5S4 - Composition vs Inheritance and the package
msbase

Witold Eryk Wolski
April 10, 2006

Introduction

In the package msbase inheritance was used to extend the 1ist class functional-
ity as opposed to the package biobase[6] where composition was used to the same
purpose. I describe here the programming techniques used while implementing
the functionality of the package msbase. Object composition and inheritance are
two techniques for reusing functionality in object-oriented systems. The choice
between the composition (“has a”) relation and the inheritance (“is a”) relation
is a frequent one if we use programming languages with type checking and OOP
features. It is a sensible one, because the consequences of this choice are not
readily visible. We show various ways how the “is a” and “has a” relation can
be expressed in 84 [1] and explain it using the old style R 1ist as parent class
because there are some differences compared with extending S4 classes.

Nomenclature

In 84 the contains keyword in the setClass function is used to express object
inheritance[3, 7). It means that all methods and slots defined for the parent class
are also valid for the inheriting subclass. Because the parent class implementa-
tion is visible to the subclasses this type of reuse is also called white-box reuse.
Inherited classes can be assigned to slots and function arguments of the parent
class type. The arguments and slots of the parent class type are polymorphic.

Object composition[3] is expressed in S4 by the keyword representation in
setClass. The methods and slots of a class stored in a slot can not be accessed
directly, e.g to access the the object it must be dereferenced. The internals
of the composed objects are unknown. Because objects are treated as "black
boxes,” this type of reuse is often called black-box reuse [7].

In the sample code we label classes defined using inheritance with a leading
upper I and classes definied using composition with a upper leading C. Slot
names start always with a lower letter.

Motivation

The base:1list class is one of the generic classes in R. It can store objects of
any class and it provides a huge amount of functionality e.g unlist, lapply,

sapply, do.call etcetera. Here we provide examples how to specialize the
list class. e.g. how to implement a list with an additional slotA field to store
e.g. some additional information. From the OO design point of view this is
clearly(?) ais a list with slotA slot!.

The Inheritance Relation

The inheritance relation in S4 can be defined in various ways [1]. Either the
parent class is passed as not named argument to the representation function
or as the argument to the contains keyword in the class definition e.g:

> setClass("Ia", representation("list", names = "character", slotA = "character"))
[1] "Ia"

> setClass("Ia", contains = "list", representation(names = '"character",

+ slotA = "character"), prototype(slotA = "content"))

[1] "Ia"

> getClass("Ia")

Slots:

Name : .Data names slotA
Class: list character character
Extends:

Class "list", from data part
Class "vector", by class "list"

These declarations are synonymous. I prefer the second definition because
the additional keyword contains emphasises that inheritance is different than
composition. The class definition is printed by the function getClass. Note that
the class Ia has an additional slot .Data which was generated automatically.
This slot keeps the parent class.

Normally if inheriting, all slots of the parent class are present in the child
class. The R list is a thingy from pre-class times, and has no class definition?.
Hence, an object inheriting from a list does not have it automatically, and
if we want that the inheriting class has names, we have to define a slot names
ourselves. By our definition the type of the names is limited to character which
may be of advantage on the “C side” of the object.

By the new function a instance of a class is created. There are several ways
to intitialize an object: The first is to provide all the data to the new function,

e.g.

1 An example how to to provide type checking of list content can be found at the S Pro-
gramming Workshop page [4]

2To “Register an old-style (a.k.a. ‘S3’) class as a formally defined class” the function
set01ldClass is used. All old-style classes in the base and recomended packages are already
registered.

> xx <- as.list(1:4)
> names (xx) <- letters[1:4]
> ea <- new("Ia", xx, slotA = "my first S4 class")

We can aslo assign the data afterwards using @ to access the slots. To assign
an object of the list class to the Ia class we are either use the function as.
There is a default as function provided to cast objects of the parent class into
an object of the inheriting class.

> ia <- new("Ia")
> ia@slotA <- "my first S4 class"
> as(ia, "list") <- xx

An alternative way to assign the data is to access the .Data slot directly.
> ia@.Data <- xx

Note that the names slot was updated automatically to match the content
of the names attribute of the 1ist. This update is done by the .mergeAttrs
function which is called every time when assigning an object to the .Data slot.
The function .mergeAttrs is exporting all slots of the parent class.

> ia@names

[1] Ilall Ilbll IICII Ildll

Object composition

A class definition with member variables only, gives the objects of that class
full control over all objects in its slots. By composition practically an unlimited
number of different classes can be composed within the new class. It means that
if calling a function with an object of this class as argument only a function
with this class in the signature can be executed. In case of inheritance method
dispatching can occur, this means that if there are no function with an argument
of this class a function with an argument of the parent class is executed. The
consequence is that if we like to export all of the functionality of the classes
stored in member variables we must either reimplement them in the objects
interface or dereference the object.

The class Ca is composed of two member variables of class 1ist and char-
acter. To be able to call the function apply on the member variable 1ist we
implement the method lapply.

> library (methods)

> setClass("Ca", representation(list = "list", slotA = "character"),
+ prototype(slotA = "hello"))
[1] noa"

> setMethod("lapply", signature(X = "Ca"), def = function(X, FUN,
+ o)t

+ Xelist <- lapply(X@list, FUN, ...)
+ return (X)
+ 1)

[1] "lapply"

> ca <- new("Ca")
> callist <- xx

Note that the function definition of lapply must have the same signature
(argument names) as the function lapply in the package base being the tem-
plate for the generic. For the Ca class an as list function can be defined using
setAs.

> setAs("Ca", "list", def = function(from) {
+ return(from@list)

+ }, replace = function(from, value) {

+ from@list <- value

+

P
[1] "coerce<-"
We see that using this design we can provide the same user interface and to
this point functionality as by using inheritance.
Inherits vs. Compose

For the Ia class we do not need to provide an implementation of the method
apply to be able to call it directly on the object ea.

> lapply(ca, """, 2)

An object of class "Ca"
Slot "list":

$a

(11 1

$b
[1] 4

$c
[11 9

$d
[1] 16

Slot "slotA":
[1] "hello"

> lapply(ea, """, 2)

$a
[1] 1

$b
(1] 4

$c
[11 9

$d
[1] 16

Note that the first call returns an object of class Ca while the second one
returns an object of class 1ist since the method lapply of the parent class was
executed. If we want a function lapply which returns an object of class Ia we
will have equal work to do as for the class Ia.

The examples provided show that using the inheritance relation we need
to implement less functions (no implementation of the function lapply, as are
necessary). Furthermore, all the 1ist functions will work for the objects of
class Ca. The downside of this approach is that good knowledge of the methods
provided by the parent classes is required.

The main reason why inheritance was introduced is to allow functions and
slots to be polymorphic in type safe programming languages, and not just to
make some lines of code superfluous. By polymorphism all inheriting classes
can be assigned to a slot or passed to a function defined for the parent class
type (polymorphic arguments slots). Composition alone is not able to provide
this functionality. Let assume that we have several related classes. The classes
Ib and Cb are almost the same as the classes Ia,Ca respectively, except that
the type of slotA is now numeric.

> setClass("Cb", representation(list = "list", slotA = "numeric"),
+ prototype(slotd = 3))
[1] ncp

> ¢cb <- new("Cb", list = xx)
> setClass("Ib", contains = "list", representation(slotA = "numeric"))

[1] nTp"
> eb <- new("Ib", xx, slotA = 4)

If we like to have a function which prints the length of the 1ist for all related
classes we can program easily a function printlength with the base class in the
signature and it will work for all child classes.

> setGeneric("printlength", function(object, ...) standardGeneric("printlength"))
[1] "printlength"

> setMethod("printlength", signature(object = "list"), def = function(object) {

+ cat("length : ", length(object), " object=", class(object),
+ ll\n”)
+ 1

[1] "printlength"
> printlength(ea)
length : 4 object= Ia
> printlength(eb)
length : 4 object= Ib

It is also easily possible to assign objects of the child class to slots of parent
class type.

> cb.tmp <- c¢b

> cb.tmp@list <- ea
> cb.tmp@list <- eb
> class(cb.tmp@list)
[1] "Ib"

attr(, "package")
[1] ".GlobalEnv"

The objects of two different classes can be easily passed to the method defined
for the class 1ist. For composed classes S4 provides a different way to have a
similar functionality. But they are then either less secure or limited.

Virtual Classes
setClassUnion

The “is a” relation can be defined in S4 using the setClassUnion[2] method.
This method defines a new virtual parent class (no instance can be created).
For the composed classes Ca and Cb we define a virtual parent class VC. Then
we can define a function which has in the function signature an argument of
the virtual parent class VC type. To illustrate the danger inherent in this design
we define a third class Cc which does not contain the slot list e.g:

> setClass("Cc", representation(slotA = '"character"))

[1] "Cc"

> setClassUnion("VC", c("Ca", "Cb", "Cc"))

(1] "ver

> setGeneric("printlengthC", function(object, ...) standardGeneric("printlengthC"))
[1] "printlengthC"

> setMethod ("printlengthC", signature(object = "VC"), def = function(object) {
+ cat("length : ", length(object@list), "\n")
+ 3}

[1] "printlengthC"

> printlengthC(ca)
length : 4
> printlengthC(cb)
length : 4

The difference between this designs and the inheritance is that by inheritance
each function defined for the parent class and working properly with it, will work
for the inheriting classes. Hence, defining a class union we must ensure that
all classes in the union define a common “interface” or implement appropriate
checking, otherwise errors at runtime may happen e.g:

> cc <- new("Cc", slotA = "hello")
> print (try(printlength(cc)))

[1] "Error in printlength(cc) : no direct or inherited method for function 'printlength' f
attr(,"class")
[1] "try-error"

It is also possible to define a slot of the virtual class type and assign objects
of the inherited classes to it.

> setClass("MC", representation(list = "VC"))
[1] (el

> mc <- new("MC")
> mc@list <- ca
> class(mc@list)

[1] nca"
attr(, "package")
[1] ".GlobalEnv"

> mc@list <- cb
> class(mc@list)

[1] ncp
attr(, "package")
[1] ".GlobalEnv"

> mc@list <- cc

setls

When using setClassUnion we first must define the composed classes and then
we can assigned them to an virtual class. If we already have a virtual class and
like to set it as a parent class afterward we can use the setIs function [5, 1]. The
advantage of defining an virtual class by setClass instead of setClassUnion is
that we can define slots that all inheriting classes must define. In the first line of
the next example we define a virtual class (by passing the keyword "VIRTUAL"
to the class representation). Furthermore we define a slot 1ist of type list.

> setClass("VC2", representation(list = "list"), contains = "VIRTUAL")
[1] "vc2"
> print (try(new("VC2")))

[1] "Error in new(\"VC2\") : trying to use new() on a virtual class\n"
attr(,"class")
[1] "try-error"

> setIs("Ca", "VC2")
> print (try(setIs("Cc", "VC2")))

[1] "Error in .validExtends(classl, class2, classDef, classDef2, obj@simple)
attr(,"class")
[1] "try-error"

> setClass("MC", representation(list = "VC2"))
[1] nve"

> mc <- new("MC")
> mc@list <- ca
> class(mc@list)

[1] noat
attr(, "package")
[1] ".GlobalEnv"

setls and “normal” classes

To the is function defined by setIs a coerce and replace function can be
provided. These functions are executed if an object is assigned to a slot or
a function argument or a slot of the parent class type. setIs is still a little
buggy when working with old style classes in the current R2.0.0 release. It is
not enough to define just the is (setIs) relation but we must also define the as
(setAs) relation.

}, replace = function(from, value) {
from@list <- value

> setIs("Ca", "list", coerce = function(obj) {
+ return(obj@list)

+ }, replace = function(obj, value) {

+ obj@list <- value

+ }F)

> setIs("Cb", "list", coerce = function(obj) {
+ return(obj@list)

+ }, replace = function(obj, value) {

+ obj@list <- value

+ })

> setAs("Cb", "list", def = function(from) {

+ return(from@list)

+

+

+

P

: \n\tclass \

[1] "coerce<-"

setIs("Cc", "list", coerce = function(obj) {
return(vector("list", 0))

}, replace = function(obj, value) {

§)

setAs("Cc", "list", def = function(from) {
return(vector("list", 0))

}, replace = function(from, value) {

»

+ + +V + + + Vv

[1] "coerce<-"

> printlength(cb)

length : 4 object= list
> printlength(ca)

length : 4 object= list
> printlength(cc)

length : O object= list

By providing a proper definition of the functions coerce and replace using
setIs we can ensure for classes that do not have a 1ist slot that a valid object
of the base class is returned. The limitation of setIs is that we are not able to
assign to a slot of the parent class type an object of the child class type. At the
time of assignment the inheriting class is cast into the parent class.

> cb.tmp@list <- cb
> class(cb)

[1] ncp"

attr(, "package")
[1] ".GlobalEnv"

Memory

With respect to memory the extends relation seems to be a little more efficient.
> object.size(ea)

[1] 1544

> object.size(ca)

[1] 1696

Conclusion

By composition we are able to provide a similar user interface as with the ex-
tends relation. Hence, the only serious reason for using inheritance is to express
the “is a” relation to be able to assign objects of different but similar classes to
a slot or argument of the parent class type. In addition to inheritance defined
in the setClass function by the keyword contains, we can use class unions or
the setIs function in S4. The use of virtual classes defined via setClassUnion
implies the danger of runtime errors and requires programming discipline. A
safer way to define the “is a” relation is to use setClass to define virtual classes
with slots and setIs. Using the coerce and replace function defined in setIs
we can mimic some aspects of object inheritance. Many examples how to com-
bine inheritance and composition to obtain a good design can be found in E.
Gammas et al. “Design Patterns” [3].

1

Aknowledgments

Thanks to Mathias Kohl for valuable disussion.

References

1]

2]

[3]

John M. Chambers. Programming with Data. Springer, New York, 1998.
ISBN 0-387-98503-4.

John M. Chambers. Documentation for package ‘methods’ version 2.0.0,
2004.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: Ab-
straction and reuse of object-oriented design. In O. M. Nierstrasz, editor,
ECOOP’93: Object-Oriented Programming - Proc. of the 7th European Con-
ference, pages 406—431. Springer, Berlin, Heidelberg, 1993.

R. Gentleman. Container.r, February 2003.
Robert Gentleman. S4 classes in 15 pages, more or less, 2003.

Robert C Gentleman, Vincent J. Carey, Douglas M. Bates, Ben Bolstad,
Marcel Dettling, Sandrine Dudoit, Byron Ellis, Laurent Gautier, Yongchao
Ge, Jeff Gentry, Kurt Hornik, Torsten Hothorn, Wolfgang Huber, Stefano Ia-
cus, Rafael Irizarry, Friedrich Leisch Cheng Li, Martin Maechler, Anthony J.
Rossini, Gunther Sawitzki, Colin Smith, Gordon Smyth, Luke Tierney, Jean
Y. H. Yang, and Jianhua Zhang. Bioconductor: Open software development
for computational biology and bioinformatics. Genome Biology, 5:R80, 2004.

Paul J. Rajlich. An object oriented approach to developing visualization
tools portable across desktop and virtual environments. Master’s thesis,
University of Illinois at Urbana-Champaign, 1998.

10

