768.22 1440.54  763.06 2027.94  864.05  958.68 644.58  747.11 1388.79 1588.76 
2 2868.43 2277.18 1599.92 1238.33 1513.43 1079.33 1228.66 757.33 1930.25 2093.00 1369.81 
3 1236.32 1546.84 2639.45  999.48 3689.67 1505.20  785.10 994.86  753.52 1300.00 1301.61 
4  383.62  532.50  323.55  585.14  250.74  566.58  409.18 417.79  829.82  402.84  513.91 
       k4      k5      k6      k7      k8 
1 1280.17 1881.72 1733.53 1170.84 1512.45 
2 1071.17 3218.58 2451.04 1605.00 1700.82 
3 3292.26 1149.23 3424.30 1901.06 2200.82 
4  459.69  391.09  601.00  438.03  507.25 
> MA <- normalizeWithinArrays(RG,layout) 
> boxplot(MA$M~col(MA$M),names=colnames(RG$R)) 
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The differences in scale are moderate, so we won't scale normalize between arrays. 

Now we can go on to estimate the fold change between the two groups. In this case the design matrix 
has two columns. The coefficient for the second column estimates the parameter of interest, the log-
ratio between knockout and control mice. 

> design 
   Control-Ref KO-Control 
c1           1          0 
c2           1          0 
c3           1          0 
c4           1          0 
c5           1          0 
c6           1          0 
c7           1          0 
c8           1          0 
k1           1          1 
k2           1          1 
k3           1          1 
k4           1          1 
k5           1          1 
k6           1          1 
k7           1          1 
k8           1          1 
> fit <- lm.series(MA$M,design) 
> fit$coef[1:5,] 
     Control-Ref KO-Control 
[1,]     -0.6595     0.6393 
[2,]      0.2294     0.6552 
[3,]     -0.2518     0.3342 
[4,]     -0.0517     0.0405 
[5,]     -0.2501     0.2230 
> eb <- ebayes(fit) 
> options(digits=3) 
> toptable(coef=2,number=15,genelist=genelist[,1:6],fit=fit,eb=eb,adjust="fdr") 
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     GridROW GridCOL ROW COL                 NAME TYPE      M      t  P.Value      B 
2149       2       2   8   7      ApoAI,lipid-Img cDNA -3.166 -23.98 3.05e-11 14.927 
540        1       2   7  15 EST,HighlysimilartoA cDNA -3.049 -12.96 5.02e-07 10.813 
5356       4       2   9   1 CATECHOLO-METHYLTRAN cDNA -1.848 -12.44 6.51e-07 10.448 
4139       3       3   8   2 EST,WeaklysimilartoC cDNA -1.027 -11.76 1.21e-06  9.929 
1739       2       1   7  17    ApoCIII,lipid-Img cDNA -0.933  -9.84 1.56e-05  8.192 
2537       2       3   7  17 ESTs,Highlysimilarto cDNA -1.010  -9.02 4.22e-05  7.305 
1496       1       4  15   5                  est cDNA -0.977  -9.00 4.22e-05  7.290 
4941       4       1   8   6 similartoyeaststerol cDNA -0.955  -7.44 5.62e-04  5.311 
947        1       3   8   2 EST,WeaklysimilartoF cDNA -0.571  -4.55 1.77e-01  0.563 
5604       4       3   1  18                      cDNA -0.366  -3.96 5.29e-01 -0.553 
4140       3       3   8   3         APXL2,5q-Img cDNA -0.420  -3.93 5.29e-01 -0.619 
6073       4       4   5   4          estrogenrec cDNA  0.421   3.91 5.29e-01 -0.652 
1337       1       4   7  14 psoriasis-associated cDNA -0.838  -3.89 5.29e-01 -0.687 
954        1       3   8   9   Caspase7,heart-Img cDNA -0.302  -3.86 5.30e-01 -0.757 
563        1       2   8  17 FATTYACID-BINDINGPRO cDNA -0.637  -3.81 5.30e-01 -0.839 

Notice that the top gene is ApoAI itself which is heavily down-regulated. Theoretically the M-value 
should be minus infinity for ApoAI because it is the knockout gene. Several of the other genes are 
closely related. The top eight genes here were confirmed by independent assay subsequent to the 
microarray experiment to be differentially expressed in the knockout versus the control line. 

> plot(fit$coef[,2],eb$lods[,2],pch=16,cex=0.1,xlab="Log Fold Change", 
ylab="Log Odds",main="KO vs Control") 
> ord <- order(eb$lods[,2],decreasing=TRUE) 
> top8 <- ord[1:8] 
> text(fit$coef[top8,2],eb$lods[top8,2],labels=substring(genelist[top8,"NAME"],1,5), 
cex=0.8,col="blue") 
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8.3 Weaver Mutant Data: A Factorial Experiments 

This case study considers a more involved analysis in which the sources of RNA have a factorial 
structure. In this example we assume that data is available as an RGList. 

Background. This is a case study examining the development of certain neurons in wild-type and 
weaver mutant mice from Diaz et al (2002). The weaver mutant affects cerebellar granule neurons, 
the most numerous cell-type in the central nervous system. Weaver mutant mice are characterized by 
a weaving gait. Granule cells are generated in the first postnatal week in the external granule layer of 
the cerebellum. In normal mice, the terminally differentiated granule cells migrate to the internal 
granule layer but in mutant mice the cells die before doing so, meaning that the mutant mice have 
strongly reduced numbers of cells in the internal granule layer. The expression level of any gene 
which is specific to mature granule cells, or is expressed in response to granule cell derived signals, 
is greatly reduced in the mutant mice. 

Tissue dissection and RNA preparation. At each time point (P11 = 11 days postnatal and P21 = 21 
days postnatal) cerebella were isolated from two wild-type and two mutant littermates and pooled for 
RNA isolation. RNA was then divided into aliquots and labelled before hybridizing to the arrays. 
(This means that different hybridizations are biologically related through using RNA from the same 
mice, although we will ignore this here. See Yang and Speed (2002) for a detailed discussion of this 
issue in the context of this experiment.) 

Hybridizations. We have just four arrays each comparing two out of the four treatment 
combinations of time (11 days or 21 days) by genotype (wild-type or mutant). This has the structure 
of a 2x2 factorial experiment. 

> objects() 
[1] "designIA" "designMt" "gal" "layout" "RG" "Targets"  
> Targets 
   FileName        Name   Cy5   Cy3 
1 cb.1.spot P11WT.P11MT P11WT P11MT 
2 cb.2.spot P11MT.P21MT P11MT P21MT 
3 cb.3.spot P21MT.P21WT P21MT P21WT 
4 cb.4.spot P21WT.P11WT P21WT P11WT 
> MA <- normalizeWithinArrays(RG,layout) 
> boxplot(MA$M~col(MA$M),names=Targets$Name) 
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First we consider a classical interaction parametrization. 

> designIA 
            TimeWt Mutant11 I/A 
P11WT.P11MT      0       -1   0 
P11MT.P21MT     -1        0  -1 
P21MT.P21WT      0        1   1 
P21WT.P11WT      1        0   0 

TimeWt is late vs early time for the wild-type mice. Mutant11 is mutant vs wild-type at the early 
time. The third column estimates the interaction between time and genotype. 

> fitIA <- lm.series(MA$M,designIA) 
> ebIA <- ebayes(fitIA) 
> options(digits=3) 
> toptable(coef="I/A",n=10,genelist=gal,fit=fitIA,eb=ebIA,adjust="fdr") 
           ID            Name    M     t P.Value     B 
7737    RIKEN           Z6801 6.49 12.95   0.886 -4.03 
780     RIKEN            Z636 6.57 12.67   0.886 -4.03 
4063    RIKEN           Z3559 6.41 12.37   0.886 -4.03 
3627  Control              L1 6.08 11.89   0.886 -4.03 
3084    RIKEN           Z2652 4.88  9.38   1.000 -4.04 
16230 Control  T7/SP6 7- Vrg2 6.00  9.12   1.000 -4.05 
12537   RIKEN          Z11025 5.03  9.03   1.000 -4.05 
2866    RIKEN           Z2506 4.19  8.46   1.000 -4.05 
11430 Control T7/SP6 5- msx 1 3.31  6.40   1.000 -4.08 
15590   RIKEN          Z13718 3.17  5.88   1.000 -4.10 

With only four arrays there is only one residual df for the linear model, so even large M-values and t-
statistics are not significant after adjusting for multiple testing. There are differentially expressed 
genes here, although it is difficult to confirm it from the four arrays that we are using for this 
exercise. 
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Consider another parametrization. 

> designMt 
            Mutant11 Mutant21 TimeMt 
P11WT.P11MT       -1        0      0 
P11MT.P21MT        0        0     -1 
P21MT.P21WT        0        1      0 
P21WT.P11WT        1       -1      1 

Here Mutant21 is mutant vs wild-type at the later time and TimeMt is late vs early time for the 
mutant mice. 

> fitMt <- lm.series(MA$M,designMt) 
> ebMt <- ebayes(fitMt) 
> 
plot(fitMt$coef[,"Mutant11"],fitMt$coef[,"Mutant21"],pch=16,cex=0.1,xlab="Mutant1
1",ylab="Mutant21") 
> sel <- abs(ebMt$t[,"Mutant11"])>4 | abs(ebMt$t[,"Mutant21"])>4 
> points(fitMt$coef[sel,"Mutant11"],fitMt$coef[sel,"Mutant21"],col="blue") 
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This scatterplot allows the genes to be visually clustered according to whether they are differentially 
expressed in the mutant at the two times. 

We will now collate the results of the two fits. 

> fit <- fitIA 
> fit$coefficients <- cbind(fitMt$coef,fitIA$coef) 
> fit$coefficients <- fit$coef[,c(1,2,4,3,6)] 
> fit$coef[1:5,] 
     Mutant11 Mutant21  TimeWt TimeMt    I/A 
[1,]  -0.5396   0.1670  1.3362  2.043 0.7066 
[2,]   0.2481   0.8601 -0.9112 -0.299 0.6120 
[3,]  -1.1368  -0.5642 -0.0119  0.561 0.5726 
[4,]  -1.0166  -0.5837  0.0837  0.517 0.4329 
[5,]   0.0135   0.0614  0.3701  0.418 0.0479 
> fit$stdev.unscaled <- cbind(fitMt$std,fitIA$std) 
> fit$stdev.unscaled <- fit$std[,c(1,2,4,3,6)] 
> fit$std[1:5,] 
     Mutant11 Mutant21 TimeWt TimeMt I/A 
[1,]    0.866    0.866  0.866  0.866   1 
[2,]    0.866    0.866  0.866  0.866   1 
[3,]    0.866    0.866  0.866  0.866   1 
[4,]    0.866    0.866  0.866  0.866   1 
[5,]    0.866    0.866  0.866  0.866   1 
> eb <- ebayes(fit) 
> heatdiagram(abs(eb$t),fit$coef,"Mutant21",names=gal$Name) 

 

This heat diagram shows the expression profiles for all genes judged to be differentially expressed (|t| 
> 4) with respect to Mutant21. The genes are sorted from left to right in terms of their coefficients for 
Mutant21, with red meaning up-regulation and green meaning down-regulation. It is especially 
interesting to see that genes which are up-regulated (red) in the mutant at 21 days are those which 
have decreasing expression in the wild-type over time, and those which are down-regulated (green) 
in the mutant are those which increase over time in the wild-type. The mutant is not participating in 
normal development between 11 and 21 days in respect of these genes. 

9. Within-Array Replicate Spots 

In this section we consider a case study in which all genes (ESTs and controls) are printed more than 
once on the array. This means that there is both within-array and between-array replication for each 
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gene. The structure of the experiment is therefore essentially a randomized block experiment for 
each gene. The approach taken here is to estimate a common correlation for all the genes for between 
within-array duplicates. The theory behind the approach is explained in Smyth, Michaud and Scott 
(2003). This approach assumes that all genes are replicated the same number of times on the array 
and that the spacing between the replicates is entirely regular. 

Example. Bob Mutant Data 

In this example we assume that the data is available as an RG list. 

Background. This data is from a study of transcription factors critical to B cell maturation by Lynn 
Corcoran and Wendy Dietrich at the WEHI. Mice which have a targeted mutation in the Bob (OBF-
1) transcription factor display a number of abnormalities in the B lymphocyte compartment of the 
immune system. Immature B cells that have emigrated from the bone marrow fail to differentiate into 
full fledged B cells, resulting in a notable deficit of mature B cells. 

Arrays. Arrays were printed with expressed sequence tags (ESTs) from the National Institute of 
Aging 15k mouse clone library, plus a range of positive, negative and calibration controls. The arrays 
were printed using a 48 tip print head and 26x26 spots in each tip group. Data from 24 of the tip 
groups are given here. Every gene (ESTs and controls) was printed twice on each array. 

Hybridizations. A retrovirus was used to add Bob back to a Bob deficient cell line. Two RNA 
sources were compared using 2 dye-swap pairs of microarrays. One RNA source was obtained from 
the Bob deficient cell line after the retrovirus was used to add GFP ("green fluorescent protein", a 
neutral protein). The other RNA source was obtained after adding both GFP and Bob protein. RNA 
from Bob+GFP was labelled with Cy5 in arrays 2 and 4, and with Cy3 in arrays 1 and 4. 

> objects() 
[1] "design" "gal"    "layout" "RG"     
> design 
[1] -1  1 -1  1 
> gal[1:40,] 
   Library            Name 
1  Control       cDNA1.500 
2  Control       cDNA1.500 
3  Control Printing.buffer 
4  Control Printing.buffer 
5  Control Printing.buffer 
6  Control Printing.buffer 
7  Control Printing.buffer 
8  Control Printing.buffer 
9  Control       cDNA1.500 
10 Control       cDNA1.500 
11 Control Printing.buffer 
12 Control Printing.buffer 
13 Control Printing.buffer 
14 Control Printing.buffer 
15 Control Printing.buffer 
16 Control Printing.buffer 
17 Control       cDNA1.500 
18 Control       cDNA1.500 
19 Control Printing.buffer 
20 Control Printing.buffer 
21 Control Printing.buffer 
22 Control Printing.buffer 
23 Control Printing.buffer 
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24 Control Printing.buffer 
25 Control       cDNA1.500 
26 Control       cDNA1.500 
27  NIA15k             H31 
28  NIA15k             H31 
29  NIA15k             H32 
30  NIA15k             H32 
31  NIA15k             H33 
32  NIA15k             H33 
33  NIA15k             H34 
34  NIA15k             H34 
35  NIA15k             H35 
36  NIA15k             H35 
37  NIA15k             H36 
38  NIA15k             H36 
39  NIA15k             H37 
40  NIA15k             H37 

Although there are only four arrays, we have a total of eight spots for each gene, and more for the 
controls. Naturally the two M-values obtained from duplicate spots on the same array are highly 
correlated. The problem is how to make use of the duplicate spots in the best way. The approach 
taken here is to estimate the spatial correlation between the adjacent spots using REML and then to 
conduct the usual analysis of the arrays using generalized least squares. 

First normalize the data using print-tip loess regression. 

> MA <- normalizeWithinArrays(RG,layout) 

Now estimate the spatial correlation. We estimate a correlation term by REML for each gene, and 
then take a trimmed mean on the atanh scale to estimate the overall correlation. This command takes 
a lot of time, perhaps as much as an hour for a series of arrays. 

> cor <- dupcor.series(MA$M,design,ndups=2) # This is a very slow computation! 
> cor$cor 
[1] 0.571377 
> boxplot(cor$cor.genes) 
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> fit <- gls.series(MA$M,design,ndups=2,correlation=0.571377) 
> eb <- ebayes(fit) 
> genenames <- uniquegenelist(gal[,"Name"],ndups=2) 
> toptable(number=30,genelist=genenames,fit=fit,eb=eb,adjust="fdr") 
     Name          M          t      P.Value        B 
1  H34599  0.4035865  13.053838 0.0004860773 7.995550 
2  H31324 -0.5196599 -12.302094 0.0004860773 7.499712 
3  H33309  0.4203320  12.089742 0.0004860773 7.352862 
4   H3440  0.5678168  11.664229 0.0004860773 7.049065 
5  H36795  0.4600335  11.608550 0.0004860773 7.008343 
6   H3121  0.4408640  11.362917 0.0004860773 6.825927 
7  H36999  0.3806754  11.276571 0.0004860773 6.760715 
8   H3132  0.3699805  11.270201 0.0004860773 6.755881 
9  H32838  1.6404839  11.213454 0.0004860773 6.712681 
10 H36207 -0.3930972 -11.139510 0.0004860773 6.656013 
11 H37168  0.3909476  10.839880 0.0005405097 6.421932 
12 H31831 -0.3738452 -10.706775 0.0005405097 6.315602 
13 H32014  0.3630416  10.574797 0.0005405097 6.208714 
14 H34471 -0.3532587 -10.496483 0.0005405097 6.144590 
15 H37558  0.5319192  10.493157 0.0005405097 6.141856 
16  H3126  0.3849980  10.467091 0.0005405097 6.120389 
17 H34360 -0.3409371 -10.308779 0.0005852911 5.988745 
18 H36794  0.4716704  10.145670 0.0006399135 5.850807 
19  H3329  0.4125222  10.009042 0.0006660758 5.733424 
20 H35017  0.4337911   9.935639 0.0006660758 5.669656 
21 H32367  0.4092668   9.765338 0.0006660758 5.519781 
22 H32678  0.4608290   9.763809 0.0006660758 5.518423 
23 H31232 -0.3717084  -9.758581 0.0006660758 5.513778 
24  H3111  0.3693533   9.745794 0.0006660758 5.502407 
25 H34258  0.2991668   9.722656 0.0006660758 5.481790 
26 H32159  0.4183633   9.702614 0.0006660758 5.463892 
27 H33192 -0.4095032  -9.590227 0.0007130533 5.362809 
28 H35961 -0.3624470  -9.508868 0.0007205823 5.288871 
29 H36025  0.4265827   9.503974 0.0007205823 5.284403 
30  H3416  0.3401763   9.316136 0.0008096722 5.111117 
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> plot(fit$coef,eb$lods,xlab="Log2 Fold Change",ylab="Log Odds",pch=16,cex=0.1) 

 

10. Using limma with the marray Packages 

The packages marrayClasses, marrayInput, marrayNorm and marrayTools are designed to read and 
normalize cDNA data. The marrayNorm package provides some normalization methods which are 
not provided by limma. Normalization using marrayNorm will produce a data object of class 
marrayNorm. Suppose that you have an marrayNorm object called N. The data may be converted into 
an MAList suitable for further manipulation in limma using 

> MA <- as.MAList(N) 

Even without conversion, the marrayNorm object may be used directly in the lmFit function in 
limma, for example 

fit <- lmFit(N, design) 

after which one proceeds exactly as in previous sections.  

Note that there are no facilities for importing marrayRaw objects into limma. This means that, if you 
have read your data into R using the marrayInput package, you should use marrayNorm rather than 
limma for normalization. After normalization, you are free to use limma for analysis of differential 
expression. 
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11. Affymetrix and Single-Color Arrays 

Normalization of Affymetrix data using functions in the package affy will produce a data object of 
class exprSet or of AffyBatch which inherits from exprSet. Objects of class exprSet may be used 
directly in the lmFit function in limma. Let eset be the exprSet object. A linear model may be 
fitted using 

fit <- lmFit(eset, design) 

See Section 7.2 for more details.  

12. Single-Channel Normalization for Two-Color Arrays 

We provide a short background on the topic of single-channel normalization for two color arrays. 
Throughout this section the ApoAI data set will be used to demonstrate single-channel 
normalization. 

Load the ApoAI data and perform background correction on the RGList data object: 

> load("ApoAI.RData") 
> RG.b <-backgroundCorrect(RG,method="minimum") 

cDNA (or oligo) microarrays compare the gene expression between two different sources of RNA 
for thousands of genes simultaneously. In general, the log-ratio of spot intensities for the red and 
green channels form the primary data used for downstream analysis. Thus traditional normalization 
methods, which remove systematic variation in microarray data, focus on adjusting the log-ratios 
within each slide. However sometimes it is desirable to work with single-channel (log-intensity) data 
rather than the log-ratios and so new techniques for normalizing such single-channel data have been 
investigated. In the current literature there has been limited attention given to single-channel 
normalization despite many groups basing their entire analyses on single channel data. Single- 
channel data display a higher level of systematic variation than that observed in log-ratio data. 

For example below are imageplots of the log-intensity single-channels and the log-ratio for a single 
array from the ApoAI data set. (The imageplots below are based on non-normalised background 
corrected data). Clearly some of the systematic spatial variation is cancelled out by forming the log-
ratio. This is just a simple demonstration of how M-values are less noisy than single-channels.  

> imageplot(log(RG.b$R[,4],2), layout, low="white", high="red")  
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> imageplot(log(RG.b$G[,4],2), layout, low="white", high="green")  
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> imageplot(log(MA.n$M[,4],2), layout, low="white", high="blue")  

 

It should be noted that analysing log-ratios corresponds to doing all analysis on the basis of within-
array contrasts while the single-channel approach gives the possibility of recovering information 
from the between-array variation. This should only be considered after careful single- channel 
normalization to remove uncontrolled systematic effects at the array level. Yang and Thorne (2003) 
provides an outline of the motivations for performing single-channel (log-intensity) analysis. We 
currently perform single-channel normalization using a quantile method based on Bolstad et al.'s 
quantile normalization of high density oligonucleotide data). In the following we demonstrate 
within-slide and between-slide single-channel normalization routines. We use the ApoAI data set to 
illustrate the methods. 

We perform the normalization of single-channel data using methods in the normalizeWithinArrays 
and normalizeBetweenArrays functions.  

Note that RG.b contains unlogged single-channel intensities and normalizeWithinArrays expects 
its input RGlist to be unlogged. There is an argument log.transform=F which needs to be 
implemented if the RGlist supplied is already logged. The following command creates an MAList 
containing non-normalized background corrected values. 

> MA.n <-normalizeWithinArrays(RG.b,layout,method="n") 

Next we normalize the M-values via the default within array normalization of printtiploess (we 
could have use the method loess instead, but we find that printtiploess is often a good choice 
since it acts as a proxy for spatial normalization of the Mvalues. 

> MA.p <-normalizeWithinArrays(RG.b,layout) 
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At any stage we can recover the RGList of normalized single-channels using RG.MA. RG.MA(MA.p) 
would give us within-array only normalized single-channels. Next we perform between array 
normalization of the single-channels. We use the function normalizeBetweenArrays which takes 
and returns an MAList. normalizeBetweenArrays forms an RG matrix when implementing the 
quantile normalization method on the single-channels; and although it returns an MAList the 
single-channel normalised values can be obtained by using the function RG.MA. We show how to 
implement the following between array normalization methods respectively, quantile normalization 
between all single-channels only (q); quantile normalization after printtiploess normalization within 
arrays (pq); quantile normalization between the arrays on the Aq values which is then combined with 
the within array printtiploess normalization Mp to give MpAq . Notice that for MpAq we have mixed 
and matched different within and between array normlizations to create a simultaneous within and 
between array single-channel normalization method. 

> MA.q <- normalizeBetweenArrays(MA.n, method="quantile")  
> MA.pq <- normalizeBetweenArrays(MA.p, method="quantile")  
> MA.Aq <- normalizeBetweenArrays(MA.n, method="Aquantile")  
> MA.MpAq <- new("MAList", list(M=MA.p$M, A=MA.Aq$A)) 

We find that pq and MpAq work quite well. Next we show some plots of the single-channel log-
intensity densities which illustrate the results of the different single-channel normalization methods. 
We use the function plotDensities which will take either an RGList or an MAList . The form of 
the call is: plotDensities(object, log.transform = FALSE, arrays = NULL, 
singlechannels = NULL, groups = NULL, col = NULL). The default usage of plotDensities 
results in red/green coloring of the densities. 

Without any background correction there is a significant difference between the red and green single-
channel intensity distributions: 

 > plotDensities(RG, log.transform=TRUE) 
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> plotDensities(RG.b, log.transform=TRUE) 

 

> plotDensities(MA.n) 
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Printtiploess makes the single-channels within arrays similar: 

> plotDensities(MA.p) 

 

All the single-channels have the same distribution.  

> plotDensities(MA.q, col="black") 
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> plotDensities(MA.pq, col="black") 

 

MpAq gives very similar results as pq. 

> plotDensities(MA.MpAq) 
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