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1. Introduction

Limmais a package for the analysis of gene expression microarray data, especialy the use of linear
models for analysing designed experiments and the assessment of differential expression. Limma
provides the ability to analyse comparisons between many RNA targets simultaneously. The
normalization and data analysis functions are for two-colour spotted microarrays. The linear model
and differential expression functions apply to al microarrays including Affymetrix and other multi-
array oligonucleotide experiments.



The Bioconductor packages marrayClasses, marraylnput and marrayNorm provide aternative
functions for reading and normalizing spotted microarray data. If you are using limmain conjunction
with these packages, see Section 10. The package affy provides functions for reading and
normalizing Affymetrix microarray data. If you are using the affy package, see Sections 7.2 and 11.

Thistutorial was prepared using R Version 1.8.0 for Windows and limmaversion 1.3.0. The latest
version of limmais always available from http://www.bioconductor.org under "Devel opmental
Packages' or from http://bioinf.wehi.edu.au/limma/. If you are using Windows, you can install the
last official Bioconductor release of l[imma from the drop-down menu in R, simply select Packages
theninstall package(s) from Bi oconductor....Notehowever that thisis updated only once
every 6 months. The data sets used in the case study examples can be downloaded from
http://bioinf.wehi.edu.au/marray/genstat2002/. Help with limmais available by sending questions or
problems to bioconductor @stat.math.ethz.ch.

This guide describes limma as a command-driven package. A menu-driven interface called
l[immaGuUlI is aso available to most commonly used functionsin limma LimmaGUI is available
from http://bioinf.wehi.edu.au/limmaGUI. Although using limmaGUI is easy, installing limmaGUI is
at the time of writing ajob for an IT professional or for avery experienced computer user because it
depends on tck/tk extensions which are not part of standard R.

2. A Few Preliminaries on R

Risaprogram for statistical computing. It is acommand-driven language meaning that you have to
type commandsinto it rather than pointing and clicking. A good way to get started isto type

hel p. start ()
at the R prompt or, if you're using Windows, to follow the drop-down menu [Help > Html help].
Following the links [Packages > limma] from the html help page will lead you to the contents page
of help topicsfor commandsin l[imma.
Before you can use any limma commands you have to load the package by typing

['ibrary(limm)

at the R prompt. Y ou can get help on any function in any loaded package by typing ? and the
function name at the R prompt, for example

?r ead. mai mages

for detailed help on ther ead. mai mages function. Anything that you createin R is an "object”.
Objects might include data sets, variables, functions, anything at all. For example

X <- 2

will create avariable x and will assign it the value 2. At any stage of your R session you can type

obj ect s()



to get alist of al the objects you have created. Y ou see show the contents of any object by typing the
name of the object at the prompt, for example either of the following commands will print out the
contents of x:

show( x)
X

We hope that you can use limmawithout having to spend alot of time learning about the R language
itself but alittle knowledge in this direction will be very helpful, especially when you want to do
something not explicitly provided for in limmaor in the other Bioconductor packages. For more
details about the R language see An Introduction to R which is available from the online help.

3. Quick Start

For those who want to see very quickly what alimmaanalysis might look like for cDNA data, hereis
aquick analysis of four replicate arrays (including two dye-swaps). The data has been scanned using
an Axon scanner, producing a Gene Allocation List (GAL) file, and then the intensities have been
captured from the images using SPOT software. The GAL file and the image anaysisfilesarein the
current working directory of R. For more detail about the data see the Swirl Data example below.

> files <- dir(pattern="*.spot") # CGet the nanes of the files
containing the intensity data
> RG <- read. mai mages(files, source="spot") # Read in the data

> RGbgenes <- readGAL() # Read in GAL file containing gene
names

> RGSHprinter <- getlLayout (RGbgenes) # Set printer layout information

> MA <- nornalizeWthinArrays(RG # Print-tip group | oess normalization
> MA <- nornalizeBetweenArrays( M) # Scal e normalizati on between arrays,
opti ona

> fit <- InFit(MA design=c(-1,1,-1,1)) # Estimate all the fold changes by

fitting a |inear nodel.

# The design matrix indicates which
arrays are dye-swaps
> fit <- eBayes(fit) # Apply Bayesian snoothing to the
standard errors (very inmportant!)
> options(digits=3)

> topTabl e(fit, n=30, adjust="fdr") # Show the top 30 genes, contro
fal se discovery rate

Bl ock Row Col umm ID Nane M A t P.Value B
3721 8 2 1 control BMP2 -2.21 12.1 -21.1 0.000357 7.96
1609 4 2 1 control BMP2 -2.30 13.1 -20.3 0.000357 7.78
3723 8 2 3 control D x3 -2.18 13.3 -20.0 0.000357 7.71
1611 4 2 3 control D x3 -2.18 13.5 -19.6 0.000357 7.62
8295 16 16 15 fb94h06 20-L12 1.27 12.0 14.1 0.002067 5.78
7036 14 8 4 fb40h07 7-D14 1.35 13.8 13.5 0.002067 5.54
515 1 22 11 fc22a09 27-E17 1.27 13.2 13.4 0.002067 5. 48
5075 10 14 11 fb85f09 18-Gl8 1.28 14.4 13.4 0.002067 5.48
7307 14 19 11 fcl0h09 24-H18 1.20 13.4 13.2 0.002067 5.40
319 1 14 7 fb85a01 18-E1 -1.29 12.5 -13.1 0.002067 5. 32
2961 6 14 9 fb85d05 18-F10 -2.69 10.3 -13.0 0.002067 5.29
4032 8 14 24 fb87d12 18-N24 1.27 14.2 12.8 0.002067 5.22
6903 14 2 15 control Vox -1.26 13.4 -12.8 0.002067 5.20
4546 9 14 10 fb85e07 18-Gl3 1.23 14.2 12.8 0.002067 5.18
683 2 7 11 fb37b09 6-E18 1.31 13.3 12.4 0.002182 5.02
1697 4 5 17 fb26b10 3-120 1.09 13.3 12.4 0.002182 4.97



7491 15 5 3 fb24g06 3-D11 1.33 13.6 12.3 0.002182 4.96
4188 8 21 12 fc18d12 26-F24 -1.25 12.1 -12.2 0.002209 4. 89
4380 9 7 12 fb37el1l 6-G1 1.23 14.0 12.0 0.002216 4.80
3726 8 2 6 control fli-1 -1.32 10.3 -11.9 0.002216 4.76
2679 6 2 15 contr ol Vox -1.25 13.4 -11.9 0.002216 4.71
5931 12 6 3 fb32f06 5-Cl2 -1.10 13.0 -11.7 0.002216 4.63
7602 15 9 18 fb50g12 9-1L23 1.16 14.0 11.7 0.002216 4.63
2151 5 2 15 control vent -1.40 12.7 -11.7 0.002216 4.62
3790 8 4 22 fb23d08 2-N16 1.16 12.5 11.6 0.002221 4.58
7542 15 7 6 fb36gl2 6-D23 1.12 13.5 11.0 0.003000 4.27
4263 9 2 15 control vent -1.41 12.7 -10.8 0.003326 4.13
6375 13 2 15 control vent -1.37 12.5 -10.5 0.004026 3.91
1146 3 4 18 fb22al2 2-123 1.05 13.7 10.2 0.004242 3.76
157 1 7 13 fb38a0l1l 6-11 -1.82 10.8 -10.2 0.004242 3.75

4. Reading Data into Limma

4.1 Recommended Files

We assume that an experiment has been conducted with one or more microarrays, all printed with the
same library of probes. Each array has been scanned to produce a TIFF image. The TIFF images
have then been processed using an image analysis program such a ArrayVision, ImageGene,
GenePix, QuantArray or SPOT to acquire the red and green foreground and background intensities
for each spot. The spot intensities have then been exported from the image analysis program into a
series of text files. There should be onefile for each array or, in the case of Imagene, two files for
each array.

Y ou will need to have (i) afile which describes the probes, often called the Gene List, and (ii) the
image analysis output files. It most casesit is also desirable to have a Targets File which describes
which RNA sample was hybridized to each channel of each array. A further optional file is the Spot
Typesfile which identifies specia probes such as control spots.

4.2 Reading in Intensity Data

Letfil es beacharacter vector containing the names of the image analysis output files. The
foreground and background intensities can be read into an RGLi st object using a command of the
form

RG <- read. mai mages(files, source="<imageanal ysi sprograns", path="<directory>")

where <i mageanal ysi sprogr an® isthe name of the image analysis program and <di rect ory> is
the full path of the directory containing the files. If the files are in the current R working directory
then the argument pat h can be omitted; see the help entry for set wd for how to set the current
working directory. For example, if the files are SPOT output and have common extension "spot”
then they can be read using

files <- dir(pattern="*\\.spot")
RG <- read. mai mages(files, source="spot")

The object fi | es isthen acharacter vector containing all the spot file namesin alphabetical order. If
the files are GenePix output files and have extension "gpr" then they can be read using
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files <- dir(pattern="*\\.gpr")
RG <- read. mai mages(files, source="genepix")

Consult the help entry for r ead. mai mages to see which other image analysis programs are
supported. Files are assumed by default to be tab-delimited. If the files use a different separator this
may be specified using the sep= argument. For example if the Genepix files were comma-separated
(csv) then the read command would be

RG <- read. mai mages(files, source="genepi x", sep=",")

What should you do if your image analysis program is not currently supported by limma? If your
output files are of a standard format, you can supply the column names corresponding to the
intensities yourself. For example,

RG <- read. mai nages(files, colums=list(R ="F635 Mean", & ="F532 Mean", Rb="B635
Medi an", Gb="B532 Medi an"))

is exactly equivaent to the earlier command with sour ce="genepi x" . "Standard format" means here
that there is a unique column name identifying each column of interest and that there are no linesin
the file following the last line of data. Header information at the start of the fileis ok.

Itisagood ideato look at your datato check that it has been read in correctly. Type
show( RG)

to see aprint out the first few lines of data. Also try
summar y( RGSR)

to see afive-number summary of the red intensities for each array, and so on.

It is possible to read the datain several steps. If RGL and RG2 are two data sets corresponding to
different sets of arrays then

RG <- chi nd(RGl, R®X)

will combine them into one large data set. Data sets can also be subsetted. For example RE , 1] isthe
datafor thefirst array whileRg 1: 100, ] isthe dataon the first 100 genes.

4.3. Spot Quality Weights

It is desirable to use the image analysis to compute a weight for each spot between 0 and 1 which
indicates the reliability of the acquired intensities at that spot. For example, if the SPOT image
analysis program is used and the size of an ideal perfectly circular spot is known to be 100 pixels,
then one might use

> RG <- read. mai mages(files, source="spot",w.fun=wt area(100))

The function wt ar ea( 100) gives full weight to spots with area 100 pixels and down-weights smaller
and larger spots. Spots which have zero area or are more than twice theideal size are given zero
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weight. Thiswill create a component called wei ght s inthe RG list. The weights will be used
automatically by functions such as nor mal i zeW t hi nAr r ays which operate on the RG-list.

With GenePix data
> RG <- read. mai mages(files, source="genepi x",w . fun=wtfl ags(0. 1))
will give weight 0.1 to any spot which receives a negative flag from the GenePix program.

Computing quality weights depends on the image analysis program. Consult the help entry
Qual i t yWei ght s to see what quality weight functions are available.

4.4 The Targets File

Although not necessary to use limmait is usually a good ideato construct atargets file which lists
the RNA target hybridized to each channel of each array. The Targets Fileis normally in tab-
delimited text format. The file should contain arow for each microarray. It should contain FileName
column, giving the file from image-analysis containing raw foreground and background intensities
for each dlide, a Cy3 column giving the RNA type reverse transcribed and labelled with Cy3 dye for
that dlide (e.g. Wild Type) and a Cy5 column giving the RNA type reverse transcribed and labelled
with Cy5 dye for that dlide. For ImaGene files, the FileName column is split into a FileNameCy3
column and a FileNameCy5. As well as the essential columns, you can have a Name column giving
an aternative slide name to the default name, "Slide n", where n is the SlideNumber and you can
have a Date column, listing the date of the hybridization, and as many extra columns as you like, as
long as the column names are unique.

Some examples are shown below.

The ImaGene Targets file below shows the special case of the ImaGene image-processing software
which gives two (tab-delimited text) output files for each slide, one for the Cy3 (Green) channel and
one for the Cy5 (Red) channel. So instead of having a single FileName column, there are two file
name columns; a FileNameCy3 column and a FileNameCy5 column.

Ed Microsoft Excel - maTargetsImaGenel9and20txt i I I:IIEI
:- File: Edit ‘iew Imserk Format  Tools  Daka Window  Help - 0 X
DerEsag @AV B v- @/ =-2 3 7
K17 - B

A B | B [ 0 | E [ F =
1 |SlideMumber FileMameCy3  FileMameCys  Cy3 Cyh j
2 19 slide13wa35.txt | slide19wEE5 txt WT flutant
3 20 slide20wsB5 txt | slide20wbB5 txt | Mutant  WT
4
5 -
H 4 k HhmaTargetslmaﬁenelgandEDa" I4| | P_I
Ready LM i

The Dat e column is optional and is not currently used in limma



E3 Microsoft Excel - SwirlSample.Ext ] 2 |EI|£I
:-.Eile Edit  Wiew Insert Format  Tools Data Window  Help -8 X
DEdsg glaV iR o-@ -2\ BB 7
H11 - F

A | E s e Bl | E |
1 |SlideMumber FileMame Cy3 Cys Date =i
2 81 swirl. 1.spot iwirl wild type | 20/0972001 J
3 52 swirl 2.spot wild type |swirl | 20/05/2001 |
4 93 swirl 3. spot | gwirl wild type | 841172001
] 84 zwirl 4.spot wild type | swirl | 84117200
B -
M 4 » M4 Swirlsample 141 | L‘]_‘
Ready MUk o

A Nane column can be included, giving each array a name which can be used for plotting. In this
case, ashort nameis used so that a boxplot of all sixteen arrays can be plotted with labels for all
arrays along the horizontal axis. If no Nane column is given, then a default name will be given to
each dlide, e.g. "Slide 1",

Ed Microsoft Excel - ApoAITargets.txt ] ;Iglﬂ
:- File: Edt Wiew Insert Format Tools Data indow  Help = & X
Dedasyg 8@V B o-@ -2 BB 7
525 - f
A e & | & | & | F= | £

1 |SlideMumber Mame FileMame Cy3 Cyh

2 1c1  icl.spot Ref wild type

3 22 cdispot Ref \wild type |

4 33 c3spot Ref wild type

5 4cd cdspot Ref wild type

B G chspot Ref (wild type |

i Bich  cB.spot | Ref wild type

& | Jic? cfospot Ref wild type

sezpll 8c8 cBspot Ref wild type

10 9kl kl.spot  |Ref ApoAl KO

11 10 k2 k2.spot  |Ref |Apoal KO

12 11 k3 k3.spot  Ref Apod| KO

=2 12 k4 kd.spot  FHef Apod| KO

14 13 k& ko spot  |Ref |Apodl KO

15 14 kB kb.spot  Ref Apoal KO L
B 15 k7 k7.spot  Ref Apadl KO

i 16 k3 kS.spot  Ref Apodl KO .
% Dq ¢ M ApoAITargets / |41 | LIJJ
Ready LR i

The Targetsfile below is from an experiment with four different RNA sources. The main Targetsfile
isnot shown. The one below is used to analyse the spiked-in scorecard controls. Spike-in controls
will generally be analysed separately from genes because the follow different rules, e.g. for genes,
the log-ratio between A and B plus the log-ratio between B and C should equal the log-ratio between
A and C, but for scorecard controls, all three log (red/green) ratios may be the same.



E3 Microsoft Excel - ScorecardsTargetsFiletxt = ] ] 4
:- File Edit “iew Insert Format  Tools Data Window  Help
-8 %
NZHam &y Bo-laz-4 g 2
F14 - f
A s e e Iz
1 |SlideMumber FileMame Cy3 Cy5
k] 27412741 spot Test Fef
| 27422742 spot | Ref Test
| 4 | 2743 2743 spot Test Ref
267 | 2744 2744 spot | Ref Test
B 2745 2745 spat Test Ref
L 2747 2747 spat Hef Test
e | 2748 2748 spot Test Ref
ekl 2749 2749 spot Test Ref
10| 27502750 spat Test Ref
11 -
M 4 » M[\ScorecardsTargetsFile / JLI I _PIJ-J
Ready IR i

The Targets File can beread using r eadTar get s() . The file can have any name but the default name
iSTar gets. t xt . Very often the targets file will be first thing read because it contains the image
analysis output file names, e.g.,

> targets <- readTargets()
> RG <- read. nai mages(tar get s$Fi | eNane)

4.5 Reading the Gene List

If the arrays have been scanned with an Axon scanner, then the gene names will be availablein a
GenePix Array List (GAL) file. If the GAL file has extension "gal" and isin the current working
directory, then it may be read into a data.frame by

> RG3genes <- readGAL()

The print layout of the arrays can be extracted from the GAL by
> RGPprinter <- getlLayout (RGBgenes)

Non-Genepix gene lists can beread into R using the function r ead. t abl e from R base. If you have
Imagene or SMD image analysis output, then the gene list will be extracted from the image analysis
output filesby r ead. i mages.

4.6 The Spot Types File

The Spot Types file (another tab-delimited text file) is optional but it isvery useful in distinguishing
between genes, controls and blanks when using the Color-Coded M A Plot (with legend) feature.
Certain spot types (e.g. scorecard controls) can be excluded from alinear model fit if desired. For a
given spot type, e.g. "Ratio_control_*", spot sub-types "Ratio_control 1", "Ratio_control_2" can be
determined automatically to give a series of box-plots comparing the moderated t-statistics or B
statistics (log odds of differential expression) between the controls, which may help in deciding
which genes are truly differentially expressed, i.e. what moderated t statistic is significant.
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Every SpotType must have a SpotType column, for which each entry should be unique. It must also
have an ID column, a Name column and a default Color column. The rows of the SpotTypesfile
should beread as alist of rules (in order) for defining spot types. First, we say everything is a gene,
then we rename certain spots according to what isfind in the ID or Name column of the GAL file.
The color given hereisjust a suggested color to associate with the spot type.

Again, do not change the capitalization or spelling of the column names and do not insert extra
spaces.

Here is a short spot typesfile.

E Microsoft Excel - ApoAISpotTypes.tut ;Iglﬂ
:- File. Edit  Wiew Insert Format Tools Data: Window  Help
il
NEHaR 8% bo-eax-4|@g »
F10 - §4

2 E L El s E 3
1 |[SpotType |ID Marme Colar
2 |cDMA il [ (hlack [
3 |BLANK.  BLANK * |brawin
4 |Blank Blank i orange
o |Control Control * blue
B
=
& |
) ——
W4y vl ApoAlSpotTypes /7 |4 | LIJ_‘
Ready R v

The spot types file below defines the scorecard control spots. The asterisks are wildcards which can
represent anything.

E3 Microsoft Excel - mi1405035pot Types.tat ;Iglil
:-.Eile Edit  Wew Insert  Format  Tools Data Window  Help
- X
st &V B2 w-@=-2] 02 7
F11 - I

& L' | wm | w [ E e 7
1 |SpotType 1D Mame Calar
2 |gene = id hlack
3 |ratio i Ratio™ red
4 |calibration ™ Calibr*  blue
5 |utility il Liility* pink
B [negative Megative™ [hrown
7 |buffer ¥ Buffer  ‘orange
& [blank ‘blank z yellow
9 _ i
Woay v}t ml1405035pot Types / 14 | LIJJ
Ready T o




Y ou can read the spot types files using readSpotTypes(). For example, if the file has the default name
SpotTypes.txt you can use

> spottypes <- readSpot Types()

The spot typesfileis used by the spotStatus() function to set the status of each spot on the array, for
example

> RGbgenes$St at us <- spot St at us(spottypes)

5. Data Exploration

It is advisable to display your datain various ways as a quality check and to check for unexpected
effects. We recommend an imagepl ot of the raw log-ratios and an MA-plot of the raw datafor each
array as aminimum routine displays. See the Swirl data case study for examples.

6. Normalization and Background Correction

Limma implements a range of normalization methods for spotted microarrays. Smyth and Speed
(2003) describe of the mostly commonly used methods. Most of the examples given in this manual
use print-tip loess normalization as the major method. Print-tip loess normalization is performed by

> MA <- nornalizeWthinArrays(RG

By default, [immawill subtract the background from the foreground intensities as part of the
normalization process using nor mal i zeW t hi nArr ays so thereis no need for any special action on
the part of users. If you want to over-ride this default background correct, for example to ensure that
all the corrected intensities are positive, then use the backgr oundCor r ect function. For example use

> RG <- backgroundCorrect (RG nethod="m ni num')

to reset zero or negative intensities to half the value of the minimum value of the positive intensities.
No further background correction will be performed when nor mal i zeW t hi nArrays isused
subsequently to normalize the intensities.

Limma contains some more sophisticated normalization methods. Normalization of absolute
expression levels aswell asjust log-ratiosis covered in Section 11 at the end of this guide.

7. Differential Expression

7.1 Linear Models

The package limma uses an approach called linear models to analyse designed microarray
experiments. This approach alows very general experimentsto be analysed just as easily asasimple
replicated experiment. The approach is outlined in Smyth (2003) and Y ang and Speed (2002). The
approach requires one or two matrices to be specified. Thefirst is the design matrix which indicates
in effect which RNA samples have been applied to each array. The second is the contrast matrix
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which specifies which comparisons you would like to make between the RNA samples. For very
simple experiments, you may not need to specify the contrast matrix.

If you have data from Affymetrix experiments, from single-channel spotted microarrays or from
spotted microarrays using a common reference, then linear modeling is the same a ordinary analysis
of variance or multiple regression except that amodel is fitted for every gene. With data of thistype
you can create design matrices as one would do for ordinary modeling with univariate data. If you
have data from spotted microarrays using adirect design, i.e., a connected design with no common
reference, then the linear modeling approach is very powerful but the creation of the design matrix
may require more statistical knowledge.

For statistical analysis and assessing differential expression, limma uses an empirical Bayes method
to moderate the standard errors of the estimated log-fold changes. This results in more stable
inference and improved power, especially for experiments with small numbers of arrays (Smyth,
2003). For arrays with within-array replicate spots, limma uses a pooled correlation method to make
full use of the duplicate spots (Smyth et a, 2003).

7.2 Affymetrix and Other Single-Channel Designs

Affymetrix datawill usually be normalized using the affy package. We will assume here that the data
isavailable as an expr Set object called eset . Such an object will have an slot containing the log-
expression values for each gene on each array which can be extracted using exprs(eset).
Affymetrix and other single-channel microarray data may be analysed very much like ordinary linear
models or anova models. The difference with microarray dataisthat it is amost aways necessary to
extract particular contrasts of interest and so the standard parametrizations provided for factorsin R
are not usually adequate.

There are many ways to approach the analysis of a complex experiment inlimma. A straightforward
strategy is to set up the simplest possible design matrix and then to extract from the fit the contrasts
of interest.

Suppose that there are three RNA sources to be compared. Suppose that the first three arrays are
hybridized with RNA1, the next two with RNA2 and the next three with RNA3. Suppose that all
pair-wise comparisons between the RNA sources are of interest. We assume that the data has been
normalized and stored in an expr Set object, for example by

> data <- ReadAffy()
> eset <- rnm(data)

An appropriate design matrix can be created and a linear model fitted using

> design <- nodel.matrix(~ -1+factor(c(1,1,1,2,2,3,3,3)))
> col nanes(design) <- c("groupl"”, "group2", "group3")
> fit <- InFit(eset, design)

To make all pair-wise comparisons between the three groups the appropriate contrast matrix can be
created by

> contrast.matrix <- makeContrasts(group2-groupl, group3-group3, group3-groupl
| evel s=desi gn)
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> fit2 <- contrasts.fit(fit, contrast.natrix)
> fit2 <- eBayes(fit2)

A list of top genes differential expressed in group2 versus groupl can be obtained from

> topTabl e(fit2, coef=1, adjust="fdr")

Y ou may classify each gene according to the three pair-wise comparisons using

> clas <- classifyTests(fit2)

A Venn diagram showing numbers of genes significant in each comparison can be obtained from

> vennDi agran cl as)
7.3 Common Reference Designs

Now consider two-color microarray experiments in which a common reference has been used on all
the arrays. Such experiments can be analysed very similarly to Affymetrix experiments except that
allowance must be made for dye-swaps. The simplest method is to setup the design matrix using the
desi gnMat ri x() function and the targetsfile. As an example, we consider part of an experiment
conducted by Joelle Michaud, Catherine Carmichael and Dr Hamish Scott at the Walter and Eliza
Hall Institute to compare the effects of transcription factorsin a human cell line. The targetsfileisas
follows:

> targets <- readTargets("runxtargets.txt")

> targets

Sl i deNunber Cy3 Cy5
1 2144 EG-P AM_1
2 2145 EGFP AML1
3 2146 AML1 EGFP
4 2147 EGFP AM.1. CBFb
5 2148 EGFP AM.1. CBFb
6 2149 AML.1. CBFb EG-P
7 2158 EGFP CBFb
8 2159 CBFb EGFP
9 2160 EGFP AM.1. CBFb
10 2161 AML.1. CBFb EG-P
11 2162 EGFP AM.1. CBFb
12 2163 AM.1. CBFb EGFP
13 2166 EGFP CBFb
14 2167 CBFb EG-P

In the experiment, green fluorescent protein (EGFP) has been used as a common reference. An
adenovirus system was used to transport various transcription factors into the nuclei of HeLa cells.
Here we consider the transcription factors AML1, CBFbeta or both. A simple design matrix was
formed and alinear model fit:

> design <- designMatrix(targets,ref="EGP")

> design

AML1 AM_1. CBFb CBFb
1 1 0 0
2 1 0 0
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3 -1 0 0
4 0 1 0
5 0 1 0
6 0 -1 0
7 0 0 1
8 0 0 -1
9 0 1 0
10 0 -1 0
11 0 1 0
12 0 -1 0
13 0 0 1
14 0 0 -1

> fit < InFit(RG design)

It is of interest to compare each of the transcription factors to EGFP and al so to compare the
combination transcription factor with AML1 and CBFb individually. An appropriate contrast matrix
was formed as follows:

> contrast.matrix <- nmakeContrasts(AM.1, CBFb, AML1. CBFb, AML1. CBFb- AML1, AML1. CBFb-
CBFb, | evel s=desi gn)
> contrast. matrix

AML1 CBFb AML1. CBFb AML1.CBFb - AML1 AM.1. CBFb - CBFb

AML1 1 0 0 -1 0
AML1. CBFb 0 0 1 1 1
CBFb 0 1 0 0 -1

The linear model fit can now be expanded and empirical Bayes statistics computed:

> fit2 <- contrasts.fit(fit, contrasts.matrix)
> fit2 <- eBayes(fit?2)

7.3 Direct Two-Color Designs
Two-colour designs without a common reference require the most statistical knowledge to choose
the appropriate design matrix. As an example, we consider an experiment conducted by Dr Mireille

Lahoud at the Walter and Eliza Hall Institute to compare gene expression in three different
populations of dendritric cells (DC).

cD4
16
15
DN
CD8 o

Arrow heads represent Cy'a, e, arrows pointin the Cy3 to Cyh
direction.
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This experiment involved six cDNA microarrays in three dye-swap pairs, with each pair used to
compare two DC types. The design is shown diagrammatically above. The targets file was as
follows:

> targets

Sl i deNunber Fi | eName Cy3 Cy5
12 m 12nmed. spot CD4 CD8
13 m 13ned. spot CD8 CD4
14 m 1l4ned. spot DN CD8
15 m 15ned. spot CD8 DN
16 m 16ned. spot CD4 DN
17 m 17nmed. spot DN CD4

OO, WNPE

There are many valid choices for adesign matrix for such an experiment and no single correct
choice. We chose to setup the design matrix as follows:

> design <- chbind("CD8-CD4"=c(1,-1,1,-1,0,0),"DNCD4"=c(0,0,-1,1,1,-1))
> rownanes(desi gn) <- renoveExt (targets$Fil eNane)
> design

CD8- CD4 DN- CD4

m 12med 1 0
m 13ned -1 0
m 14med 1 -1
m 15ned -1 1
m 16ned 0 1
m 17med 0 -1

In this design matrix, the CD8 and DN populations have been compared back to the CD4 population.
The coefficients estimated by the linear model will correspond to the log-ratios of CD8 vs CD4 (first
column) and DN vs CD4 (second column). After appropriate normalization of the expression data, a
linear model was fit using

> fit <- InFit(MA design, ndups=2)
The use of ndups isto specify that the arrays contained duplicates of each gene, see Section 9.

The linear model can now be interrogated to answer any questions of interest. For this experiment it
was of interest to make all pairwise comparisons between the three DC populations. Thiswas
accomplished using the contrast matrix

> contrast.matrix <- chind("CD8-CD4"=c(1,0),"DN CD4"=c(0,1),"CD8-DN"'=c(1,-1))
> rownanes(contrast. matri x) <- col nanes(desi gn)
> contrast. matrix
CD8- CD4 DN- CD4 CD8- DN
CD8- C4 1 0 1
DN- CD4 0 1 -1

The contrast matrix can be used to expand the linear mode fit and then to compute empirical Bayes
statistics:

> fit2 <- constrast.fit(fit, contrast.natrix)
> fit2 <- eBayes(fit?2)
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8. Case Studies

8.1. Swirl Zebrafish: A Single-Sample Experiment

In this section we consider a case study in which two RNA sources are compared directly on a set of
replicate or dye-swap arrays. The case study includes reading in the data, data display and
exploration, aswell as normalization and differential expression analysis. The analysis of differential
expression is analogous to a classical one-sampletest of location for each gene.

In this example we assume that the data is provided asa GAL filecaled fi sh. gal and raw SPOT
output files and that these files are in the current working directory.

Background. The experiment was carried out using zebrafish as amodel organism to study the early
development in vertebrates. Swirl is a point mutant in the BMP2 gene that affects the dorsal/ventral
body axis. The main goal of the Swirl experiment is to identify genes with atered expression in the
Swirl mutant compared to wild-type zebrafish.

The hybridizations. Two sets of dye-swap experiments were performed making atotal of four
replicate hybridizations. Each of the arrays compares RNA from swirl fish with RNA from normal
("wild type") fish. The experimenters have prepared a tab-delimited targets file called
"SwirlSamples.txt" which describes the four hybridizations:

> targets <- readTargets("Swirl Sanple.txt")

> targets

Sl i deNunber Fi | eNane Cy3 Cy5 Dat e
1 81 swirl.1.spot swirl wild type 2001/9/20
2 82 swirl.2.spot wild type swirl 2001/9/20
3 93 swirl. 3. spot swirl wild type 2001/11/8
4 94 swirl.4.spot wild type swirl 2001/11/8

We see that slide numbers 81, 82, 93 and 94 were used to make the arrays. On slides 81 and 93, swirl
RNA was |labelled with green (Cy3) dye and wild type RNA was labelled with red (Cy5) dye. On
slides 82 and 94, the labelling was the other way around.

Each of the four hybridized arrays was scanned on an Axon scanner to produce a TIFF image, which
was then processed using the image anaysis software SPOT. The data from the arrays are stored in
the four output files listed under Fi | eNane. Now we read the intensity data into an RGLi st object in
R. The default for SPOT output is that Rrean and Grean are used as foreground intensities and

mor phR and nor phG are used as background intensities:

> RG <- read. mai mages(target s$Fil eName, source="spot")
Read swirl. 1. spot
Read swirl . 2. spot
Read swirl . 3. spot
Read swirl . 4. spot
> RG
An object of class "RGist"
$R
swirl.1 swirl.2 swirl.3 swirl.4
[1,] 19538.470 16138.720 2895. 1600 14054. 5400
[2,] 23619.820 17247.670 2976. 6230 20112. 2600

15



[3,] 21579.950 17317.150 2735.6190 12945. 8500
[4,] 8905.143 6794.381 318.9524 524. 0476
[5,] 8676.095 6043.542 780.6667 304. 6190
8443 nore rows ...

swrl.1l swrl.?2 swrl.3 swirl.4
[1,] 22028.260 19278.770 2727.5600 19930. 6500
[2,] 25613.200 21438.960 2787.0330 25426.5800
[3,] 22652.390 20386.470 2419.8810 16225. 9500
[4,] 8929.286 6677.619 383.2381 786. 9048
[5,] 8746.476 6576.292 901.0000 468. 0476
8443

nore rows ...
$Rb

swirl.l swirl.2 swirl.3 swirl.4
[1,] 174 136 82 48
[2,] 174 133 82 48
[3,] 174 133 76 48
[4,] 163 105 61 48
[5,] 140 105 61 49
8443 nore rows ...
$&

swirl.l swirl.2 swirl.3 swirl.4
[1,] 182 175 86 97
[2,] 171 183 86 85
[3,] 153 183 86 85
[4,] 153 142 71 87
[5,] 153 142 71 87
8443 nore rows ...

Thearrays. The microarrays used in this experiment were printed with 8448 probes (spots),
including 768 control spots. The array printer uses a print head with a4x4 arrangement of print-tips
and so the microarrays are partitioned into a 4x4 grid of tip groups. Each grid consists of 22x24 spots
that were printed with a single print-tip. The gene name associated with each spot isrecorded in a
GenePix array list (GAL) file:

> RGbgenes <- readGAL("fish.gal")
> RGHgenes|[ 1: 30, ]

Bl ock Row Col um I D Name
1 1 1 1 control genol
2 1 1 2 control geno2
3 1 1 3 control geno3
4 1 1 4 control 3XSSC
5 1 1 5 control 3XSSC
6 1 1 6 control EST1
7 1 1 7 control genol
8 1 1 8 control geno2
9 1 1 9 control geno3
10 1 1 10 control 3XSSC
11 1 1 11 control 3XSSC
12 1 1 12 control 3XSSC
13 1 1 13 control EST2
14 1 1 14 contr ol EST3
15 1 1 15 contr ol EST4
16 1 1 16 control 3XSSC
17 1 1 17 control Actin
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18 1 1 18 control Actin
19 1 1 19 control 3XSSC
20 1 1 20 control 3XSSC
21 1 1 21 control 3XSSC
22 1 1 22 control 3XSSC
23 1 1 23 control Actin
24 1 1 24 contr ol Actin
25 1 2 1 control at hl
26 1 2 2 control Cad-1
27 1 2 3 control Del t aB
28 1 2 4 control Dl x4
29 1 2 5 control ephrinA4
30 1 2 6 control FGF8

The 4x4x22x24 print layout also needs to be set. The easiest way to do thisisto infer it from the
GAL file:

> RGSHprinter <- getlLayout (RGbgenes)

Image plots. It isinteresting to look at the variation of background values over the array. Consider
image plots of the red and green background for the first array:

> i magepl ot (1 0g2( RGSRb[, 1]), RGHprinter, |ow="white", high="red")
> imagepl ot (| 0g2( RGSGh[, 1]), RGHprinter, |ow="white", high="green")
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Image plot of the un-normalized log-ratios or M-values for the first array:

> MA <- normalizeWthinArrays(RG met hod="none")
> i magepl ot (MA$SM , 1], RG$printer, zlinrc(-3,3))
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Thei magepl ot function liesthe slide on its side, so the first print-tip group is bottom left in this
plot. We can see ared streak across the middle two grids of the 3rd row caused by a scratch or dust
on the array. Spots which are affected by this artefact will have suspect M-values. The streak also
shows up as darker regions in the background plots.

MA-plots. An MA-plot plots the log-ratio of R vs G against the overall intensity of each spot. The
log-ratio is represented by the M-value, M = 10g2(R)-log2(G), and the overal intensity by the A-
value, A =10g2(R)+log2(G). Here isthe MA-plot of the un-normalized values for the first array:

> pl ot MA( MA)
swirl.1

~ — '.:1-.
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The red streak seen on the image plot can be seen as aline of spotsin the upper right of this plot.
Now we plot the individual MA-plots for each of the print-tip groups on this array, together with the
loess curves which will be used for normalization:

> plotPrintTi pLoess(MA)
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Normalization. Print-tip loess normalization:

> MA <- nornalizeWthinArrays(RG
> pl ot PrintTi pLoess( M)
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We have normalized the M-values with each array. A further question is whether normalization is
required between the arrays. The following plot shows overall boxplots of the M-values for the four
arrays.

> boxpl ot ( MASM-col ( MASM , nanes=col nanes( MA$M )
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There is some evidence that the different arrays have different spreads of M-values, so we will scale
normalize between the arrays.

> MA <- nornmalizeBet weenArrays( M)
> boxpl ot (MA$SM-col ( MA$M , nanes=col nanes( VA$M )
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Linear model. Now estimate the average M-value for each gene. We do this by fitting asimple
linear model for each gene. The negative numbers in the design matrix indicate the dye-swaps.

> design <- c¢(-1,1,-1,1)

> fit <- |InFit(MA design)

> fit

An obj ect of class "MArrayLM

$coefficients

[1] -0.3943421 -0.3656843 -0.3912506 -0.2505729 -0.3432590
8443 nore elenments ...

$st dev. unscal ed
[1] 0.5 0.5 0.5 0.5 0.5
8443 nore el enents ...

$si gma
[1] 0.3805154 0.4047829 0.4672451 0.3206071 0.2838043
8443 nore el enents ...

$df . resi dua
[1] 33333
8443 nore el enents ...

$net hod
[1] "Is"
$desi gn
[.1]

[1,] -1
[2,] 1
[3,] -1
[4,] 1
$genes

Bl ock Row Col umm I D Nane
1 1 1 1 control genol
2 1 1 2 control geno2
3 1 1 3 control geno3
4 1 1 4 control 3XSSC
5 1 1 5 control 3XSSC
8443 nore rows ...

$AnMean
[1] 13.46481 13.67631 13.42665 10.77730 10. 88446
8443 nore el enents ...

In the above fit object, coef fi ci ent s isthe average M-value for each gene and si gna isthe sample
standard deviations for each gene. Ordinary t-statistics for comparing mutant to wt could be
computed by

> ordinary.t <- fit$coef / fit$stdev.unscaled / fit$sigm

We prefer though to use empirical Bayes moderated t-statistics which are computed below. Now
create an MA-plot of the average M and A-values for each gene.

> M<- fit$coef
> A <- fit$Anmean
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> pl ot (A M pch=16, cex=0. 1)
> abline(0,0, col ="bl ue")

A

Empirical Bayes analysis. We will now go on and compute empirical Bayes statistics for
differential expression. The moderated t-statistics use sample standard deviations which have been
shrunk towards a pooled standard deviation value.

> fit <- eBayes(fit)
> qqt(fit$st,df =fit$df. prior+fit$df.residual, pch=16,cex=0.1)
> abline(0, 1)

24



Student's t Q-Q Plot
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Visualy there seems to be plenty of genes which are differentially expressed. We will obtain a
summary table of some key statistics for the top genes.

> options(digits=3)
> topTabl e(fit, number =30, adj ust ="fdr")

Bl ock Row Col umtm I D Name M A t P.Val ue B
3721 8 2 1 control Bw2 -2.21 12.1 -21.1 0.000357 7.96
1609 4 2 1 control BwP2 -2.30 13.1 -20.3 0.000357 7.78
3723 8 2 3 control Dl x3 -2.18 13.3 -20.0 0.000357 7.71
1611 4 2 3 control Dl x3 -2.18 13.5 -19.6 0.000357 7.62
8295 16 16 15 fb94h06 20-L12 1.27 12.0 14.1 0.002067 5.78
7036 14 8 4 fb40h07 7-D14 1.35 13.8 13.5 0.002067 5.54
515 1 22 11 fc22a09 27-E17 1.27 13.2 13.4 0.002067 5.48
5075 10 14 11 fb85f09 18-G18 1.28 14.4 13.4 0.002067 5. 48
7307 14 19 11 fc10h09 24-H18 1.20 13.4 13.2 0.002067 5.40
319 1 14 7 fb85a01 18-E1 -1.29 12.5 -13.1 0.002067 5.32
2961 6 14 9 fb85d05 18-F10 -2.69 10.3 -13.0 0.002067 5.29
4032 8 14 24 fb87d12 18-N24 1.27 14.2 12.8 0.002067 5.22
6903 14 2 15 contr ol Vox -1.26 13.4 -12.8 0.002067 5.20
4546 9 14 10 fb85e07 18-G13 1.23 14.2 12.8 0.002067 5.18
683 2 7 11 fb37b09 6-E18 1.31 13.3 12.4 0.002182 5.02
1697 4 5 17 fb26b10 3-120 1.09 13.3 12.4 0.002182 4.97
7491 15 5 3 fb24g06 3-D11 1.33 13.6 12.3 0.002182 4.96
4188 8 21 12 fc18d12 26-F24 -1.25 12.1 -12.2 0.002209 4. 89
4380 9 7 12 fb37ell 6-@&1 1.23 14.0 12.0 0.002216 4.80
3726 8 2 6 control fli-1 -1.32 10.3 -11.9 0.002216 4.76
2679 6 2 15 control Vox -1.25 13.4 -11.9 0.002216 4.71
5931 12 6 3 fb32f06 5-Cl2 -1.10 13.0 -11.7 0.002216 4.63
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7602 15 9 18 fb50g1l2 9-1L23 1.16 14.0 11.7 0.002216 4.63
2151 5 2 15 control vent -1.40 12.7 -11.7 0.002216 4.62
3790 8 4 22 fb23d08 2-N16 1.16 12.5 11.6 0.002221 4.58
7542 15 7 6 fb36gl2 6-D23 1.12 13.5 11.0 0.003000 4.27
4263 9 2 15 contr ol vent -1.41 12.7 -10.8 0.003326 4.13
6375 13 2 15 contr ol vent -1.37 12.5 -10.5 0.004026 3.91
1146 3 4 18 fb22al2 2-123 1.05 13.7 10.2 0.004242 3.76
157 1 7 13 fb38al1l 6-11 -1.82 10.8 -10.2 0.004242 3.75

The top gene is BMP2 which is significantly down-regulated in the Swirl zebrafish, asit should be
because the Swirl fish are mutant in this gene. Other positive controls also appear in the top 50 genes
in terms.

In the table, t isthe empirical Bayes moderated t-statistic, the corresponding P-values have been
adjusted to control the false discovery rate and B is the empirical Bayes log odds of differential
expression. Beware that the Benjamini and Hochberg method used to control the false discovery rate
assumes independent statistics which we do not have here (see hel p(p. adj ust)).

ord <- order(fit$l ods, decreasi ng=TRUE)

top30 <- ord[1:30]

pl ot (A, M pch=16, cex=0. 1)

text (A[top30], Mtop30], | abel s=MA$genes[top30, "Nanme"], cex=0. 8, col ="bl ue")
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8.2 ApoAl Knockout Data: A Two-Sample Experiment

In this section we consider a case study where two RNA sources are compared through a common
reference RNA. The analysis of the log-ratios involves a two-sample comparison of means for each
gene.

In this example we assume that the datais available as an RG list in the data file ApoAl . RDat a.

Background. The dataisfrom a study of lipid metabolism by Callow et a (2000). The
apolipoprotein Al (ApoAl) geneis known to play apivotal rolein high density lipoprotein (HDL)
metabolism. Mouse which have the ApoAl gene knocked out have very low HDL cholesterol levels.
The purpose of this experiment is to determine how ApoAl deficiency affects the action of other
genesin the liver, with the ideathat thiswill help determine the molecular pathways through which
ApOoAI operates.

Hybridizations. The experiment compared 8 ApoAl knockout mice with 8 normal C57BL/6 ("black
six™) mice, the control mice. For each of these 16 mice, target MRNA was obtained from liver tissue
and labelled using a Cy5 dye. The RNA from each mouse was hybridized to a separate microarray.
Common reference RNA was labelled with Cy3 dye and used for al the arrays. The reference RNA
was obtained by pooling RNA extracted from the 8 control mice.

Number of arrays Red Green
8 Normal "black six" mice Pooled reference
8 ApoAl knockout Pooled reference

Thisis an example of a single comparison experiment using a common reference. The fact that the
comparison is made by way of acommon reference rather than directly as for the swirl experiment
makes this, for each gene, atwo-sample rather than a single-sample setup.

> | oad(" ApoAl . RDat a")
> obj ects()
[1] "design" "genelist" "layout" "RG'
> RGHR[ 1: 4,]
cl c2 c3 c4 c5 c6 c7 c8 k1 k2 k3
2765.58 1768. 22 1440.54 763.06 2027.94 864.05 958.68 644.58 747.11 1388.79 1588. 76
2868. 43 2277.18 1599.92 1238. 33 1513.43 1079.33 1228.66 757.33 1930.25 2093. 00 1369.81
1236. 32 1546.84 2639.45 999.48 3689. 67 1505.20 785.10 994.86 753.52 1300.00 1301.61
383.62 532.50 323.55 585.14 250.74 566.58 409.18 417.79 829.82 402.84 513.91
k4 k5 k6 k7 k8
1280. 17 1881.72 1733.53 1170.84 1512.45
1071. 17 3218.58 2451. 04 1605.00 1700. 82
3292. 26 1149.23 3424.30 1901. 06 2200. 82
459.69 391.09 601.00 438.03 507.25
MA <- normalizeWthinArrays(RG | ayout)
boxpl ot ( MASM-col ( MASM , nanes=col nanes( RGSR) )
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The differences in scale are moderate, so we won't scale normalize between arrays.

Now we can go on to estimate the fold change between the two groups. In this case the design matrix
has two columns. The coefficient for the second column estimates the parameter of interest, the log-

ratio between knockout and control mice.

> design

Control - Ref KO Contro

cl
c2
c3
c4
c5
c6
c7
c8
k1l
k2
k3
k4
k5
k6
k7
k8
> fit <-
> fit$coef[1:5,]

RPRRPRPRRPRRPRRPRRPRRERRERERRRRR

PRRPRPPPPPOOOOOOOO

Control -Ref KO Contro

-0. 6595
0.2294
-0. 2518
-0. 0517
-0. 2501

1
2
3,
4
5

[ S S S—

eb <-

[
[
[
[
[
>

ebayes(fit)
> options(digits=3)
> topt abl e(coef =2, nunber =15, genel i st =genel ist[,1:6],fit=fit, eb=eb, adj ust="fdr")
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G i dROW G'i dCOL ROW COL NAMVE TYPE M t P.Value B

2149 2 2 8 7 ApoAl , lipid-1nmg cDNA -3.166 -23.98 3.05e-11 14.927
540 1 2 7 15 EST, HighlysinmilartoA cDNA -3.049 -12.96 5.02e-07 10.813
5356 4 2 9 1 CATECHOLO METHYLTRAN cDNA -1.848 -12.44 6.51e-07 10. 448
4139 3 3 8 2 EST,WaklysimlartoC cDNA -1.027 -11.76 1.21e-06 9.929
1739 2 1 7 17 ApoClII,lipid-Ing cDNA -0.933 -9.84 1.56e-05 8.192
2537 2 3 7 17 ESTs,Highlysimlarto cDNA -1.010 -9.02 4.22e-05 7.305
1496 1 4 15 5 est cDNA -0.977 -9.00 4.22e-05 7.290
4941 4 1 8 6 simlartoyeaststerol cDNA -0.955 -7.44 5.62e-04 5.311
947 1 3 8 2 EST,WaklysimlartoF cDNA -0.571 -4.55 1.77e-01 0.563
5604 4 3 1 18 cDNA -0.366 -3.96 5.29e-01 -0.553
4140 3 3 8 3 APXL2,5q-1ng cDNA -0.420 -3.93 5.29e-01 -0.619
6073 4 4 5 4 estrogenrec cDNA 0.421 3.91 5.29e-01 -0.652
1337 1 4 7 14 psoriasis-associ ated cDNA -0.838 -3.89 5.29e-01 -0.687
954 1 3 8 9 Caspase7,heart-Inmg cDNA -0.302 -3.86 5.30e-01 -0.757
563 1 2 8 17 FATTYACI D- Bl NDI NGPRO cDNA -0.637 -3.81 5.30e-01 -0.839

Notice that the top geneis ApoAl itself which is heavily down-regulated. Theoretically the M-value
should be minusinfinity for ApoAl because it is the knockout gene. Several of the other genes are
closely related. The top eight genes here were confirmed by independent assay subsequent to the
microarray experiment to be differentially expressed in the knockout versus the control line.

> plot(fit$coef[, 2], eb$l ods[, 2], pch=16, cex=0. 1, x| ab="Log Fol d Change",

yl ab="Log Qdds", mai n="KO vs Control")

> ord <- order(eb$l ods[, 2], decr easi ng=TRUE)

> top8 <- ord[1:8]

> text (fit$coef[top8, 2], eb$l ods[top8, 2], | abel s=substring(genelist[top8, "NAVE"], 1, 5),
cex=0. 8, col ="bl ue")
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8.3 Weaver Mutant Data: A Factorial Experiments

This case study considers a more involved analysis in which the sources of RNA have afactorial
structure. In this example we assume that datais available as an RGLi st .

Background. Thisis a case study examining the devel opment of certain neuronsin wild-type and
weaver mutant mice from Diaz et a (2002). The weaver mutant affects cerebellar granule neurons,
the most numerous cell-type in the central nervous system. Weaver mutant mice are characterized by
aweaving gait. Granule cells are generated in the first postnatal week in the external granule layer of
the cerebellum. In normal mice, the terminally differentiated granule cells migrate to the internal
granule layer but in mutant mice the cells die before doing so, meaning that the mutant mice have
strongly reduced numbers of cellsin theinternal granule layer. The expression level of any gene
which is specific to mature granule cells, or is expressed in response to granule cell derived signals,
is greatly reduced in the mutant mice.

Tissue dissection and RNA preparation. At each time point (P11 = 11 days postnatal and P21 = 21
days postnatal) cerebella were isolated from two wild-type and two mutant littermates and pooled for
RNA isolation. RNA was then divided into aliquots and |abelled before hybridizing to the arrays.
(This means that different hybridizations are biologically related through using RNA from the same
mice, although we will ignore this here. See Y ang and Speed (2002) for adetailed discussion of this
issue in the context of this experiment.)

Hybridizations. We have just four arrays each comparing two out of the four treatment
combinations of time (11 days or 21 days) by genotype (wild-type or mutant). This has the structure
of a2x2 factorial experiment.

> obj ects()

[1] "designl A" "designM" "gal" "layout" "RG' "Targets"
> Targets
Fi | eNane Name Cy5 Cy3

cb. 1.spot P11Wr. P11MI P11WT P11MI

cb. 2. spot P11MI. P21MI P11MI P21MI

cb. 3. spot P21MI. P21WT P21MI P21WT

cb. 4. spot P21WT. P11WI P21WI P11WT

MA <- normalizeWthinArrays(RG | ayout)
boxpl ot ( MASM~-col ( MA$M , names=Tar get s$Nane)

VVAEAWNEER
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First we consider a classical interaction parametrization.

> designl A

TimeW Mitant1l I/ A
P11WT. P11MT 0 -1 0
P11MI. P21MT -1 0o -1
P21MI. P21WT 0 1 1
P21Wr. P11Wr 1 0 0

TimeWt islate vs early time for the wild-type mice. Mutant11 is mutant vs wild-type at the early
time. The third column estimates the interaction between time and genotype.

> fitlA <- I mseries(MA$M desi gnl A)
> ebl A <- ebayes(fitlA)
> options(digits=3)
> t opt abl e(coef ="1/A", n=10, genel i st=gal ,fit=fitlA eb=ebl A adjust="fdr")
I D Nane M t P.Val ue B
7737 RI KEN 76801 6.49 12.95 0.886 -4.03
780 RI KEN 7636 6.57 12.67 0.886 -4.03
4063 RI KEN Z3559 6.41 12.37 0.886 -4.03
3627 Control L1 6.08 11.89 0.886 -4.03
3084 Rl KEN 72652 4.88 9.38 1.000 -4.04
16230 Control T7/SP6 7- Vrg2 6.00 9.12 1.000 -4.05
12537 RI KEN Z11025 5.03 9.03 1.000 -4.05
2866 Rl KEN 72506 4.19 8.46 1.000 -4.05
11430 Control T7/SP6 5- nex 1 3.31 6.40 1.000 -4.08
15590 Rl KEN 713718 3.17 5.88 1.000 -4.10

With only four arrays thereis only one residual df for the linear model, so even large M-values and t-
statistics are not significant after adjusting for multiple testing. There are differentially expressed
genes here, athough it is difficult to confirm it from the four arrays that we are using for this
exercise.
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Consider another parametrization.

> desi gnM

Mut ant 11 Mutant 21 Ti neM
P11WT. P11MI -1 0 0
P11MI. P21MI 0 0 -1
P21MI. P21Wr 0 1 0
P21Wr. P11Wr 1 -1 1

Here Mutant21 is mutant vs wild-type at the later time and TimeMt is late vs early time for the
mutant mice.

> fitM <- Imseries(MA$SM desi gnM)

> ebM <- ebayes(fitMm)

>

plot(fitM$coef[,"Mitant11"],fitM $coef[,"Mitant21"], pch=16, cex=0. 1, x| ab="Mit ant 1
1", yl ab="Mut ant 21")

> sel <- abs(ebM $t[,"Mitant11"])>4 | abs(ebM $t[,"Mutant21"])>4

> points(fitMm $coef[sel,"Mutant11"],fitM $coef[sel,"Mutant21"], col ="bl ue")
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This scatterplot allows the genes to be visually clustered according to whether they are differentially
expressed in the mutant at the two times.

We will now collate the results of the two fits.

fit <- fitlA
fit$coefficients <- chind(fitMm $coef,fitl AScoef)
fit$coefficients <- fit$coef[,c(1,2,4,3,6)]
fit$coef[1:5,]

Mut ant 11 Mutant21 TimeW TineM /A

VV VYV

[1,] -0.5396 0.1670 1.3362 2.043 0.7066
[2,] 0. 2481 0.8601 -0.9112 -0.299 0.6120
[3,] -1.1368 -0.5642 -0.0119 0.561 0.5726
[4,] -1.0166 -0.5837 0.0837 0.517 0.4329
[5,] 0.0135 0.0614 0.3701 0.418 0.0479
> fit$stdev.unscaled <- chind(fitM$std, fitlA$std)
> fit$stdev. unscaled <- fit$std[,c(1,2,4,3,6)]
> fit$std[1:5,]
Mut ant 11 Mutant21 TineW TimeM |/A
[1,] 0. 866 0.866 0.866 0.866 1
[2,] 0. 866 0.866 0.866 0.866 1
[3,] 0. 866 0.866 0.866 0.866 1
[4,] 0. 866 0.866 0.866 0.866 1
[5,] 0. 866 0.866 0.866 0.866 1
> eb <- ebayes(fit)
> heat di agram(abs(eb$t), fit$coef, "Mt ant 21", nanes=gal $Nane)

1A
TimeMt
TimeWWt
Mutant21
Mutant11

Phe (4
T7/SP6
T7/T3 54 -

This heat diagram shows the expression profiles for all genes judged to be differentially expressed (|t|
> 4) with respect to Mutant21. The genes are sorted from left to right in terms of their coefficients for
Mutant21, with red meaning up-regulation and green meaning down-regulation. It is especially
interesting to see that genes which are up-regulated (red) in the mutant at 21 days are those which
have decreasing expression in the wild-type over time, and those which are down-regulated (green)
in the mutant are those which increase over time in the wild-type. The mutant is not participating in
normal development between 11 and 21 days in respect of these genes.

9. Within-Array Replicate Spots

In this section we consider a case study in which al genes (ESTs and controls) are printed more than
once on the array. This means that there is both within-array and between-array replication for each
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gene. The structure of the experiment is therefore essentially a randomized block experiment for
each gene. The approach taken here is to estimate a common correlation for all the genes for between
within-array duplicates. The theory behind the approach is explained in Smyth, Michaud and Scott
(2003). This approach assumesthat all genes are replicated the same number of times on the array
and that the spacing between the replicatesis entirely regular.

Example. Bob Mutant Data
In this example we assume that the datais available as an RG list.

Background. Thisdatais from a study of transcription factors critical to B cell maturation by Lynn
Corcoran and Wendy Dietrich at the WEHI. Mice which have a targeted mutation in the Bob (OBF-
1) transcription factor display a number of abnormalitiesin the B lymphocyte compartment of the
immune system. Immature B cells that have emigrated from the bone marrow fail to differentiate into
full fledged B cells, resulting in a notable deficit of mature B cells.

Arrays. Arrays were printed with expressed sequence tags (ESTs) from the National Institute of
Aging 15k mouse clone library, plus arange of positive, negative and calibration controls. The arrays
were printed using a 48 tip print head and 26x26 spots in each tip group. Data from 24 of thetip
groups are given here. Every gene (ESTs and controls) was printed twice on each array.

Hybridizations. A retrovirus was used to add Bob back to a Bob deficient cell line. Two RNA
sources were compared using 2 dye-swap pairs of microarrays. One RNA source was obtained from
the Bob deficient cell line after the retrovirus was used to add GFP ("green fluorescent protein”, a
neutral protein). The other RNA source was obtained after adding both GFP and Bob protein. RNA
from Bob+GFP was labelled with Cy5 in arrays 2 and 4, and with Cy3in arrays 1 and 4.

> obj ects()

[1] "design" "gal" “layout" "RG'
> design
[1] -1 1 -1 1
> gal [1:40,]

Li brary Nane
1 Control cDNAL. 500
2 Control cDNA1. 500
3 Control Printing.buffer
4 Control Printing.buffer
5 Control Printing.buffer
6 Control Printing.buffer
7 Control Printing.buffer
8 Control Printing.buffer
9 Control cDNA1. 500
10 Control cDNAL. 500

11 Control Printing.buffer
12 Control Printing.buffer
13 Control Printing.buffer
14 Control Printing.buffer
15 Control Printing.buffer
16 Control Printing.buffer
17 Control cDNA1. 500
18 Control cDNAL. 500
19 Control Printing.buffer
20 Control Printing.buffer
21 Control Printing.buffer
22 Control Printing.buffer
23 Control Printing.buffer



24 Control Printing.buffer

25 Control cDNAL. 500
26 Control cDNA1. 500
27 NI A15k H31
28 NI A15k H31
29 NI Al15k H32
30 NI A15k H32
31 NI A15k H33
32 NI Al15k H33
33 NI Al15k H34
34 NI A15k H34
35 NI Al15k H35
36 NI A15k H35
37 NI Al15k H36
38 NI A15k H36
39 NI A15k H37
40 NI A15k H37

Although there are only four arrays, we have atotal of eight spots for each gene, and more for the
controls. Naturally the two M-values obtained from duplicate spots on the same array are highly
correlated. The problem is how to make use of the duplicate spots in the best way. The approach
taken hereis to estimate the spatial correlation between the adjacent spots using REML and then to
conduct the usual analysis of the arrays using generalized least squares.

First normalize the data using print-tip loess regression.
> MA <- nornalizeWthi nArrays(RG | ayout)

Now estimate the spatial correlation. We estimate a correlation term by REML for each gene, and
then take atrimmed mean on the atanh scale to estimate the overall correlation. This command takes
alot of time, perhaps as much as an hour for a series of arrays.

> cor <- dupcor.series(MASM desi gn, ndups=2) # This is a very slow conputation
> cor $cor

[1] 0.571377

> boxpl ot (cor $cor . genes)
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> fit <- gls.series(MA$M desi gn, ndups=2, correl ati on=0.571377)

> eb <- ebayes(fit)

> genenanmes <- uni quegenelist(gal[,"Nane"], ndups=2)

t opt abl e( nunber =30, genel i st =genenanes, fit=fit, eb=eb, adj ust="fdr")
Nane M t P. Val ue B

\Y

1 H34599 0.4035865 13.053838 0.0004860773 7.995550
2 H31324 -0.5196599 -12.302094 0.0004860773 7.499712
3 H33309 0.4203320 12.089742 0.0004860773 7.352862
4 H3440 0.5678168 11.664229 0.0004860773 7.049065
5 H36795 0.4600335 11.608550 0.0004860773 7.008343
6 H3121 0.4408640 11.362917 0.0004860773 6.825927
7 H36999 0.3806754 11.276571 0.0004860773 6.760715
8 H3132 0.3699805 11.270201 0.0004860773 6. 755881
9 H32838 1.6404839 11.213454 0.0004860773 6.712681
10 H36207 -0.3930972 -11.139510 0. 0004860773 6.656013
11 H37168 0.3909476 10.839880 0.0005405097 6.421932
12 H31831 -0.3738452 -10. 706775 0.0005405097 6.315602
13 H32014 0.3630416 10.574797 0.0005405097 6.208714
14 H34471 -0.3532587 -10.496483 0.0005405097 6.144590
15 H37558 0.5319192 10.493157 0.0005405097 6.141856
16 H3126 0.3849980 10.467091 0.0005405097 6.120389
17 H34360 -0.3409371 -10.308779 0.0005852911 5.988745
18 H36794 0.4716704 10.145670 0.0006399135 5. 850807
19 H3329 0.4125222 10.009042 0.0006660758 5.733424
20 H35017 0.4337911 9. 935639 0. 0006660758 5. 669656
21 H32367 0.4092668 9. 765338 0. 0006660758 5.519781
22 H32678 0.4608290 9. 763809 0. 0006660758 5.518423
23 H31232 -0.3717084 -9.758581 0.0006660758 5.513778
24 H3111 0.3693533 9. 745794 0. 0006660758 5.502407
25 H34258 0.2991668 9. 722656 0.0006660758 5.481790
26 H32159 0.4183633 9. 702614 0.0006660758 5.463892
27 H33192 -0.4095032 -9.590227 0.0007130533 5. 362809
28 H35961 -0.3624470 -9.508868 0.0007205823 5.288871
29 H36025 0.4265827 9. 503974 0. 0007205823 5. 284403
30 H3416 0.3401763 9. 316136 0.0008096722 5.111117

36



> plot(fit$coef, eb$l ods, xl ab="Log2 Fol d Change", yl ab="Log Odds", pch=16, cex=0. 1)

Log Odds

-0.5 0.0 0.5 1.0 1.5

Log2 Fold Change

10. Using limma with the marray Packages

The packages marrayClasses, marraylnput, marrayNorm and marrayTools are designed to read and
normalize cDNA data. The marrayNorm package provides some normalization methods which are
not provided by limma. Normalization using marrayNorm will produce a data object of class

mar r ayNor m Suppose that you have an nar r ayNor mobject called N. The data may be converted into
an MALi st suitable for further manipulation in limma using

> MA <- as. MALi st (N)

Even without conversion, the mar r ayNor mobject may be used directly in thel nFi t functionin
limma, for example

fit < InFit(N, design)

after which one proceeds exactly asin previous sections.

Note that there are no facilities for importing nar r ay Raw objects into [imma. This means that, if you
have read your datainto R using the marraylnput package, you should use marrayNorm rather than

limmafor normalization. After normalization, you are free to use limmafor analysis of differential
expression.
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11. Affymetrix and Single-Color Arrays

Normalization of Affymetrix data using functionsin the package af f y will produce a data object of
classexpr Set or of Af f yBat ch which inherits from expr Set . Objects of class exprSet may be used
directly inthel nFi t functioninlimma. Let eset betheexpr Set object. A linear model may be
fitted using

fit < InFit(eset, design)

See Section 7.2 for more details.

12. Single-Channel Normalization for Two-Color Arrays

We provide a short background on the topic of single-channel normalization for two color arrays.
Throughout this section the ApoAl data set will be used to demonstrate single-channel
normalization.

Load the ApoAl data and perform background correction on the RGLi st data object:

> | oad(" ApoAl . RDat a")
> RG b <-backgroundCorrect (RG net hod="mi ni nunt')

cDNA (or oligo) microarrays compare the gene expression between two different sources of RNA
for thousands of genes simultaneously. In general, the log-ratio of spot intensities for the red and
green channels form the primary data used for downstream analysis. Thus traditional normalization
methods, which remove systematic variation in microarray data, focus on adjusting the log-ratios
within each slide. However sometimesit is desirable to work with single-channel (log-intensity) data
rather than the log-ratios and so new techniques for normalizing such single-channel data have been
investigated. In the current literature there has been limited attention given to single-channel
normalization despite many groups basing their entire analyses on single channel data. Single-
channel data display ahigher level of systematic variation than that observed in log-ratio data.

For example below arei magepl ot s of the log-intensity single-channels and the log-ratio for asingle
array from the ApoAl dataset. (Thei nagepl ot s below are based on non-normalised background
corrected data). Clearly some of the systematic spatial variation is cancelled out by forming the log-
ratio. Thisisjust a simple demonstration of how M-values are less noisy than single-channels.

> i magepl ot (1 og( RG b$R[ , 4],2), layout, low="white", high="red")
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)

hi gh="gr een"

> imagepl ot (1 og( RG b$({d , 4], 2), layout, |ow="white",




> imagepl ot (1 og(MA. n$M , 4], 2), layout, |ow="white", high="blue")

It should be noted that analysing log-ratios corresponds to doing all analysis on the basis of within-
array contrasts while the single-channel approach gives the possibility of recovering information
from the between-array variation. This should only be considered after careful single- channel
normalization to remove uncontrolled systematic effects at the array level. Yang and Thorne (2003)
provides an outline of the motivations for performing single-channel (log-intensity) analysis. We
currently perform single-channel normalization using a quantile method based on Bolstad et al.'s
quantile normalization of high density oligonucleotide data). In the following we demonstrate
within-slide and between-dlide single-channel normalization routines. We use the ApoAl data set to
illustrate the methods.

We perform the normalization of single-channel data using methods in the nor mal i zeW t hi nArr ays
and nor mal i zeBet weenAr r ays functions.

Note that RG b contains unlogged single-channel intensities and nor mal i zeW t hi nArrays expects
itsinput R i st to be unlogged. Thereisan argument | og. t r ansf or m=F which needsto be
implemented if theRA i st supplied is aready logged. The following command creates an MALi st
containing non-normalized background corrected values.

> MA. n <-nornalizeWthinArrays(RG b, | ayout, net hod="n")

Next we normalize the M-values viathe default within array normalization of pri ntti pl oess (we
could have use the method | oess instead, but we find that pri ntti pl oess isoften agood choice
since it acts as a proxy for spatial normalization of the Mvalues.

> MA.p <-nornalizeWthinArrays(RG b, | ayout)
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At any stage we can recover the RGLi st  of normalized single-channels using RG. MA. RG. MA( MA. p)
would give us within-array only normalized single-channels. Next we perform between array
normalization of the single-channels. We use the function nor mal i zeBet weenAr r ays which takes
and returns an MALi st . nor mal i zeBet weenArrays formsan RG matrix when implementing the
quant i I e normalization method on the single-channels; and although it returns an MALi st the
single-channel normalised values can be obtained by using the function RG. MA. We show how to
implement the following between array normalization methods respectively, quantile normalization
between al single-channels only (q); quantile normalization after printtiploess normalization within
arrays (pq); quantile normalization between the arrays on the Aq values which is then combined with
the within array printtiploess normalization Mp to give MpAq . Notice that for MpAg we have mixed
and matched different within and between array normlizations to create a simultaneous within and
between array single-channel normalization method.

> MA. g <- normalizeBetweenArrays(MA. n, nethod="quantile")

> MA. pg <- normalizeBetweenArrays(MA. p, nethod="quantile")
> MA. Aq <- nornalizeBetweenArrays(MA. n, nethod="Aquantile")
> MA. MpAg <- new("MAList", list(MMA p$M A=NA. Ag$A))

We find that pq and M pAqg work quite well. Next we show some plots of the single-channel |og-
intensity densities which illustrate the results of the different single-channel normalization methods.
We use the function pl ot Densi ti es which will take either an RGLi st or an MALi st . The form of
thecall is: pl ot Densi ti es(object, |og.transform = FALSE, arrays = NULL,

singl echannel s = NULL, groups = NULL, col = NULL).Thedefault usage of pl ot Densi ties
resultsin red/green coloring of the densities.

Without any background correction there is a significant difference between the red and green single-
channel intensity distributions:

> plotDensities(RG |og.transfor mmTRUE)

RG densities

Density
0.4

0z
1

Intensity
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> pl ot Densities(RG b,

| 0g. transf or mETRUE)

RG densities
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Density
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0.1

> pl ot Densi ties(MA.
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Printtipl oess makesthe single-channels within arrays similar:

> pl ot Densi ti es(MA. p)

RG densities
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Intensity

All the single-channels have the same distribution.

> pl otDensities(MA. g, col ="black")

RG densities
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> pl ot Densities(MA pg, col ="bl ack")

RG densities

Density
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1 1 1
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MpAQq gives very similar results as pq.

> pl ot Densi ti es( MA. MpAQ)
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