
arji – another R Java interface

VJ Carey

April 10, 2006

Contents

1 Introduction 1

2 Scope of functionality 2
2.1 Virtual machine control . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Class extraction and inspection . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Object construction and inspection . . . . . . . . . . . . . . . . . . . . . 3
2.4 Field extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.5 Method extraction, inspection, and invocation (static and nonvirtual) . . 4

1 Introduction

SJava (Temple Lang, 2000) and rJava (Urbanek, 2001) are R packages defining interfaces
between R and Java. arji is a new approach to a one-way interface with the following
features

� developed and tested simultaneously on Unix, Windows and Mac platforms

� designed using S4 classes and methods and external pointer support

� exposes JNI facilities to R so that the interface can be extended using R if desired

� attempts to provide compatible APIs with other interfaces

This work would not exist without the excellent original work by Temple Lang and
Urbanek.

1



2 Scope of functionality

2.1 Virtual machine control

The current approach is quite crude. It seems that JDK 1.5 does not allow more than
1 JVM associated with a process through the JNI. We will, by default, use a global
variable in R to represent the JVM reference; however, an option to the JVM invocation
function (createJVM) allows one to handle the JVM reference like any other (non-global)
R object.

> library(arji)

> args(createJVM)

function (optstr, globalize = TRUE, RobjName = "..arjiJVM")

NULL

If globalize is FALSE, the createJVM function returns an instance of JavaVMRef ; oth-
erwise the instance is assigned to the symbol named by parameter RobjName. Currently
nothing is done to pick up the current environment classpath setting; you must set the
class path explicitly.

> jvm <- createJVM(opts = paste("-Djava.class.path=",

+ system.file("java", package = "arji"), sep = ""),

+ globalize = FALSE)

> jvm

arji package JavaVM reference, invoked with options:

-Djava.class.path=/tmp/Rinst1578578897/arji/java

address: <pointer: 0x2a974f10c0>

To obtain the default behavior, I will now assign this to the default variable for holding
the JVM reference:

> ..arjiJVM <- jvm

The JavaVMRef class contains the option string and a pointer to the JNI JVM reference.
Additional data concerning, e.g., versions, could be held by this object.

> getSlots(class(jvm))

jvmptr optString

"externalptr" "character"

2



The destroyJVM function uses the JNI to unload the JVM. We will likely provide a
.onUnload function to ensure that this occurs on termination of package use.

At present a global variable ..JVMAlive is a logical scalar with obvious interpreta-
tion. When destroyJVM is used , this variable is set to FALSE. In order for .onUnload to
know what object destroyJVM should be applied to, the ..JVMAlive may be extended
to include the variable name used for the JavaVMRef object.

A checkJVM function is run by most functions that explicitly use the JVM to see if a
live JVM is available. This is inadequate. A preferred functionality is to have a way of
determining whether a given Java object reference in R is associated with the existing
JVM. As it stands one can get extremely unpleasant behavior if one tries to invoke a
method that was defined in a class instantiated from a defunct JVM.

2.2 Class extraction and inspection

The package ships with some compiled java classes under inst/java.

> cc <- getJavaClass("demo")

> cc

arji package Java Class reference, classname demo

2.3 Object construction and inspection

> demo <- .arjiNew("demo")

> demo

arji package Java Object reference, instance of class demo

> str <- .arjiNew("java/lang/String", "abc")

> str

arji package Java Object reference, instance of class java/lang/String

2.4 Field extraction

In these examples we extract values of two fields in the demo class:

> fid <- getJavaStaticFieldID("demoSField", "I",

+ cc)

> fid2 <- getJavaStaticFieldID("demoSFieldD", "D",

+ cc)

> getJavaStaticField(fid, cc)

[1] 5

> getJavaStaticField(fid2, cc)

[1] 5.15515

3



2.5 Method extraction, inspection, and invocation (static and
nonvirtual)

We can obtain a static method ID given the method name, its signature, and the defining
class.

> mm <- getJavaStaticMethodID("main", "([Ljava/lang/String;)V",

+ cc)

We can then invoke this using a very general interface, callJNIArgable. Given a method
ID, callJNIArgable will set up C-level structures to invoke the method with arguments.

> callJNIArgable(mm, .jtask("CallStaticMethod"),

+ .jtype("void"))

An object of class "arjiArgableOut"

Slot "outObjRef":

arji package Java Object reference, instance of class java/lang/Object

Slot "rettype":

[1] 1

Slot "midobj":

arji package Java static MethodID reference, methodname main

declared in class demo

The utility of this somewhat clumsy approach to invocation is illustrated here – we want
a single interface that can invoke the appropriate method on the basis of the argument
types.

> m4 <- getJavaStaticMethodID("doit3", "([DLjava/lang/String;)Ljava/lang/String;",

+ cc)

> callJNIArgable(m4, .jtask("CallStaticMethod"),

+ .jtype("void"), as.double(c(213.45, 22.23)),

+ "newth")

An object of class "arjiArgableOut"

Slot "outObjRef":

arji package Java Object reference, instance of class java/lang/String

Slot "rettype":

[1] 1

Slot "midobj":

arji package Java static MethodID reference, methodname doit3

declared in class demo

4



Passage of an object to a static method is illustrated here.

> d2 <- .arjiNew("demo2")

> md2 <- getJavaStaticMethodID("bing", "(Ldemo;)V",

+ d2@classObj)

> callJNIArgable(md2, .jtask("CallStaticMethod"),

+ .jtype("void"), demo@objref)

An object of class "arjiArgableOut"

Slot "outObjRef":

arji package Java Object reference, instance of class java/lang/Object

Slot "rettype":

[1] 1

Slot "midobj":

arji package Java static MethodID reference, methodname bing

declared in class demo2

5


	Introduction
	Scope of functionality
	 Virtual machine control
	 Class extraction and inspection
	 Object construction and inspection
	 Field extraction
	 Method extraction, inspection, and invocation (static and nonvirtual)


