How To use graph

November 25, 2003

Introduction

The graph package constitutes a preliminary approach to an implementation of graphs (nodes and edges)
in R. The approach is quite simplistic and will hopefully evolve as we learn what things need to be done
and what is or is not efficient.

The reader is likely to find it very helpful to have the Rgraphviz package also attached. It will be
important to be able to visualize some of the many different graphs that can be drawn.

Classes

The basic class, graph, is a virtual class and all other classes will extend this class. There are three
main implementations available. Which is best will depend on the particular data set and what the
user wants to do with it.

The class graphNEL is a node and edge-list representation of a graph. That is the graph is comprised
of two components a list of nodes and a list of the out edges for each node.

The class graphAM is an adjacency matrix implementation. It will be developed next and will use
the SparseM package if it is available.

The class clusterGraph is a special form of graph for clustering. In this graph each cluster is a
completely connected component (a clique) and there are no between cluster edges.

Some Examples

From Chris Volinsky.

> V <- LETTERS[1:4]

edLl <- vector("list", length = 4)

names (edL1) <- V

for (i in 1:4) edL1[[i]] <- list(edges = c(2, 1, 4, 3)[i], weights
gR <- new("graphNEL", nodes = V, edgeL = edL1)

edL2 <- vector("list", length = 4)

names (edL2) <- V

for (i in 1:4) edL2[[i]] <- list(edges = c(2, 1, 2, 1)[i], weights = sqrt(i))
gR2 <- new("graphNEL", nodes = V, edgel = edL2)

edgemode (gR2) <- "directed"

set.seed(123)

gR3 <- randomGraph(LETTERS[1:4], M <- 1:2, p = 0.5)

x1 <- intersection(gR, gR3)

x1

sqrt (i))

VVVVVVVVVVVVYV

A graph with undirected edges
Number of Nodes = 4
Number of Edges = 2

> x2 <- union(gR, gR3)
> x2

A graph with undirected edges
Number of Nodes = 4
Number of Edges = 4

> x3 <- complement (gR)
> x3

A graph with undirected edges
Number of Nodes = 4
Number of Edges = 4

Notice that while the graphs gR and gR2 have different sets of edge weights these are lost when the
union, intersection and complement are taken. It is not clear how they should be treated and in the
current implementation they are ignored and replaced by weight 1 in the output.

Random Graphs

Two basic strategies for finding random graphs have been included. One is the random edge model. In
this graph the nodes are considered fixed and the edges are sampled, uniformly at random, from the
set of possible edges in the complete graph.

The function randomEGraph will generate graphs using the random edge model.

> set.seed(333)

> V = letters[1:12]

> g1 = randomEGraph(V, 0.1)
> gl

A graph with undirected edges
Number of Nodes = 12
Number of Edges = 8

A different method for generating random graphs has a sort of latent variable approach. In this
model we presume that there are some latent variables that are appropriate for all nodes. Then two
nodes will have an edge between them if the underlying latent variables are the same.

> set.seed(23)

> V <- LETTERS[1:20]
>M<-1:4

> g1 <- randomGraph(V, M, 0.2)

We can find out about g1 by typing its name or by applying various functions to it.
> gl

A graph with undirected edges
Number of Nodes = 20
Number of Edges = 58

> glcc <- connComp(gl)
> glcc

[[1]1]
[1] npn

[[2]1]
[1] IIBII IICII IIDII IIEII IIFII IIGII IIIII IIJII IIMII IINII ||U|l ||Q|l IIRII IIS" IIT"

(311
[1] nyn

[[4]1]
[1] llK"

[[5]1]
[1] IILII

([e]]
[1] |IPI|

> gl.sub <- subGraph(glcc[[2]], gl)
> gl.sub

A graph with wundirected edges
Number of Nodes = 15
Number of Edges = 58

The function connComp returns the connected components of a graph. There are many different times
when different operations might be applied to the connected components separately.

Direct Manipulation of Nodes and Edges

A number of functions have been added that allow the user to directly manipulate nodes and edges
in graphs. Note that all of these functions make copies of the graph and manipulate the copies. The
original graph should not be affected. Clearly this will not be the best approach for large graphs — then
we might need to do something different.

Some examples. You will probably get more out of these examples if you use Rgraphviz to view the
graphs.

V <- LETTERS[1:4]

edLl <- vector("list", length = 4)
names (edL1) <- V

for (i in 1:4) edL1[[i]] <- list(edges
gR <- new("graphNEL", nodes = V, edgeL
edL2 <- vector("list", length = 4)
names (edL2) <- V

for (i in 1:4) edL2[[i]] <- list(edges = c(2, 1, 2, 1)[i], weights = sqrt(i))
gR2 <- new("graphNEL", nodes = V, edgelL = edL2)

edL3 <- vector("list", length = 4)

for (i in 1:4) edL3[[i]] <- list(edges = (ij%4) + 1, weights = i)

names (edL3) <- V

c(2, 1, 4, 3)[i], weights
edL1)

sqrt (i))

>
>
>
>
>
>
>
>
>
>
>
>

> gR3 <- new('"graphNEL", nodes = V, edgelL = edL3,
> x1 <- intersection(gR, gR2)
> x1

A graph with undirected edges
Number of Nodes = 4
Number of Edges = 1

> x2 <- union(gR, gR2)
> x2

A graph with undirected edges
Number of Nodes = 4
Number of Edges = 3

> x3 <- complement (gR)
> x3

A graph with undirected edges
Number of Nodes = 4
Number of Edges = 4

> v1 <- clearNode("A", gR)
> vl

A graph with undirected edges
Number of Nodes = 4
Number of Edges = 1

> v2 <- removeNode("B", gR)
> v2

A graph with wundirected edges
Number of Nodes = 3
Number of Edges =1

> v3 <- addNode("M", gR)
> v3

A graph with undirected edges
Number of Nodes = 5
Number of Edges = 2

> v4 <- addEdge("M", "A", v3, 1)
> v5 <- addEdge("A", c("C", "D"), v4, 1)
> inEdges(c("M", "B"), v5)

$M
[1] npn
$B
[1] nAn

> ¢l <- combineNodes(c("A", "M"), v5, "S")
> ¢2 <- combineNodes(c("A", "C"), v5, "S")
> inEdges(c("C", "B"), gR3)

"directed")

$C
[1] IIBII

$B
[1] |IAI|

> g4 <-
> gb <-
> g6 <-

addNode ("X", gR3)
addEdge ("X", "C", g4, 1)
combineNodes (c("B", "D"), g5, "E")

