Basic function for peak-list manipulation and
comparison

Witold E. Wolski, mail : witek96@users.sourceforge.net

April 10, 2006

1 Introduction

The package provides classes for storing mass spectrometric peak-lists (class
Massvector) and collections of such lists (class Massvectorlist). A peak-list
are mass-intensity value pairs stored in a two column matrix and several adi-
tional slots e.g. peak-list name (info), target coordinates (tcoor), gel coordi-
nates (gelcoor), and database accession string (access). The package provides
functions for set operations (union, intersection et cetera) on Massvectors. The
mass-spectrometric measurement has a limited accuracy. Hence, the matching
of two peak-lists given a measurement error is computed. Further the package
implements several dis/similarity measures on peak-lists. The peak-list match-
ing and the pairwise dissimilarities are implemented in the C programming lan-
guage. A Massvectorlist is able to store up to several thousand Massvectors.
Therefore, clustering of several thousand peak-lists using this package, and the
various clustering methods (e.g. package stats and cluster) given e.g. 1G
RAM is possible.

2 Reading and Writing

First we load the library.

> library(msbase)

Loading required package: MASS
Loading required package: XML

We define some overall experiment constants like the folders with the data
and the measurment error.

> fdat <- system.file("test/20030507a_bl_p_bla2_col", package = "msbase")
> error <- 0.5

The example data was measured using a Bruker Reflex III instrument and is
stored in an quite complex folder structure and a XML file (peaklist.xml). The
package provides a function to read this format.

> mvl <- readBruker (new("Massvectorlist"), fdat)
> mvl

info : 20030507a_bl_p_bla2_col
project :
length : 18

The package implements also a simple flat file format to store Massvectors.
The mass, intensity value pairs are preceded by a line starting with the symbol
“>" as the first character. The remainder of the line are the info-field and the
target coordinates.

>0_A1_1SRef:1,1

832.819355960755 362.961423469165
839.227609641465 166.621956393718
842.262189000952 219.871886094500
> wtest <- system.file("test", package = "msbase")

> writeMV(mvl, wtest, file = "tmp.txt")
> readMV(new("Massvectorlist"), wtest, file = "tmp.txt")

info
project :
length : 18

The loaded Massvectorlist contains 18 Massvectors. Subsets can be gener-
ated which are Massvectorlists again.

> mvl[1:3]

info : 20030507a_bl_p_bla2_col
project :

length : 3

Generating a subset can be of interested if we for example want to discard peak-
lists with undesirable properties, e.g. those without peaks. This can be easily
achieved using sapply.

> mvl <- mvl[which(sapply(mvl, length) != 0)]

Because the Massvectorlist extends (contains) list a single Massvector can
be accessed by [[|]]. The Massvector itself extends (contains) Matrix. Hence
it can be subsett using [].

> mvl[[1]][1:10,]

info : O0_A10_1SRef
tcoor : 110
gelcoor : 0 O
access
pionm : O
zvalue : 2

mass area

1 842.375 352.6282
2 906.358 288.3520

1045.453 1156.1401
1234 .588 136.4333
1452.633 212.7334
1799.853 504.0590
1807 .845 160.1095
2131.971 361.3240
2197.013 337.6654
10 2211.017 12109.3649

© 00 N O W

The peaks in the Massvector can be visualized using the plot and image func-
tion.

> plot(mvl[[1]])

area
4000 6000 8000 10000 12000

2000

0

1000 1500 2000 2500

m/z
The plot of a
single Massvector is showing a stick spectrum. The plot of two Massvectors
shows the residues of matching masses plotted against the average of their mass.
The green and blue vertical dashed lines are drawn to show the non-matching
masses.

> plot(mvl[[1]], mv1[[2]])

™" T L T T T T T T
m [' [0 [T ' "
Ly E [' [0 ooy ' "
E ' [' [0 ooy ' "
i ' [' [0 ooy ' n
Lln — ' [' [0 vy ' "
m ' [' [0 ' "t ' "
m ' [' [0 |®u» ' "
m ' [' n RN ' n
m ' [' o oo ' "
m ' [' o [RET ' "
8 4 ' [' [[T ' "
— m ' [' o o ' "
1] " ' [' [oo ' "
Q [l ' [' o [T 1 "
f=h m ' [' [[T ' "
m ' [' [[T ' "
Z‘LO " ' [' [[N ' n
-l BT | [' o [INNTIN ' "
o ! m ' [' [torany ' "
— " ' [' [torang ' "
= m ' [' [ooy ' "
\ m ' [' v ooy ' "
m ' [' [0 oy ' n
38 I ' [' [0 [T ' "
~ o 1 [1 [1 "ot 1 "
m ' [' [0 ' "t ' "
m ' [' [0 RN ' n
" ' [' [0 [T ' "
o m ' [' o [T ' "
m ' [' [0 oo ' n
(I\l 1 ' [' [INZ b ' n
m ' [' o | P ' "
" ' [' o (). </ ' "
m ' [' o [i ' "
m ' [' [' i ' "
o m ' [' [' wi ' n
™ s - s an Lo s m

1 T T T T I

1000 1500 2000 2500 3000

[m/z]
The image plot
color codes all mass differences between the peaks. Big blue regions are caused
by peaks that are close to each other.

> image(mv1[[1]])

0_A10_1SRef

I
5 10 15

0_A10_1SRef

> image(mv1[[1]], mv1[[3]])

0_Al_1SRef

T
5 10 15

0_A10_1SRef

To take a first glance at the data in the Massvectorlist the methods hist,
plot and pep.plot can be used. The plot function draws a strip-chart of all
Massvectors in the Massvectorlist. The hist is showing the frequencies of
all masses in the Massvectorlist.

> plot(mvl)

20030507a_bl_p_bla2_col

15

sample
10

= EE 2 mE omom . mmm mm -
O — == o= = . - T -

T T T T T I
1000 1500 2000 2500 3000 3500

m/z

> hist(mvl, accur = 2)

20030507a_bl_p_bla2_col

n
—
>
o o
c - 7]
()
=}
o
o
I
o -
o ||
I T T T T 1
1000 1500 2000 2500 3000 3500
m/z

The pep. plot plots the m mod 1 (m%%1) against the remainder of the peptide
mass (x-x%%1). The linear dependence of this two values is known as peptide

rule.

> pep.plot(mvl, cex = 0.6)

20030507a_bl_p_bla2_col

o
S
H
o | 3
O‘] ©
— 9 |
S o
k=1 .
o
£ 1
]
= < o
¢ o !{9 i
& %
oof® ©
g2 o
OV B
o o
o | 7
o
T T T T T T
1000 1500 2000 2500 3000 3500
m/z

A Massvectorlist can be transformed into R data structures:
e data.frame

> df <- as(mvl, "data.frame'")
> names (df)

[1] "info" "access" "tcoorXN" "tcoorX" "tcoorYN"

[6] "tcoorY" "gelcoorX" "gelcoorY" "lengthmv" "Min.mass"
[11] "X1st.Qu.mass" "Medianmass" "Meanmass" "X3rd.Qu.mass" "Max.mass"
[16] "Min.int" "X1st.Qu.int" "Medianint" "Meanint" "X3rd.Qu.int"
[21] "Max.int"

e matrix
> df <- as(mvl, "matrix")
> colnames (df)
[1] "lengthmv" "Min.mass" "1st Qu.mass" "Medianmass" "Meanmass"
[6] "3rd Qu.mass" "Max.mass" "Min.int" "1st Qu.int" "Medianint"

[11] "Meanint" "3rd Qu.int" "Max.int"

This is done by calling the summary function on the masses and intensities
of the Massvector. This information can be colorcoded and visualized depend-
ing the target position. (As we mentioned each Massvector stores the mass
spectrometric target coordinates.)

> mvl[[1]]@tcoor

A 10
110

> image(mvl, what = "Min.mass")

Min.mass

P NW

The figure above looks quite ugly because only one row from the target are
provided by the sample data.
The Massvector can also store gel coordinates.

> mvl[[1]]@gelcoor

XY
00

3 Set functions on Massvectors

There are two methods which return the indices of matching peaks. fmatch
returns the indices of matching peaks and the residues. fmatchall returns the
indices of matching and not matching peaks. Because this methods were first
implemented to be used in calibration functions, where a peak-list is compared
with a calibration list, the returned indices associated with the first argument are
called plind (peak-list indices) while that associated with the second argument
are called calind (calibration-list indices).

> pll <- mv1[[1]]
> pl2 <- mv1[[2]]
> fmatch(pll, pl2, error = 400, ppm = T)

$plind
[11] 1 3 10 11 12 13 14 15 16

$calind
[1] 2 6 15 17 18 19 20 22 25

$resid
[1] -3.368643 -1.910961 -25.579762 -21.042660 -5.917990 -29.068101 -26.778551
[8] -27.746654 380.634355

> fmatchall(pll, pl2, error = 400, ppm = T)

$plind
[1] 1 3 10 11 12 13 14 15 16

$nplind
[11 2 4 5 6 7 8 9 17 18

$calind
[1] 2 6 15 17 18 19 20 22 25

$ncalind
[1] 1 3 4 5 7 8 9 10 11 12 13 14 16 21 23 24 26 27 28

The package provides functions to compute the union, intersection, differ-
ence, equality and membership of two Massvectors. A mass spectrometric
measurement has an error. Therefore, the functions have additional parameters
to specify the error and their names are preceded by the letter £ (fuzzy). The
error can be specified in the units of the measurement (absolute error) or as rela-
tive error in parts per million (ppm). If one peak in peak-list x matches multiple
peaks in list y the optimal alignment can be computed by setting uniq=T.

> funion(pll, pl2, error = 400, ppm = T)
> fintersect(pll, pl2, error = 400, ppm = T, uniq = T)

info : 0_A10_1SRef
tcoor : 110
gelcoor : 0 O
access
pionm : 0
zvalue : 2

mass freq

[1,] 842.3735
[2,] 1045.4524
[3,] 2210.9885
[4,] 2239.0330
[5,] 2246.2961
[6,] 2248.9414
[7,]1 2283.0686
[8,] 2299.0695
[9,] 2392.5028

NNNNNDNDNDNDN

10

abbreviation name type | range
rmi Relative mutual information | S [0,1]

hg Huberts T’ S —1,1]

fm Fowlkes Mallows Statistiks S [0,1]
gower gower (jaccard) coefficient D [0,1]

Table 1: Binary measures. type : S — similarity or D — dissimilarity.

> fsetdiff (pll, pl2, error = 400, ppm = T, uniq = T)

info : O0_A10_1SRef
tcoor . 110
gelcoor : 0 O
access
pionm : 0
zvalue : 2

mass area
906.358 288.3520
1234.588 136.4333
1452.633 212.7334
1799.853 504.0590
1807.845 160.1095
2131.971 361.3240
2197.013 337.6654
17 2399.089 530.1143
18 2441.230 203.3045

© 00 N O O N

> fsetequal(pll, pl2, error = 400, ppm = T)
[1] FALSE
> fis.element(pll, pl2, error = 400, ppm = T)

[1] TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE
[13] TRUE TRUE TRUE TRUE FALSE FALSE

The msbase package function are equivalent to the following methods in the
base package: union,intersect,setdiff ,setequal,is.element.
4 Pairwise comparison of peaklists — dis/similarities

The package provides methods to compute pair-wise dis/similarities of peak-
lists.

4.1 Binary measures.

The binary measures numerated in Table 1 are implemented.
The measures are in addition parametrized. We can adjust by theta how
strongly non-matching peaks will contribute to the final score. Furthermore, the

11

mass agreement of matching peaks can be weighted by a triangular weighting
function (weight=T).
a—|mg—m
a

m, and m,, are the masses of matching peaks and a are the measurement accu-
racy.

> fbinary(pll, pl2, error = 400, ppm = T, theta = 1, weight = F,
+ method = "rmi", uniq = T)

[1] -0.3488103

> fbinary(pll, pl2, error = 400, ppm = T, theta = 0.2, weight = F,
+ method = "rmi")

[1] -0.08477856

> fbinary(pll, pl2, error = 400, ppm = T, theta = 0.2, weight = F,
+ method = "hg")

[1] 0.05011148

> fbinary(pll, pl2, error = 400, ppm = T, theta = 0.2, weight =T,
+ method = "gower")

[1] 0.5542329

> fbinary(pll, pl2, error = 400, ppm = T, theta = 0.2, weight = T,

+ method = "fm")

[1] 0.7169627

4.2 Intensity Based dissimilarities

The package implements two groups of intensity based dis/similarities.

4.2.1 Dot product based dissimilarities

This group includes the Pearson correlation coefficient, spectral angle and spear-
man correlation. The only difference between the spectral angle and the Pearson
correlation are the scaling of the peak intensities. The type of scaling of the in-
tensities can be selected by setting the parameter scale to one of the character
strings given in the first column of Table 2.

The difference between Spearman correlation and Pearson correlation are
the normalization of the intensities. To compute the Spearman correlation the
intensities are replaced by they ranks. This can be easily accomplished using
the R function rank. Hence, no special functions are provided by the package.
The following code snipped is showing how to log-transform all peak intensities
in a Massvectorlist.

12

abbreviation name
no no scaling
tic total ion current count
zscore centered and divided by the variance
student constant variance

Table 2: Scaling methods for peak intensities.

> mvlog <- function(x) {

+ x[, 2] <- log(x[, 21)

+ X

+ 7

> as(mvl, "list") <- lapply(mvl, mvlog)

As for the binary measures the dot product based measures are parameterized
to flexible weight the non-matching peaks and mass measurement accuracy.

> fcor(pll, pl2, error = 400, ppm = T, theta = 1, weight = F, scale = "no",
+ method = "dotprod")

[1] 189694921

> fcor(pll, pl2, error = 400, ppm = T, theta = 1, weight = F, scale = "tic",

+ method = "dotprod")

[1] 180247.9

> fcor(pll, pl2, error = 400, ppm
+ method = "dotprod")

T, theta = 1, weight = F, scale = "student",

[1] 34.81955

> fcor(pll, pl2, error = 400, ppm = T, theta = 1, weight = F, scale = "zscore",
+ method = "dotprod")

[1] 34.80987

A second method which can be accessed by this function are the sum of agreeing
intensities (method="soai"). It puts more emphasis on the agreement of peak
intensities then the correlation coefficient. All methods provided by the function
fcor are similarity measures.

4.2.2 Distance measures

This group of measures covers the two lp-norm based measures: Euclidean and
Manhattan distance, as well as the two relative distances Canberra distance, and
similarity index. The measure can be chosen by setting the argument method
to one of the characters in column one of Table 3. All other parameters which
can be passed to this function are equal to those for the function fcor.

> fdist(pll, pl2, error = 400, ppm = T, theta = 1, weight = F,
+ scale = "zscore", method = "euclidean")

[1] 1.542807

13

method description
euclidean Euclidean distance
manhattan | Manhattan distance
canberra Canberra distance
simindex similarity index

Table 3: Distance measures.

5 Searching and Clustering

Building on the pairwise Massvector comparison, functions to search similar
spectra in Massvectorlists or to cluster the Massvectors in Massvectorlist
are implemented. Hence, the functions fbinary, fcor, fdist allow not only
to compare two peak-lists but also search with one peak-list in a set of peak-lists.

> res <- fcor(mvl, pll, error = 400, ppm = T, theta = 1, weight = F,
+ scale = "zscore", method = "dotprod")

We can find the most similar peak-list by:

> which(max(res) == res)

0_A18_1SRef
10

Further we can order all peak-lists according the similarity to pl1.
> mvl <- mvl[order(res)]

The same function interface can be used to compute a distance matrix (class
dist) from a Massvectorlist. In this case the second argument must be NULL.

An object of class dist can be passed to variety of clustering functions available
in R.

> pp <- mvl[1:10]

> res <- fcor(pp, NULL, error = 400, ppm = T, theta = 1, weight = F,
+ scale = "zscore", method = "dotprod")

> plot(hclust(res, method = "complete"))

14

Cluster Dendrogram

25 30
|

—
)
o
0
o
N - |
<':I
e
%
— o
= — H|
> o
9]
I v — <| | 5
© M -
© - I N
S © n : — -
x x — Z | |
| “— u— %) —
0 0 o~ O 7] | N N
oo S5 5 % e NI
3 9 o ! = o (=)
<| <| ~ <
o o < b
o o

res
hclust (*, "complete")
If the function fcor is called in this way, the similarity measures are auto-
matically transformed into dissimilarities.

6 Conclusion

The clustering shows that peak-lists are very similar. This are mainly because
of peaks caused by unspecific trypsin and matrix peaks. Furthermore the mass
measurement error for this data is large. To calibrate and filter the data the
package mscalib is developed (see : rdproteomics.sourceforge.net).

7 Open for contributions

This document and package is by no means complete. So if you find something
missing, unclear or language errors, please send me an e-mail. I don’t get
offended because of this. The package is free software published under the GNU
public license and is hosted on r4proteomics.sourceforge.net to give you the
means to contribute to it. So if you think that this package is worth improvement
or extending send an e-mail with your contributions. Especially functions in the
file undocumented-functions.Rd need to be documented. Also examples to the
examples section of the *.Rd files are wellcome. If the contributions are going
to happen regularly, and you are a registered www.sourceforge.net user, I will
grant you developer permissions so you can check in your changes into the CVS
by yourself. By this your contribution will get documented.

15

