
limma: Linear Models for Microarray Data

User's Guide
Gordon Smyth, Natalie Thorne and James Wettenhall

The Walter and Eliza Hall Institute of Medical Research
27 October 2003

Table of Contents

1. Introduction
2. A Few Preliminaries on R
3. Quick Start
4. Reading Data into Limma

1. Recommended Files
2. Reading Intensity Data
3. Spot Quality Weights
4. The Targets File
5. Reading the Gene List
6. The Spot Types File

5. Data Exploration
6. Normalization and Background Correction
7. Differential Expression

1. Linear Models
2. Affymetrix and Other Single-Channel Designs
3. Common Reference Designs
4. Direct Two-Color Designs

8. Case Studies
1. One-Sample Experiments
2. Two-Sample Experiments
3. Factorial Experiments

9. Within-Array Replicate Spots
10. Using limma with the marray Packages
11. Using limma with Affymetrix data
12. Single-Channel Normalization for Two-Color Arrays

1. Introduction

Limma is a package for the analysis of gene expression microarray data, especially the use of linear
models for analysing designed experiments and the assessment of differential expression. Limma
provides the ability to analyse comparisons between many RNA targets simultaneously. The
normalization and data analysis functions are for two-colour spotted microarrays. The linear model
and differential expression functions apply to all microarrays including Affymetrix and other multi-
array oligonucleotide experiments.

 2

The Bioconductor packages marrayClasses, marrayInput and marrayNorm provide alternative
functions for reading and normalizing spotted microarray data. If you are using limma in conjunction
with these packages, see Section 10. The package affy provides functions for reading and
normalizing Affymetrix microarray data. If you are using the affy package, see Sections 7.2 and 11.

This tutorial was prepared using R Version 1.8.0 for Windows and limma version 1.3.0. The latest
version of limma is always available from http://www.bioconductor.org under "Developmental
Packages" or from http://bioinf.wehi.edu.au/limma/. If you are using Windows, you can install the
last official Bioconductor release of limma from the drop-down menu in R, simply select Packages
then Install package(s) from Bioconductor.... Note however that this is updated only once
every 6 months. The data sets used in the case study examples can be downloaded from
http://bioinf.wehi.edu.au/marray/genstat2002/. Help with limma is available by sending questions or
problems to bioconductor@stat.math.ethz.ch.

This guide describes limma as a command-driven package. A menu-driven interface called
limmaGUI is also available to most commonly used functions in limma. LimmaGUI is available
from http://bioinf.wehi.edu.au/limmaGUI. Although using limmaGUI is easy, installing limmaGUI is
at the time of writing a job for an IT professional or for a very experienced computer user because it
depends on tck/tk extensions which are not part of standard R.

2. A Few Preliminaries on R

R is a program for statistical computing. It is a command-driven language meaning that you have to
type commands into it rather than pointing and clicking. A good way to get started is to type

 help.start()

at the R prompt or, if you're using Windows, to follow the drop-down menu [Help > Html help].
Following the links [Packages > limma] from the html help page will lead you to the contents page
of help topics for commands in limma.

Before you can use any limma commands you have to load the package by typing

 library(limma)

at the R prompt. You can get help on any function in any loaded package by typing ? and the
function name at the R prompt, for example

 ?read.maimages

for detailed help on the read.maimages function. Anything that you create in R is an "object".
Objects might include data sets, variables, functions, anything at all. For example

 x <- 2

will create a variable x and will assign it the value 2. At any stage of your R session you can type

 objects()

 3

to get a list of all the objects you have created. You see show the contents of any object by typing the
name of the object at the prompt, for example either of the following commands will print out the
contents of x:

 show(x)
 x

We hope that you can use limma without having to spend a lot of time learning about the R language
itself but a little knowledge in this direction will be very helpful, especially when you want to do
something not explicitly provided for in limma or in the other Bioconductor packages. For more
details about the R language see An Introduction to R which is available from the online help.

3. Quick Start

For those who want to see very quickly what a limma analysis might look like for cDNA data, here is
a quick analysis of four replicate arrays (including two dye-swaps). The data has been scanned using
an Axon scanner, producing a Gene Allocation List (GAL) file, and then the intensities have been
captured from the images using SPOT software. The GAL file and the image analysis files are in the
current working directory of R. For more detail about the data see the Swirl Data example below.

> files <- dir(pattern="*.spot") # Get the names of the files
containing the intensity data
> RG <- read.maimages(files, source="spot") # Read in the data
> RG$genes <- readGAL() # Read in GAL file containing gene
names
> RG$printer <- getLayout(RG$genes) # Set printer layout information
> MA <- normalizeWithinArrays(RG) # Print-tip group loess normalization
> MA <- normalizeBetweenArrays(MA) # Scale normalization between arrays,
optional
> fit <- lmFit(MA, design=c(-1,1,-1,1)) # Estimate all the fold changes by
fitting a linear model.
 # The design matrix indicates which
arrays are dye-swaps
> fit <- eBayes(fit) # Apply Bayesian smoothing to the
standard errors (very important!)
> options(digits=3)
> topTable(fit, n=30, adjust="fdr") # Show the top 30 genes, control
false discovery rate
 Block Row Column ID Name M A t P.Value B
3721 8 2 1 control BMP2 -2.21 12.1 -21.1 0.000357 7.96
1609 4 2 1 control BMP2 -2.30 13.1 -20.3 0.000357 7.78
3723 8 2 3 control Dlx3 -2.18 13.3 -20.0 0.000357 7.71
1611 4 2 3 control Dlx3 -2.18 13.5 -19.6 0.000357 7.62
8295 16 16 15 fb94h06 20-L12 1.27 12.0 14.1 0.002067 5.78
7036 14 8 4 fb40h07 7-D14 1.35 13.8 13.5 0.002067 5.54
515 1 22 11 fc22a09 27-E17 1.27 13.2 13.4 0.002067 5.48
5075 10 14 11 fb85f09 18-G18 1.28 14.4 13.4 0.002067 5.48
7307 14 19 11 fc10h09 24-H18 1.20 13.4 13.2 0.002067 5.40
319 1 14 7 fb85a01 18-E1 -1.29 12.5 -13.1 0.002067 5.32
2961 6 14 9 fb85d05 18-F10 -2.69 10.3 -13.0 0.002067 5.29
4032 8 14 24 fb87d12 18-N24 1.27 14.2 12.8 0.002067 5.22
6903 14 2 15 control Vox -1.26 13.4 -12.8 0.002067 5.20
4546 9 14 10 fb85e07 18-G13 1.23 14.2 12.8 0.002067 5.18
683 2 7 11 fb37b09 6-E18 1.31 13.3 12.4 0.002182 5.02
1697 4 5 17 fb26b10 3-I20 1.09 13.3 12.4 0.002182 4.97

 4

7491 15 5 3 fb24g06 3-D11 1.33 13.6 12.3 0.002182 4.96
4188 8 21 12 fc18d12 26-F24 -1.25 12.1 -12.2 0.002209 4.89
4380 9 7 12 fb37e11 6-G21 1.23 14.0 12.0 0.002216 4.80
3726 8 2 6 control fli-1 -1.32 10.3 -11.9 0.002216 4.76
2679 6 2 15 control Vox -1.25 13.4 -11.9 0.002216 4.71
5931 12 6 3 fb32f06 5-C12 -1.10 13.0 -11.7 0.002216 4.63
7602 15 9 18 fb50g12 9-L23 1.16 14.0 11.7 0.002216 4.63
2151 5 2 15 control vent -1.40 12.7 -11.7 0.002216 4.62
3790 8 4 22 fb23d08 2-N16 1.16 12.5 11.6 0.002221 4.58
7542 15 7 6 fb36g12 6-D23 1.12 13.5 11.0 0.003000 4.27
4263 9 2 15 control vent -1.41 12.7 -10.8 0.003326 4.13
6375 13 2 15 control vent -1.37 12.5 -10.5 0.004026 3.91
1146 3 4 18 fb22a12 2-I23 1.05 13.7 10.2 0.004242 3.76
157 1 7 13 fb38a01 6-I1 -1.82 10.8 -10.2 0.004242 3.75

4. Reading Data into Limma

4.1 Recommended Files

We assume that an experiment has been conducted with one or more microarrays, all printed with the
same library of probes. Each array has been scanned to produce a TIFF image. The TIFF images
have then been processed using an image analysis program such a ArrayVision, ImageGene,
GenePix, QuantArray or SPOT to acquire the red and green foreground and background intensities
for each spot. The spot intensities have then been exported from the image analysis program into a
series of text files. There should be one file for each array or, in the case of Imagene, two files for
each array.

You will need to have (i) a file which describes the probes, often called the Gene List, and (ii) the
image analysis output files. It most cases it is also desirable to have a Targets File which describes
which RNA sample was hybridized to each channel of each array. A further optional file is the Spot
Types file which identifies special probes such as control spots.

4.2 Reading in Intensity Data

Let files be a character vector containing the names of the image analysis output files. The
foreground and background intensities can be read into an RGList object using a command of the
form

 RG <- read.maimages(files, source="<imageanalysisprogram>", path="<directory>")

where <imageanalysisprogram> is the name of the image analysis program and <directory> is
the full path of the directory containing the files. If the files are in the current R working directory
then the argument path can be omitted; see the help entry for setwd for how to set the current
working directory. For example, if the files are SPOT output and have common extension "spot"
then they can be read using

 files <- dir(pattern="*\\.spot")
 RG <- read.maimages(files, source="spot")

The object files is then a character vector containing all the spot file names in alphabetical order. If
the files are GenePix output files and have extension "gpr" then they can be read using

 5

 files <- dir(pattern="*\\.gpr")
 RG <- read.maimages(files, source="genepix")

Consult the help entry for read.maimages to see which other image analysis programs are
supported. Files are assumed by default to be tab-delimited. If the files use a different separator this
may be specified using the sep= argument. For example if the Genepix files were comma-separated
(csv) then the read command would be

 RG <- read.maimages(files, source="genepix", sep=",")

What should you do if your image analysis program is not currently supported by limma? If your
output files are of a standard format, you can supply the column names corresponding to the
intensities yourself. For example,

 RG <- read.maimages(files, columns=list(Rf="F635 Mean",Gf="F532 Mean",Rb="B635
Median",Gb="B532 Median"))

is exactly equivalent to the earlier command with source="genepix". "Standard format" means here
that there is a unique column name identifying each column of interest and that there are no lines in
the file following the last line of data. Header information at the start of the file is ok.

It is a good idea to look at your data to check that it has been read in correctly. Type

 show(RG)

to see a print out the first few lines of data. Also try

 summary(RG$R)

to see a five-number summary of the red intensities for each array, and so on.

It is possible to read the data in several steps. If RG1 and RG2 are two data sets corresponding to
different sets of arrays then

 RG <- cbind(RG1, RG2)

will combine them into one large data set. Data sets can also be subsetted. For example RG[,1] is the
data for the first array while RG[1:100,] is the data on the first 100 genes.

4.3. Spot Quality Weights

It is desirable to use the image analysis to compute a weight for each spot between 0 and 1 which
indicates the reliability of the acquired intensities at that spot. For example, if the SPOT image
analysis program is used and the size of an ideal perfectly circular spot is known to be 100 pixels,
then one might use

> RG <- read.maimages(files,source="spot",wt.fun=wtarea(100))

The function wtarea(100) gives full weight to spots with area 100 pixels and down-weights smaller
and larger spots. Spots which have zero area or are more than twice the ideal size are given zero

 6

weight. This will create a component called weights in the RG list. The weights will be used
automatically by functions such as normalizeWithinArrays which operate on the RG-list.

With GenePix data

> RG <- read.maimages(files,source="genepix",wt.fun=wtflags(0.1))

will give weight 0.1 to any spot which receives a negative flag from the GenePix program.

Computing quality weights depends on the image analysis program. Consult the help entry
QualityWeights to see what quality weight functions are available.

4.4 The Targets File

Although not necessary to use limma it is usually a good idea to construct a targets file which lists
the RNA target hybridized to each channel of each array. The Targets File is normally in tab-
delimited text format. The file should contain a row for each microarray. It should contain FileName
column, giving the file from image-analysis containing raw foreground and background intensities
for each slide, a Cy3 column giving the RNA type reverse transcribed and labelled with Cy3 dye for
that slide (e.g. Wild Type) and a Cy5 column giving the RNA type reverse transcribed and labelled
with Cy5 dye for that slide. For ImaGene files, the FileName column is split into a FileNameCy3
column and a FileNameCy5. As well as the essential columns, you can have a Name column giving
an alternative slide name to the default name, "Slide n", where n is the SlideNumber and you can
have a Date column, listing the date of the hybridization, and as many extra columns as you like, as
long as the column names are unique.

Some examples are shown below.

The ImaGene Targets file below shows the special case of the ImaGene image-processing software
which gives two (tab-delimited text) output files for each slide, one for the Cy3 (Green) channel and
one for the Cy5 (Red) channel. So instead of having a single FileName column, there are two file
name columns: a FileNameCy3 column and a FileNameCy5 column.

The Date column is optional and is not currently used in limma.

 7

A Name column can be included, giving each array a name which can be used for plotting. In this
case, a short name is used so that a boxplot of all sixteen arrays can be plotted with labels for all
arrays along the horizontal axis. If no Name column is given, then a default name will be given to
each slide, e.g. "Slide 1".

The Targets file below is from an experiment with four different RNA sources. The main Targets file
is not shown. The one below is used to analyse the spiked-in scorecard controls. Spike-in controls
will generally be analysed separately from genes because the follow different rules, e.g. for genes,
the log-ratio between A and B plus the log-ratio between B and C should equal the log-ratio between
A and C, but for scorecard controls, all three log (red/green) ratios may be the same.

 8

The Targets File can be read using readTargets(). The file can have any name but the default name
is Targets.txt. Very often the targets file will be first thing read because it contains the image
analysis output file names, e.g.,

> targets <- readTargets()
> RG <- read.maimages(targets$FileName)

4.5 Reading the Gene List

If the arrays have been scanned with an Axon scanner, then the gene names will be available in a
GenePix Array List (GAL) file. If the GAL file has extension "gal" and is in the current working
directory, then it may be read into a data.frame by

> RG$genes <- readGAL()

The print layout of the arrays can be extracted from the GAL by

> RG$printer <- getLayout(RG$genes)

Non-Genepix gene lists can be read into R using the function read.table from R base. If you have
Imagene or SMD image analysis output, then the gene list will be extracted from the image analysis
output files by read.images.

4.6 The Spot Types File

The Spot Types file (another tab-delimited text file) is optional but it is very useful in distinguishing
between genes, controls and blanks when using the Color-Coded M A Plot (with legend) feature.
Certain spot types (e.g. scorecard controls) can be excluded from a linear model fit if desired. For a
given spot type, e.g. "Ratio_control_*", spot sub-types "Ratio_control_1", "Ratio_control_2" can be
determined automatically to give a series of box-plots comparing the moderated t-statistics or B
statistics (log odds of differential expression) between the controls, which may help in deciding
which genes are truly differentially expressed, i.e. what moderated t statistic is significant.

 9

Every SpotType must have a SpotType column, for which each entry should be unique. It must also
have an ID column, a Name column and a default Color column. The rows of the SpotTypes file
should be read as a list of rules (in order) for defining spot types. First, we say everything is a gene,
then we rename certain spots according to what is find in the ID or Name column of the GAL file.
The color given here is just a suggested color to associate with the spot type.

Again, do not change the capitalization or spelling of the column names and do not insert extra
spaces.

Here is a short spot types file.

The spot types file below defines the scorecard control spots. The asterisks are wildcards which can
represent anything.

 10

You can read the spot types files using readSpotTypes(). For example, if the file has the default name
SpotTypes.txt you can use

> spottypes <- readSpotTypes()

The spot types file is used by the spotStatus() function to set the status of each spot on the array, for
example

> RG$genes$Status <- spotStatus(spottypes)

5. Data Exploration

It is advisable to display your data in various ways as a quality check and to check for unexpected
effects. We recommend an imageplot of the raw log-ratios and an MA-plot of the raw data for each
array as a minimum routine displays. See the Swirl data case study for examples.

6. Normalization and Background Correction

Limma implements a range of normalization methods for spotted microarrays. Smyth and Speed
(2003) describe of the mostly commonly used methods. Most of the examples given in this manual
use print-tip loess normalization as the major method. Print-tip loess normalization is performed by

> MA <- normalizeWithinArrays(RG)

By default, limma will subtract the background from the foreground intensities as part of the
normalization process using normalizeWithinArrays so there is no need for any special action on
the part of users. If you want to over-ride this default background correct, for example to ensure that
all the corrected intensities are positive, then use the backgroundCorrect function. For example use

> RG <- backgroundCorrect(RG, method="minimum")

to reset zero or negative intensities to half the value of the minimum value of the positive intensities.
No further background correction will be performed when normalizeWithinArrays is used
subsequently to normalize the intensities.

Limma contains some more sophisticated normalization methods. Normalization of absolute
expression levels as well as just log-ratios is covered in Section 11 at the end of this guide.

7. Differential Expression

7.1 Linear Models

The package limma uses an approach called linear models to analyse designed microarray
experiments. This approach allows very general experiments to be analysed just as easily as a simple
replicated experiment. The approach is outlined in Smyth (2003) and Yang and Speed (2002). The
approach requires one or two matrices to be specified. The first is the design matrix which indicates
in effect which RNA samples have been applied to each array. The second is the contrast matrix

 11

which specifies which comparisons you would like to make between the RNA samples. For very
simple experiments, you may not need to specify the contrast matrix.

If you have data from Affymetrix experiments, from single-channel spotted microarrays or from
spotted microarrays using a common reference, then linear modeling is the same a ordinary analysis
of variance or multiple regression except that a model is fitted for every gene. With data of this type
you can create design matrices as one would do for ordinary modeling with univariate data. If you
have data from spotted microarrays using a direct design, i.e., a connected design with no common
reference, then the linear modeling approach is very powerful but the creation of the design matrix
may require more statistical knowledge.

For statistical analysis and assessing differential expression, limma uses an empirical Bayes method
to moderate the standard errors of the estimated log-fold changes. This results in more stable
inference and improved power, especially for experiments with small numbers of arrays (Smyth,
2003). For arrays with within-array replicate spots, limma uses a pooled correlation method to make
full use of the duplicate spots (Smyth et al, 2003).

7.2 Affymetrix and Other Single-Channel Designs

Affymetrix data will usually be normalized using the affy package. We will assume here that the data
is available as an exprSet object called eset. Such an object will have an slot containing the log-
expression values for each gene on each array which can be extracted using exprs(eset).
Affymetrix and other single-channel microarray data may be analysed very much like ordinary linear
models or anova models. The difference with microarray data is that it is almost always necessary to
extract particular contrasts of interest and so the standard parametrizations provided for factors in R
are not usually adequate.

There are many ways to approach the analysis of a complex experiment in limma. A straightforward
strategy is to set up the simplest possible design matrix and then to extract from the fit the contrasts
of interest.

Suppose that there are three RNA sources to be compared. Suppose that the first three arrays are
hybridized with RNA1, the next two with RNA2 and the next three with RNA3. Suppose that all
pair-wise comparisons between the RNA sources are of interest. We assume that the data has been
normalized and stored in an exprSet object, for example by

> data <- ReadAffy()
> eset <- rma(data)

An appropriate design matrix can be created and a linear model fitted using

> design <- model.matrix(~ -1+factor(c(1,1,1,2,2,3,3,3)))
> colnames(design) <- c("group1", "group2", "group3")
> fit <- lmFit(eset, design)

To make all pair-wise comparisons between the three groups the appropriate contrast matrix can be
created by

> contrast.matrix <- makeContrasts(group2-group1, group3-group3, group3-group1,
levels=design)

 12

> fit2 <- contrasts.fit(fit, contrast.matrix)
> fit2 <- eBayes(fit2)

A list of top genes differential expressed in group2 versus group1 can be obtained from

> topTable(fit2, coef=1, adjust="fdr")

You may classify each gene according to the three pair-wise comparisons using

> clas <- classifyTests(fit2)

A Venn diagram showing numbers of genes significant in each comparison can be obtained from

> vennDiagram(clas)

7.3 Common Reference Designs

Now consider two-color microarray experiments in which a common reference has been used on all
the arrays. Such experiments can be analysed very similarly to Affymetrix experiments except that
allowance must be made for dye-swaps. The simplest method is to setup the design matrix using the
designMatrix() function and the targets file. As an example, we consider part of an experiment
conducted by Jöelle Michaud, Catherine Carmichael and Dr Hamish Scott at the Walter and Eliza
Hall Institute to compare the effects of transcription factors in a human cell line. The targets file is as
follows:

> targets <- readTargets("runxtargets.txt")
> targets
 SlideNumber Cy3 Cy5
1 2144 EGFP AML1
2 2145 EGFP AML1
3 2146 AML1 EGFP
4 2147 EGFP AML1.CBFb
5 2148 EGFP AML1.CBFb
6 2149 AML1.CBFb EGFP
7 2158 EGFP CBFb
8 2159 CBFb EGFP
9 2160 EGFP AML1.CBFb
10 2161 AML1.CBFb EGFP
11 2162 EGFP AML1.CBFb
12 2163 AML1.CBFb EGFP
13 2166 EGFP CBFb
14 2167 CBFb EGFP

In the experiment, green fluorescent protein (EGFP) has been used as a common reference. An
adenovirus system was used to transport various transcription factors into the nuclei of HeLa cells.
Here we consider the transcription factors AML1, CBFbeta or both. A simple design matrix was
formed and a linear model fit:

> design <- designMatrix(targets,ref="EGFP")
> design
 AML1 AML1.CBFb CBFb
1 1 0 0
2 1 0 0

 13

3 -1 0 0
4 0 1 0
5 0 1 0
6 0 -1 0
7 0 0 1
8 0 0 -1
9 0 1 0
10 0 -1 0
11 0 1 0
12 0 -1 0
13 0 0 1
14 0 0 -1
> fit <- lmFit(RG, design)

It is of interest to compare each of the transcription factors to EGFP and also to compare the
combination transcription factor with AML1 and CBFb individually. An appropriate contrast matrix
was formed as follows:

> contrast.matrix <- makeContrasts(AML1,CBFb,AML1.CBFb,AML1.CBFb-AML1,AML1.CBFb-
CBFb,levels=design)
> contrast.matrix
 AML1 CBFb AML1.CBFb AML1.CBFb - AML1 AML1.CBFb - CBFb
AML1 1 0 0 -1 0
AML1.CBFb 0 0 1 1 1
CBFb 0 1 0 0 -1

The linear model fit can now be expanded and empirical Bayes statistics computed:

> fit2 <- contrasts.fit(fit, contrasts.matrix)
> fit2 <- eBayes(fit2)

7.3 Direct Two-Color Designs

Two-colour designs without a common reference require the most statistical knowledge to choose
the appropriate design matrix. As an example, we consider an experiment conducted by Dr Mireille
Lahoud at the Walter and Eliza Hall Institute to compare gene expression in three different
populations of dendritric cells (DC).

 14

This experiment involved six cDNA microarrays in three dye-swap pairs, with each pair used to
compare two DC types. The design is shown diagrammatically above. The targets file was as
follows:

> targets
 SlideNumber FileName Cy3 Cy5
1 12 ml12med.spot CD4 CD8
2 13 ml13med.spot CD8 CD4
3 14 ml14med.spot DN CD8
4 15 ml15med.spot CD8 DN
5 16 ml16med.spot CD4 DN
6 17 ml17med.spot DN CD4

There are many valid choices for a design matrix for such an experiment and no single correct
choice. We chose to setup the design matrix as follows:

> design <- cbind("CD8-CD4"=c(1,-1,1,-1,0,0),"DN-CD4"=c(0,0,-1,1,1,-1))
> rownames(design) <- removeExt(targets$FileName)
> design

 CD8-CD4 DN-CD4
ml12med 1 0
ml13med -1 0
ml14med 1 -1
ml15med -1 1
ml16med 0 1
ml17med 0 -1

In this design matrix, the CD8 and DN populations have been compared back to the CD4 population.
The coefficients estimated by the linear model will correspond to the log-ratios of CD8 vs CD4 (first
column) and DN vs CD4 (second column). After appropriate normalization of the expression data, a
linear model was fit using

> fit <- lmFit(MA, design, ndups=2)

The use of ndups is to specify that the arrays contained duplicates of each gene, see Section 9.

The linear model can now be interrogated to answer any questions of interest. For this experiment it
was of interest to make all pairwise comparisons between the three DC populations. This was
accomplished using the contrast matrix

> contrast.matrix <- cbind("CD8-CD4"=c(1,0),"DN-CD4"=c(0,1),"CD8-DN"=c(1,-1))
> rownames(contrast.matrix) <- colnames(design)
> contrast.matrix
 CD8-CD4 DN-CD4 CD8-DN
CD8-CD4 1 0 1
DN-CD4 0 1 -1

The contrast matrix can be used to expand the linear model fit and then to compute empirical Bayes
statistics:

> fit2 <- constrast.fit(fit, contrast.matrix)
> fit2 <- eBayes(fit2)

 15

8. Case Studies

8.1. Swirl Zebrafish: A Single-Sample Experiment

In this section we consider a case study in which two RNA sources are compared directly on a set of
replicate or dye-swap arrays. The case study includes reading in the data, data display and
exploration, as well as normalization and differential expression analysis. The analysis of differential
expression is analogous to a classical one-sample test of location for each gene.

In this example we assume that the data is provided as a GAL file called fish.gal and raw SPOT
output files and that these files are in the current working directory.

Background. The experiment was carried out using zebrafish as a model organism to study the early
development in vertebrates. Swirl is a point mutant in the BMP2 gene that affects the dorsal/ventral
body axis. The main goal of the Swirl experiment is to identify genes with altered expression in the
Swirl mutant compared to wild-type zebrafish.

The hybridizations. Two sets of dye-swap experiments were performed making a total of four
replicate hybridizations. Each of the arrays compares RNA from swirl fish with RNA from normal
("wild type") fish. The experimenters have prepared a tab-delimited targets file called
"SwirlSamples.txt" which describes the four hybridizations:

> targets <- readTargets("SwirlSample.txt")
> targets
 SlideNumber FileName Cy3 Cy5 Date
1 81 swirl.1.spot swirl wild type 2001/9/20
2 82 swirl.2.spot wild type swirl 2001/9/20
3 93 swirl.3.spot swirl wild type 2001/11/8
4 94 swirl.4.spot wild type swirl 2001/11/8

We see that slide numbers 81, 82, 93 and 94 were used to make the arrays. On slides 81 and 93, swirl
RNA was labelled with green (Cy3) dye and wild type RNA was labelled with red (Cy5) dye. On
slides 82 and 94, the labelling was the other way around.

Each of the four hybridized arrays was scanned on an Axon scanner to produce a TIFF image, which
was then processed using the image analysis software SPOT. The data from the arrays are stored in
the four output files listed under FileName. Now we read the intensity data into an RGList object in
R. The default for SPOT output is that Rmean and Gmean are used as foreground intensities and
morphR and morphG are used as background intensities:

> RG <- read.maimages(targets$FileName, source="spot")
Read swirl.1.spot
Read swirl.2.spot
Read swirl.3.spot
Read swirl.4.spot
> RG
An object of class "RGList"
$R
 swirl.1 swirl.2 swirl.3 swirl.4
[1,] 19538.470 16138.720 2895.1600 14054.5400
[2,] 23619.820 17247.670 2976.6230 20112.2600

 16

[3,] 21579.950 17317.150 2735.6190 12945.8500
[4,] 8905.143 6794.381 318.9524 524.0476
[5,] 8676.095 6043.542 780.6667 304.6190
8443 more rows ...

$G
 swirl.1 swirl.2 swirl.3 swirl.4
[1,] 22028.260 19278.770 2727.5600 19930.6500
[2,] 25613.200 21438.960 2787.0330 25426.5800
[3,] 22652.390 20386.470 2419.8810 16225.9500
[4,] 8929.286 6677.619 383.2381 786.9048
[5,] 8746.476 6576.292 901.0000 468.0476
8443 more rows ...

$Rb
 swirl.1 swirl.2 swirl.3 swirl.4
[1,] 174 136 82 48
[2,] 174 133 82 48
[3,] 174 133 76 48
[4,] 163 105 61 48
[5,] 140 105 61 49
8443 more rows ...

$Gb
 swirl.1 swirl.2 swirl.3 swirl.4
[1,] 182 175 86 97
[2,] 171 183 86 85
[3,] 153 183 86 85
[4,] 153 142 71 87
[5,] 153 142 71 87
8443 more rows ...

The arrays. The microarrays used in this experiment were printed with 8448 probes (spots),
including 768 control spots. The array printer uses a print head with a 4x4 arrangement of print-tips
and so the microarrays are partitioned into a 4x4 grid of tip groups. Each grid consists of 22x24 spots
that were printed with a single print-tip. The gene name associated with each spot is recorded in a
GenePix array list (GAL) file:

> RG$genes <- readGAL("fish.gal")
> RG$genes[1:30,]
 Block Row Column ID Name
1 1 1 1 control geno1
2 1 1 2 control geno2
3 1 1 3 control geno3
4 1 1 4 control 3XSSC
5 1 1 5 control 3XSSC
6 1 1 6 control EST1
7 1 1 7 control geno1
8 1 1 8 control geno2
9 1 1 9 control geno3
10 1 1 10 control 3XSSC
11 1 1 11 control 3XSSC
12 1 1 12 control 3XSSC
13 1 1 13 control EST2
14 1 1 14 control EST3
15 1 1 15 control EST4
16 1 1 16 control 3XSSC
17 1 1 17 control Actin

 17

18 1 1 18 control Actin
19 1 1 19 control 3XSSC
20 1 1 20 control 3XSSC
21 1 1 21 control 3XSSC
22 1 1 22 control 3XSSC
23 1 1 23 control Actin
24 1 1 24 control Actin
25 1 2 1 control ath1
26 1 2 2 control Cad-1
27 1 2 3 control DeltaB
28 1 2 4 control Dlx4
29 1 2 5 control ephrinA4
30 1 2 6 control FGF8

The 4x4x22x24 print layout also needs to be set. The easiest way to do this is to infer it from the
GAL file:

> RG$printer <- getLayout(RG$genes)

Image plots. It is interesting to look at the variation of background values over the array. Consider
image plots of the red and green background for the first array:

> imageplot(log2(RG$Rb[,1]), RG$printer, low="white", high="red")
> imageplot(log2(RG$Gb[,1]), RG$printer, low="white", high="green")

 18

Image plot of the un-normalized log-ratios or M-values for the first array:

> MA <- normalizeWithinArrays(RG, method="none")
> imageplot(MA$M[,1], RG$printer, zlim=c(-3,3))

 19

The imageplot function lies the slide on its side, so the first print-tip group is bottom left in this
plot. We can see a red streak across the middle two grids of the 3rd row caused by a scratch or dust
on the array. Spots which are affected by this artefact will have suspect M-values. The streak also
shows up as darker regions in the background plots.

MA-plots. An MA-plot plots the log-ratio of R vs G against the overall intensity of each spot. The
log-ratio is represented by the M-value, M = log2(R)-log2(G), and the overall intensity by the A-
value, A = log2(R)+log2(G). Here is the MA-plot of the un-normalized values for the first array:

> plotMA(MA)

The red streak seen on the image plot can be seen as a line of spots in the upper right of this plot.
Now we plot the individual MA-plots for each of the print-tip groups on this array, together with the
loess curves which will be used for normalization:

> plotPrintTipLoess(MA)

 20

Normalization. Print-tip loess normalization:

> MA <- normalizeWithinArrays(RG)
> plotPrintTipLoess(MA)

 21

We have normalized the M-values with each array. A further question is whether normalization is
required between the arrays. The following plot shows overall boxplots of the M-values for the four
arrays.

> boxplot(MA$M~col(MA$M),names=colnames(MA$M))

 22

There is some evidence that the different arrays have different spreads of M-values, so we will scale
normalize between the arrays.

> MA <- normalizeBetweenArrays(MA)
> boxplot(MA$M~col(MA$M),names=colnames(MA$M))

 23

Linear model. Now estimate the average M-value for each gene. We do this by fitting a simple
linear model for each gene. The negative numbers in the design matrix indicate the dye-swaps.

> design <- c(-1,1,-1,1)
> fit <- lmFit(MA,design)
> fit
An object of class "MArrayLM"
$coefficients
[1] -0.3943421 -0.3656843 -0.3912506 -0.2505729 -0.3432590
8443 more elements ...

$stdev.unscaled
[1] 0.5 0.5 0.5 0.5 0.5
8443 more elements ...

$sigma
[1] 0.3805154 0.4047829 0.4672451 0.3206071 0.2838043
8443 more elements ...

$df.residual
[1] 3 3 3 3 3
8443 more elements ...

$method
[1] "ls"

$design
 [,1]
[1,] -1
[2,] 1
[3,] -1
[4,] 1

$genes
 Block Row Column ID Name
1 1 1 1 control geno1
2 1 1 2 control geno2
3 1 1 3 control geno3
4 1 1 4 control 3XSSC
5 1 1 5 control 3XSSC
8443 more rows ...

$Amean
[1] 13.46481 13.67631 13.42665 10.77730 10.88446
8443 more elements ...

In the above fit object, coefficients is the average M-value for each gene and sigma is the sample
standard deviations for each gene. Ordinary t-statistics for comparing mutant to wt could be
computed by

> ordinary.t <- fit$coef / fit$stdev.unscaled / fit$sigma

We prefer though to use empirical Bayes moderated t-statistics which are computed below. Now
create an MA-plot of the average M and A-values for each gene.

> M <- fit$coef
> A <- fit$Amean

 24

> plot(A,M,pch=16,cex=0.1)
> abline(0,0,col="blue")

Empirical Bayes analysis. We will now go on and compute empirical Bayes statistics for
differential expression. The moderated t-statistics use sample standard deviations which have been
shrunk towards a pooled standard deviation value.

> fit <- eBayes(fit)
> qqt(fit$t,df=fit$df.prior+fit$df.residual,pch=16,cex=0.1)
> abline(0,1)

 25

Visually there seems to be plenty of genes which are differentially expressed. We will obtain a
summary table of some key statistics for the top genes.

> options(digits=3)
> topTable(fit,number=30,adjust="fdr")
 Block Row Column ID Name M A t P.Value B
3721 8 2 1 control BMP2 -2.21 12.1 -21.1 0.000357 7.96
1609 4 2 1 control BMP2 -2.30 13.1 -20.3 0.000357 7.78
3723 8 2 3 control Dlx3 -2.18 13.3 -20.0 0.000357 7.71
1611 4 2 3 control Dlx3 -2.18 13.5 -19.6 0.000357 7.62
8295 16 16 15 fb94h06 20-L12 1.27 12.0 14.1 0.002067 5.78
7036 14 8 4 fb40h07 7-D14 1.35 13.8 13.5 0.002067 5.54
515 1 22 11 fc22a09 27-E17 1.27 13.2 13.4 0.002067 5.48
5075 10 14 11 fb85f09 18-G18 1.28 14.4 13.4 0.002067 5.48
7307 14 19 11 fc10h09 24-H18 1.20 13.4 13.2 0.002067 5.40
319 1 14 7 fb85a01 18-E1 -1.29 12.5 -13.1 0.002067 5.32
2961 6 14 9 fb85d05 18-F10 -2.69 10.3 -13.0 0.002067 5.29
4032 8 14 24 fb87d12 18-N24 1.27 14.2 12.8 0.002067 5.22
6903 14 2 15 control Vox -1.26 13.4 -12.8 0.002067 5.20
4546 9 14 10 fb85e07 18-G13 1.23 14.2 12.8 0.002067 5.18
683 2 7 11 fb37b09 6-E18 1.31 13.3 12.4 0.002182 5.02
1697 4 5 17 fb26b10 3-I20 1.09 13.3 12.4 0.002182 4.97
7491 15 5 3 fb24g06 3-D11 1.33 13.6 12.3 0.002182 4.96
4188 8 21 12 fc18d12 26-F24 -1.25 12.1 -12.2 0.002209 4.89
4380 9 7 12 fb37e11 6-G21 1.23 14.0 12.0 0.002216 4.80
3726 8 2 6 control fli-1 -1.32 10.3 -11.9 0.002216 4.76
2679 6 2 15 control Vox -1.25 13.4 -11.9 0.002216 4.71
5931 12 6 3 fb32f06 5-C12 -1.10 13.0 -11.7 0.002216 4.63

 26

7602 15 9 18 fb50g12 9-L23 1.16 14.0 11.7 0.002216 4.63
2151 5 2 15 control vent -1.40 12.7 -11.7 0.002216 4.62
3790 8 4 22 fb23d08 2-N16 1.16 12.5 11.6 0.002221 4.58
7542 15 7 6 fb36g12 6-D23 1.12 13.5 11.0 0.003000 4.27
4263 9 2 15 control vent -1.41 12.7 -10.8 0.003326 4.13
6375 13 2 15 control vent -1.37 12.5 -10.5 0.004026 3.91
1146 3 4 18 fb22a12 2-I23 1.05 13.7 10.2 0.004242 3.76
157 1 7 13 fb38a01 6-I1 -1.82 10.8 -10.2 0.004242 3.75

The top gene is BMP2 which is significantly down-regulated in the Swirl zebrafish, as it should be
because the Swirl fish are mutant in this gene. Other positive controls also appear in the top 50 genes
in terms.

In the table, t is the empirical Bayes moderated t-statistic, the corresponding P-values have been
adjusted to control the false discovery rate and B is the empirical Bayes log odds of differential
expression. Beware that the Benjamini and Hochberg method used to control the false discovery rate
assumes independent statistics which we do not have here (see help(p.adjust)).

> ord <- order(fit$lods,decreasing=TRUE)
> top30 <- ord[1:30]
> plot(A,M,pch=16,cex=0.1)
> text(A[top30],M[top30],labels=MA$genes[top30,"Name"],cex=0.8,col="blue")

 27

8.2 ApoAI Knockout Data: A Two-Sample Experiment

In this section we consider a case study where two RNA sources are compared through a common
reference RNA. The analysis of the log-ratios involves a two-sample comparison of means for each
gene.

In this example we assume that the data is available as an RG list in the data file ApoAI.RData.

Background. The data is from a study of lipid metabolism by Callow et al (2000). The
apolipoprotein AI (ApoAI) gene is known to play a pivotal role in high density lipoprotein (HDL)
metabolism. Mouse which have the ApoAI gene knocked out have very low HDL cholesterol levels.
The purpose of this experiment is to determine how ApoAI deficiency affects the action of other
genes in the liver, with the idea that this will help determine the molecular pathways through which
ApoAI operates.

Hybridizations. The experiment compared 8 ApoAI knockout mice with 8 normal C57BL/6 ("black
six") mice, the control mice. For each of these 16 mice, target mRNA was obtained from liver tissue
and labelled using a Cy5 dye. The RNA from each mouse was hybridized to a separate microarray.
Common reference RNA was labelled with Cy3 dye and used for all the arrays. The reference RNA
was obtained by pooling RNA extracted from the 8 control mice.

Number of arrays Red Green
8 Normal "black six" mice Pooled reference
8 ApoAI knockout Pooled reference

This is an example of a single comparison experiment using a common reference. The fact that the
comparison is made by way of a common reference rather than directly as for the swirl experiment
makes this, for each gene, a two-sample rather than a single-sample setup.

> load("ApoAI.RData")
> objects()
[1] "design" "genelist" "layout" "RG"
> RG$R[1:4,]
 c1 c2 c3 c4 c5 c6 c7 c8 k1 k2 k3
1 2765.58 1768.22 1440.54 763.06 2027.94 864.05 958.68 644.58 747.11 1388.79 1588.76
2 2868.43 2277.18 1599.92 1238.33 1513.43 1079.33 1228.66 757.33 1930.25 2093.00 1369.81
3 1236.32 1546.84 2639.45 999.48 3689.67 1505.20 785.10 994.86 753.52 1300.00 1301.61
4 383.62 532.50 323.55 585.14 250.74 566.58 409.18 417.79 829.82 402.84 513.91
 k4 k5 k6 k7 k8
1 1280.17 1881.72 1733.53 1170.84 1512.45
2 1071.17 3218.58 2451.04 1605.00 1700.82
3 3292.26 1149.23 3424.30 1901.06 2200.82
4 459.69 391.09 601.00 438.03 507.25
> MA <- normalizeWithinArrays(RG,layout)
> boxplot(MA$M~col(MA$M),names=colnames(RG$R))

 28

The differences in scale are moderate, so we won't scale normalize between arrays.

Now we can go on to estimate the fold change between the two groups. In this case the design matrix
has two columns. The coefficient for the second column estimates the parameter of interest, the log-
ratio between knockout and control mice.

> design
 Control-Ref KO-Control
c1 1 0
c2 1 0
c3 1 0
c4 1 0
c5 1 0
c6 1 0
c7 1 0
c8 1 0
k1 1 1
k2 1 1
k3 1 1
k4 1 1
k5 1 1
k6 1 1
k7 1 1
k8 1 1
> fit <- lm.series(MA$M,design)
> fit$coef[1:5,]
 Control-Ref KO-Control
[1,] -0.6595 0.6393
[2,] 0.2294 0.6552
[3,] -0.2518 0.3342
[4,] -0.0517 0.0405
[5,] -0.2501 0.2230
> eb <- ebayes(fit)
> options(digits=3)
> toptable(coef=2,number=15,genelist=genelist[,1:6],fit=fit,eb=eb,adjust="fdr")

 29

 GridROW GridCOL ROW COL NAME TYPE M t P.Value B
2149 2 2 8 7 ApoAI,lipid-Img cDNA -3.166 -23.98 3.05e-11 14.927
540 1 2 7 15 EST,HighlysimilartoA cDNA -3.049 -12.96 5.02e-07 10.813
5356 4 2 9 1 CATECHOLO-METHYLTRAN cDNA -1.848 -12.44 6.51e-07 10.448
4139 3 3 8 2 EST,WeaklysimilartoC cDNA -1.027 -11.76 1.21e-06 9.929
1739 2 1 7 17 ApoCIII,lipid-Img cDNA -0.933 -9.84 1.56e-05 8.192
2537 2 3 7 17 ESTs,Highlysimilarto cDNA -1.010 -9.02 4.22e-05 7.305
1496 1 4 15 5 est cDNA -0.977 -9.00 4.22e-05 7.290
4941 4 1 8 6 similartoyeaststerol cDNA -0.955 -7.44 5.62e-04 5.311
947 1 3 8 2 EST,WeaklysimilartoF cDNA -0.571 -4.55 1.77e-01 0.563
5604 4 3 1 18 cDNA -0.366 -3.96 5.29e-01 -0.553
4140 3 3 8 3 APXL2,5q-Img cDNA -0.420 -3.93 5.29e-01 -0.619
6073 4 4 5 4 estrogenrec cDNA 0.421 3.91 5.29e-01 -0.652
1337 1 4 7 14 psoriasis-associated cDNA -0.838 -3.89 5.29e-01 -0.687
954 1 3 8 9 Caspase7,heart-Img cDNA -0.302 -3.86 5.30e-01 -0.757
563 1 2 8 17 FATTYACID-BINDINGPRO cDNA -0.637 -3.81 5.30e-01 -0.839

Notice that the top gene is ApoAI itself which is heavily down-regulated. Theoretically the M-value
should be minus infinity for ApoAI because it is the knockout gene. Several of the other genes are
closely related. The top eight genes here were confirmed by independent assay subsequent to the
microarray experiment to be differentially expressed in the knockout versus the control line.

> plot(fit$coef[,2],eb$lods[,2],pch=16,cex=0.1,xlab="Log Fold Change",
ylab="Log Odds",main="KO vs Control")
> ord <- order(eb$lods[,2],decreasing=TRUE)
> top8 <- ord[1:8]
> text(fit$coef[top8,2],eb$lods[top8,2],labels=substring(genelist[top8,"NAME"],1,5),
cex=0.8,col="blue")

 30

8.3 Weaver Mutant Data: A Factorial Experiments

This case study considers a more involved analysis in which the sources of RNA have a factorial
structure. In this example we assume that data is available as an RGList.

Background. This is a case study examining the development of certain neurons in wild-type and
weaver mutant mice from Diaz et al (2002). The weaver mutant affects cerebellar granule neurons,
the most numerous cell-type in the central nervous system. Weaver mutant mice are characterized by
a weaving gait. Granule cells are generated in the first postnatal week in the external granule layer of
the cerebellum. In normal mice, the terminally differentiated granule cells migrate to the internal
granule layer but in mutant mice the cells die before doing so, meaning that the mutant mice have
strongly reduced numbers of cells in the internal granule layer. The expression level of any gene
which is specific to mature granule cells, or is expressed in response to granule cell derived signals,
is greatly reduced in the mutant mice.

Tissue dissection and RNA preparation. At each time point (P11 = 11 days postnatal and P21 = 21
days postnatal) cerebella were isolated from two wild-type and two mutant littermates and pooled for
RNA isolation. RNA was then divided into aliquots and labelled before hybridizing to the arrays.
(This means that different hybridizations are biologically related through using RNA from the same
mice, although we will ignore this here. See Yang and Speed (2002) for a detailed discussion of this
issue in the context of this experiment.)

Hybridizations. We have just four arrays each comparing two out of the four treatment
combinations of time (11 days or 21 days) by genotype (wild-type or mutant). This has the structure
of a 2x2 factorial experiment.

> objects()
[1] "designIA" "designMt" "gal" "layout" "RG" "Targets"
> Targets
 FileName Name Cy5 Cy3
1 cb.1.spot P11WT.P11MT P11WT P11MT
2 cb.2.spot P11MT.P21MT P11MT P21MT
3 cb.3.spot P21MT.P21WT P21MT P21WT
4 cb.4.spot P21WT.P11WT P21WT P11WT
> MA <- normalizeWithinArrays(RG,layout)
> boxplot(MA$M~col(MA$M),names=Targets$Name)

 31

First we consider a classical interaction parametrization.

> designIA
 TimeWt Mutant11 I/A
P11WT.P11MT 0 -1 0
P11MT.P21MT -1 0 -1
P21MT.P21WT 0 1 1
P21WT.P11WT 1 0 0

TimeWt is late vs early time for the wild-type mice. Mutant11 is mutant vs wild-type at the early
time. The third column estimates the interaction between time and genotype.

> fitIA <- lm.series(MA$M,designIA)
> ebIA <- ebayes(fitIA)
> options(digits=3)
> toptable(coef="I/A",n=10,genelist=gal,fit=fitIA,eb=ebIA,adjust="fdr")
 ID Name M t P.Value B
7737 RIKEN Z6801 6.49 12.95 0.886 -4.03
780 RIKEN Z636 6.57 12.67 0.886 -4.03
4063 RIKEN Z3559 6.41 12.37 0.886 -4.03
3627 Control L1 6.08 11.89 0.886 -4.03
3084 RIKEN Z2652 4.88 9.38 1.000 -4.04
16230 Control T7/SP6 7- Vrg2 6.00 9.12 1.000 -4.05
12537 RIKEN Z11025 5.03 9.03 1.000 -4.05
2866 RIKEN Z2506 4.19 8.46 1.000 -4.05
11430 Control T7/SP6 5- msx 1 3.31 6.40 1.000 -4.08
15590 RIKEN Z13718 3.17 5.88 1.000 -4.10

With only four arrays there is only one residual df for the linear model, so even large M-values and t-
statistics are not significant after adjusting for multiple testing. There are differentially expressed
genes here, although it is difficult to confirm it from the four arrays that we are using for this
exercise.

 32

Consider another parametrization.

> designMt
 Mutant11 Mutant21 TimeMt
P11WT.P11MT -1 0 0
P11MT.P21MT 0 0 -1
P21MT.P21WT 0 1 0
P21WT.P11WT 1 -1 1

Here Mutant21 is mutant vs wild-type at the later time and TimeMt is late vs early time for the
mutant mice.

> fitMt <- lm.series(MA$M,designMt)
> ebMt <- ebayes(fitMt)
>
plot(fitMt$coef[,"Mutant11"],fitMt$coef[,"Mutant21"],pch=16,cex=0.1,xlab="Mutant1
1",ylab="Mutant21")
> sel <- abs(ebMt$t[,"Mutant11"])>4 | abs(ebMt$t[,"Mutant21"])>4
> points(fitMt$coef[sel,"Mutant11"],fitMt$coef[sel,"Mutant21"],col="blue")

 33

This scatterplot allows the genes to be visually clustered according to whether they are differentially
expressed in the mutant at the two times.

We will now collate the results of the two fits.

> fit <- fitIA
> fit$coefficients <- cbind(fitMt$coef,fitIA$coef)
> fit$coefficients <- fit$coef[,c(1,2,4,3,6)]
> fit$coef[1:5,]
 Mutant11 Mutant21 TimeWt TimeMt I/A
[1,] -0.5396 0.1670 1.3362 2.043 0.7066
[2,] 0.2481 0.8601 -0.9112 -0.299 0.6120
[3,] -1.1368 -0.5642 -0.0119 0.561 0.5726
[4,] -1.0166 -0.5837 0.0837 0.517 0.4329
[5,] 0.0135 0.0614 0.3701 0.418 0.0479
> fit$stdev.unscaled <- cbind(fitMt$std,fitIA$std)
> fit$stdev.unscaled <- fit$std[,c(1,2,4,3,6)]
> fit$std[1:5,]
 Mutant11 Mutant21 TimeWt TimeMt I/A
[1,] 0.866 0.866 0.866 0.866 1
[2,] 0.866 0.866 0.866 0.866 1
[3,] 0.866 0.866 0.866 0.866 1
[4,] 0.866 0.866 0.866 0.866 1
[5,] 0.866 0.866 0.866 0.866 1
> eb <- ebayes(fit)
> heatdiagram(abs(eb$t),fit$coef,"Mutant21",names=gal$Name)

This heat diagram shows the expression profiles for all genes judged to be differentially expressed (|t|
> 4) with respect to Mutant21. The genes are sorted from left to right in terms of their coefficients for
Mutant21, with red meaning up-regulation and green meaning down-regulation. It is especially
interesting to see that genes which are up-regulated (red) in the mutant at 21 days are those which
have decreasing expression in the wild-type over time, and those which are down-regulated (green)
in the mutant are those which increase over time in the wild-type. The mutant is not participating in
normal development between 11 and 21 days in respect of these genes.

9. Within-Array Replicate Spots

In this section we consider a case study in which all genes (ESTs and controls) are printed more than
once on the array. This means that there is both within-array and between-array replication for each

 34

gene. The structure of the experiment is therefore essentially a randomized block experiment for
each gene. The approach taken here is to estimate a common correlation for all the genes for between
within-array duplicates. The theory behind the approach is explained in Smyth, Michaud and Scott
(2003). This approach assumes that all genes are replicated the same number of times on the array
and that the spacing between the replicates is entirely regular.

Example. Bob Mutant Data

In this example we assume that the data is available as an RG list.

Background. This data is from a study of transcription factors critical to B cell maturation by Lynn
Corcoran and Wendy Dietrich at the WEHI. Mice which have a targeted mutation in the Bob (OBF-
1) transcription factor display a number of abnormalities in the B lymphocyte compartment of the
immune system. Immature B cells that have emigrated from the bone marrow fail to differentiate into
full fledged B cells, resulting in a notable deficit of mature B cells.

Arrays. Arrays were printed with expressed sequence tags (ESTs) from the National Institute of
Aging 15k mouse clone library, plus a range of positive, negative and calibration controls. The arrays
were printed using a 48 tip print head and 26x26 spots in each tip group. Data from 24 of the tip
groups are given here. Every gene (ESTs and controls) was printed twice on each array.

Hybridizations. A retrovirus was used to add Bob back to a Bob deficient cell line. Two RNA
sources were compared using 2 dye-swap pairs of microarrays. One RNA source was obtained from
the Bob deficient cell line after the retrovirus was used to add GFP ("green fluorescent protein", a
neutral protein). The other RNA source was obtained after adding both GFP and Bob protein. RNA
from Bob+GFP was labelled with Cy5 in arrays 2 and 4, and with Cy3 in arrays 1 and 4.

> objects()
[1] "design" "gal" "layout" "RG"
> design
[1] -1 1 -1 1
> gal[1:40,]
 Library Name
1 Control cDNA1.500
2 Control cDNA1.500
3 Control Printing.buffer
4 Control Printing.buffer
5 Control Printing.buffer
6 Control Printing.buffer
7 Control Printing.buffer
8 Control Printing.buffer
9 Control cDNA1.500
10 Control cDNA1.500
11 Control Printing.buffer
12 Control Printing.buffer
13 Control Printing.buffer
14 Control Printing.buffer
15 Control Printing.buffer
16 Control Printing.buffer
17 Control cDNA1.500
18 Control cDNA1.500
19 Control Printing.buffer
20 Control Printing.buffer
21 Control Printing.buffer
22 Control Printing.buffer
23 Control Printing.buffer

 35

24 Control Printing.buffer
25 Control cDNA1.500
26 Control cDNA1.500
27 NIA15k H31
28 NIA15k H31
29 NIA15k H32
30 NIA15k H32
31 NIA15k H33
32 NIA15k H33
33 NIA15k H34
34 NIA15k H34
35 NIA15k H35
36 NIA15k H35
37 NIA15k H36
38 NIA15k H36
39 NIA15k H37
40 NIA15k H37

Although there are only four arrays, we have a total of eight spots for each gene, and more for the
controls. Naturally the two M-values obtained from duplicate spots on the same array are highly
correlated. The problem is how to make use of the duplicate spots in the best way. The approach
taken here is to estimate the spatial correlation between the adjacent spots using REML and then to
conduct the usual analysis of the arrays using generalized least squares.

First normalize the data using print-tip loess regression.

> MA <- normalizeWithinArrays(RG,layout)

Now estimate the spatial correlation. We estimate a correlation term by REML for each gene, and
then take a trimmed mean on the atanh scale to estimate the overall correlation. This command takes
a lot of time, perhaps as much as an hour for a series of arrays.

> cor <- dupcor.series(MA$M,design,ndups=2) # This is a very slow computation!
> cor$cor
[1] 0.571377
> boxplot(cor$cor.genes)

 36

> fit <- gls.series(MA$M,design,ndups=2,correlation=0.571377)
> eb <- ebayes(fit)
> genenames <- uniquegenelist(gal[,"Name"],ndups=2)
> toptable(number=30,genelist=genenames,fit=fit,eb=eb,adjust="fdr")
 Name M t P.Value B
1 H34599 0.4035865 13.053838 0.0004860773 7.995550
2 H31324 -0.5196599 -12.302094 0.0004860773 7.499712
3 H33309 0.4203320 12.089742 0.0004860773 7.352862
4 H3440 0.5678168 11.664229 0.0004860773 7.049065
5 H36795 0.4600335 11.608550 0.0004860773 7.008343
6 H3121 0.4408640 11.362917 0.0004860773 6.825927
7 H36999 0.3806754 11.276571 0.0004860773 6.760715
8 H3132 0.3699805 11.270201 0.0004860773 6.755881
9 H32838 1.6404839 11.213454 0.0004860773 6.712681
10 H36207 -0.3930972 -11.139510 0.0004860773 6.656013
11 H37168 0.3909476 10.839880 0.0005405097 6.421932
12 H31831 -0.3738452 -10.706775 0.0005405097 6.315602
13 H32014 0.3630416 10.574797 0.0005405097 6.208714
14 H34471 -0.3532587 -10.496483 0.0005405097 6.144590
15 H37558 0.5319192 10.493157 0.0005405097 6.141856
16 H3126 0.3849980 10.467091 0.0005405097 6.120389
17 H34360 -0.3409371 -10.308779 0.0005852911 5.988745
18 H36794 0.4716704 10.145670 0.0006399135 5.850807
19 H3329 0.4125222 10.009042 0.0006660758 5.733424
20 H35017 0.4337911 9.935639 0.0006660758 5.669656
21 H32367 0.4092668 9.765338 0.0006660758 5.519781
22 H32678 0.4608290 9.763809 0.0006660758 5.518423
23 H31232 -0.3717084 -9.758581 0.0006660758 5.513778
24 H3111 0.3693533 9.745794 0.0006660758 5.502407
25 H34258 0.2991668 9.722656 0.0006660758 5.481790
26 H32159 0.4183633 9.702614 0.0006660758 5.463892
27 H33192 -0.4095032 -9.590227 0.0007130533 5.362809
28 H35961 -0.3624470 -9.508868 0.0007205823 5.288871
29 H36025 0.4265827 9.503974 0.0007205823 5.284403
30 H3416 0.3401763 9.316136 0.0008096722 5.111117

 37

> plot(fit$coef,eb$lods,xlab="Log2 Fold Change",ylab="Log Odds",pch=16,cex=0.1)

10. Using limma with the marray Packages

The packages marrayClasses, marrayInput, marrayNorm and marrayTools are designed to read and
normalize cDNA data. The marrayNorm package provides some normalization methods which are
not provided by limma. Normalization using marrayNorm will produce a data object of class
marrayNorm. Suppose that you have an marrayNorm object called N. The data may be converted into
an MAList suitable for further manipulation in limma using

> MA <- as.MAList(N)

Even without conversion, the marrayNorm object may be used directly in the lmFit function in
limma, for example

fit <- lmFit(N, design)

after which one proceeds exactly as in previous sections.

Note that there are no facilities for importing marrayRaw objects into limma. This means that, if you
have read your data into R using the marrayInput package, you should use marrayNorm rather than
limma for normalization. After normalization, you are free to use limma for analysis of differential
expression.

 38

11. Affymetrix and Single-Color Arrays

Normalization of Affymetrix data using functions in the package affy will produce a data object of
class exprSet or of AffyBatch which inherits from exprSet. Objects of class exprSet may be used
directly in the lmFit function in limma. Let eset be the exprSet object. A linear model may be
fitted using

fit <- lmFit(eset, design)

See Section 7.2 for more details.

12. Single-Channel Normalization for Two-Color Arrays

We provide a short background on the topic of single-channel normalization for two color arrays.
Throughout this section the ApoAI data set will be used to demonstrate single-channel
normalization.

Load the ApoAI data and perform background correction on the RGList data object:

> load("ApoAI.RData")
> RG.b <-backgroundCorrect(RG,method="minimum")

cDNA (or oligo) microarrays compare the gene expression between two different sources of RNA
for thousands of genes simultaneously. In general, the log-ratio of spot intensities for the red and
green channels form the primary data used for downstream analysis. Thus traditional normalization
methods, which remove systematic variation in microarray data, focus on adjusting the log-ratios
within each slide. However sometimes it is desirable to work with single-channel (log-intensity) data
rather than the log-ratios and so new techniques for normalizing such single-channel data have been
investigated. In the current literature there has been limited attention given to single-channel
normalization despite many groups basing their entire analyses on single channel data. Single-
channel data display a higher level of systematic variation than that observed in log-ratio data.

For example below are imageplots of the log-intensity single-channels and the log-ratio for a single
array from the ApoAI data set. (The imageplots below are based on non-normalised background
corrected data). Clearly some of the systematic spatial variation is cancelled out by forming the log-
ratio. This is just a simple demonstration of how M-values are less noisy than single-channels.

> imageplot(log(RG.b$R[,4],2), layout, low="white", high="red")

 39

> imageplot(log(RG.b$G[,4],2), layout, low="white", high="green")

 40

> imageplot(log(MA.n$M[,4],2), layout, low="white", high="blue")

It should be noted that analysing log-ratios corresponds to doing all analysis on the basis of within-
array contrasts while the single-channel approach gives the possibility of recovering information
from the between-array variation. This should only be considered after careful single- channel
normalization to remove uncontrolled systematic effects at the array level. Yang and Thorne (2003)
provides an outline of the motivations for performing single-channel (log-intensity) analysis. We
currently perform single-channel normalization using a quantile method based on Bolstad et al.'s
quantile normalization of high density oligonucleotide data). In the following we demonstrate
within-slide and between-slide single-channel normalization routines. We use the ApoAI data set to
illustrate the methods.

We perform the normalization of single-channel data using methods in the normalizeWithinArrays
and normalizeBetweenArrays functions.

Note that RG.b contains unlogged single-channel intensities and normalizeWithinArrays expects
its input RGlist to be unlogged. There is an argument log.transform=F which needs to be
implemented if the RGlist supplied is already logged. The following command creates an MAList
containing non-normalized background corrected values.

> MA.n <-normalizeWithinArrays(RG.b,layout,method="n")

Next we normalize the M-values via the default within array normalization of printtiploess (we
could have use the method loess instead, but we find that printtiploess is often a good choice
since it acts as a proxy for spatial normalization of the Mvalues.

> MA.p <-normalizeWithinArrays(RG.b,layout)

 41

At any stage we can recover the RGList of normalized single-channels using RG.MA. RG.MA(MA.p)
would give us within-array only normalized single-channels. Next we perform between array
normalization of the single-channels. We use the function normalizeBetweenArrays which takes
and returns an MAList. normalizeBetweenArrays forms an RG matrix when implementing the
quantile normalization method on the single-channels; and although it returns an MAList the
single-channel normalised values can be obtained by using the function RG.MA. We show how to
implement the following between array normalization methods respectively, quantile normalization
between all single-channels only (q); quantile normalization after printtiploess normalization within
arrays (pq); quantile normalization between the arrays on the Aq values which is then combined with
the within array printtiploess normalization Mp to give MpAq . Notice that for MpAq we have mixed
and matched different within and between array normlizations to create a simultaneous within and
between array single-channel normalization method.

> MA.q <- normalizeBetweenArrays(MA.n, method="quantile")
> MA.pq <- normalizeBetweenArrays(MA.p, method="quantile")
> MA.Aq <- normalizeBetweenArrays(MA.n, method="Aquantile")
> MA.MpAq <- new("MAList", list(M=MA.p$M, A=MA.Aq$A))

We find that pq and MpAq work quite well. Next we show some plots of the single-channel log-
intensity densities which illustrate the results of the different single-channel normalization methods.
We use the function plotDensities which will take either an RGList or an MAList . The form of
the call is: plotDensities(object, log.transform = FALSE, arrays = NULL,
singlechannels = NULL, groups = NULL, col = NULL). The default usage of plotDensities
results in red/green coloring of the densities.

Without any background correction there is a significant difference between the red and green single-
channel intensity distributions:

 > plotDensities(RG, log.transform=TRUE)

 42

> plotDensities(RG.b, log.transform=TRUE)

> plotDensities(MA.n)

 43

Printtiploess makes the single-channels within arrays similar:

> plotDensities(MA.p)

All the single-channels have the same distribution.

> plotDensities(MA.q, col="black")

 44

> plotDensities(MA.pq, col="black")

MpAq gives very similar results as pq.

> plotDensities(MA.MpAq)

 45

Acknowledgements

Thanks to Yee Hwa Yang and Sandrine Dudoit for the first three data sets. The Swirl zebrafish data
were provided by Katrin Wuennenburg-Stapleton from the Ngai Lab at UC Berkeley. Thanks to
Lynn Corcoran for the Bob Mutant data.

References

1. Callow, M. J., Dudoit, S., Gong, E. L., Speed, T. P., and Rubin, E. M. (2000). Microarray
expression profiling identifies genes with altered expression in HDL deficient mice. Genome
Research 10, 2022-2029. (Full Text)

2. Diaz, E., Ge, Y., Yang, Y. H., Loh, K. C., Serafini, T. A., Okazaki, Y, Hayashizaki, Y,
Speed, T. P., Ngai, J., Scheiffele, P. (2002). Molecular analysis of gene expression in the
developing pontocerebellar projection system. Neuron 36, 417-434. (Full Text)

3. Smyth, G. K. (2003). Linear models and empirical Bayes methods for assessing differential
expression in microarray experiments. (PDF)

4. Smyth, G. K., Michaud, J., and Scott, H. (2003). The use of within-array replicate spots for
assessing differential expression in microarray experiments. (PDF)

5. Smyth, G. K., and Speed, T. P. (2003). Normalization of cDNA microarray data. In:
METHODS: Selecting Candidate Genes from DNA Array Screens: Application to
Neuroscience, D. Carter (ed.). To appear. (PDF)

6. Smyth, G. K., Yang, Y.-H., Speed, T. P. (2003). Statistical issues in microarray data analysis.
In: Functional Genomics: Methods and Protocols, M. J. Brownstein and A. B. Khodursky
(eds.), Methods in Molecular Biology Volume 224, Humana Press, Totowa, NJ, pages 111-
136. (PDF)

7. Yang, Y. H., and Speed, T. P. (2002). Design and analysis of comparative microarray
experiments. In T. P. Speed (ed.), Statistical Analysis of Gene Expression Microarray Data.
CRC Press.

8. Yang, Y. H., and Speed, T. P. (2003). Design and analysis of comparative microarray
experiments. In T. P. Speed (ed.), Statistical Analysis of Gene Expression Microarray Data.
Chapman & Hall/CRC Press, pages 35-91.

9. Yang, Y. H., and Thorne, N. P. (2003). Normalization for two-color cDNA microarray data.
In: D. R. Goldstein (ed.), Science and Statistics: A Festschrift for Terry Speed, IMS Lecture
Notes - Monograph Series, Volume 40, pp. 403-418.

