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simulatorAPMS is divided into three distinct components. The first component contains
functions for simulating the AP-MS technology. The second employs a protein complex mem-
bership algorithm using data drawn from the simulated AP-MS experiment. The last com-
ponent of the package contains the statistical tools used to test the accuracy of the complex
membership algorithm(s)’ estimates.

> library(apComplex)

Loading required package: graph
Loading required package: cluster
Loading required package: Ruuid

> library(simulatorAPMS)

AP-MS Data

AP-MS technology is designed to detect complex comembership among proteins. A set of
proteins are used as baits, and in each purification, the bait protein finds the set of hit proteins
with which it shares membership in at least one complex. Suppose proteins P;, P, Py, and Py
compose one complex and proteins P3, Py and P5 compose a separate complex (See Figure 1).
If proteins P;, P», and Ps are used as baits, then with perfectly sensitive and specific AP-MS
technology, the following data should be observed.

Hits
P P, P P P P
P 1 1 0 1 0 1
Baits P | 1 1 0 1 0 1
P3| 0 O 1 1 1 0

The rows of the matrix are baits, the columns are hits, an entry of 1 in the ith row and jth
column indicates that bait protein 7 finds protein j as a hit, and an entry of 0 in the ith row
and jth column indicates that bait protein ¢ does not find protein j as a hit. The diagonal
entries are 1 since a protein is always a complex comember with itself. Note that bait proteins
can be found as hits by other bait proteins. Also note that some proteins are never used as
baits.



A graph of the data is useful for understanding which comembership relationships are
tested in AP-MS experiments and which are not. In the graph in Figure [I} nodes represent
proteins and directed edges from baits to hits represent complex comembership. Bait proteins
are yellow and hit-only proteins (i.e. proteins that are found as hits but never used as baits)
are white. Directed edges always originate at yellow bait proteins and point to the set of hits
detected by that bait. The red reciprocated edge connecting P; and P, represents a bait-bait
relationship that is tested twice, once in each purification. The gray unreciprocated edges
represent bait-hit-only edges that are only tested once. Missing edges between baits and other
baits or hit-only proteins represent comemberships that are tested, but not observed. Edges
between hit-only proteins are always missing, not because the comemberships are known not
to exist, but because they are never tested.
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Figure 1: True complex comemberships that would be detected with perfectly sensitive and
specific AP-MS technology using P;, P», and P3 as baits.

In reality, AP-MS technology is neither perfectly sensitive nor specific, resulting in false
positive (FP) and false negative (FN) observations of the complex comemberships under inves-
tigation. Suppose in this experiment, we make a FN observation between P, and Py, i.e. Pj is
not found as a hit when we use P, as a bait. Also suppose we make two FP observations: 1)
when we use P3 as a bait, we find an extraneous hit-only protein Py, and 2) when performing
a purification using Pg as a bait, we find P3 as a hit. Data for this example are contained in
the matrix apEX. In this matrix, rows again represent baits and columns represent hits.

> data(apEX)
> apEX

P1 P2 P3 P8 P4 P5 P6 P7
pt. 1.1 0 0 1 0 1 O



p2 1. 1 0 0 0 0 1 O
P30 0 1 0 1 1 0 1
P8 0 0 1 1 0 O O O

The graph of the data in Figure [2] demonstrates the observations recorded in apEX. Note the
missing edge from P, to Py and the new edge from P to Pr. Also note the blue unreciprocated
edge between P3 and Ps — this is a complex comembership that was tested twice when Ps and
Ps were used as baits, but only detected once in the purification using Ps as a bait.
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Figure 2: Hypothetical data from an AP-MS experiment with a FN observation between P,
and P; and FP observations between P3; and P and Ps and Ps.

1 Preliminaries

Before we proceed onto the package itself, it is necessary to acquaint ourselves with the language
we will use. We can consider any experimental technology as a black box; the input to the black
box is some true state of nature (TSN) which is basically an in silico interactome (ISI), the
collection of protein complexes for some cell under some conditions. The output of the black
box is an output from the simulated experiments. It is clear that the experiment begins with
some representation of the truth. For complex co-membership, we begin with an ISI described
by its bipartite graph: one set of nodes represents proteins; the other, protein complexes. The
input is the incidence matrix representation of the bipartite graph: the rows index the proteins;
the columns, protein complexes. The matrix has a one in row ¢ and column j if protein 7 is
part of complex j; otherwise that entry is zero. Here is an example of such a matrix:

> data(simEX)
> simEX



MBME1 MBME2 MBME3 MBME4 MBMES5 MBME6 MBME7 MBMES MBMES MBME10
YALO15C 1 1 1
YALO17W
YALO21C
YALO36C
YAROO3W
YAROO7C
YARO19C
YBLO21C
YBLO26W
YBLO36C
YBLO49W
YBLO56W
YBLO88C
YBRO17C
YBRO55C
YBRO59C
YBR082C
YBRO83W
YBR0O88C
YBR0O94W
YBR103W
YBR109C
YBR114W
YBR125C
YBR130C
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Each organism or cell has an unique interactome for some specified conditions and time.
For our in silico interactome, we have taken the estimation of apComplex on the HMSPCI
yeast data set by Ho, et al. We note that any estimate can serve as the ISI. Once we have the
bipartite graph representation of the ISI, we may begin the simulation of the APMS technology.

2 Simulator

In this section we discuss how to use the simulator in the simulatorA PMS package. In describ-
ing how to use the main function, runSimulators (), we will work with an example:
>runSimulators(TSNMatEX, vBaitsEX, vDeformed, vSticky, rateFP, rateFN, rateD, rateS,
missedProtHMSPCI, Seed)
First we describe each of the inputs. Each input parameter has a wet-lab correspondent,
and we describe the how each affects the output of the experiment and, thus, the simulation.

TSNMatEX - The first parameter is the incidence matrix of the bipartite graph represen-
tation of our ISI. It is our model true state of nature. In the wet-lab experiment, this maybe
some cell line or tissue under some specified conditions. The goal of AP-MS technology is to
estimate TSNMatE X, so too then does our simulation technology.



vBaitsEX - Just as AP-MS technology uses a subset of proteins from the cell or tissue of
interests as bait, so too does our simulation use a subset of proteins as baits. This parameter
is given as a character vector composed of the protein names used as baits which is identical
to names used for the rows of the TSN MatFEzx.

vDeformed - In AP-MS, baits need to be tagged so that they can be identified at the end
of the affinity process. Certain baits have been experimentally verified to lose normal func-
tionality when tagged. Thus deformed baits are known to interact with very few proteins in
the experimentation giving rise false negative observations. The vDeformed parameter is also
a character vector of protein names; they are a subset of the vBaitsEX vector.

vSticky - In the course of the experiment, some baits are found to falsely interact with a
large number other proteins. Proteins that have high occurences of interactions with a large
number of other proteins are called sticky, and as this name suggest, these proteins deliver a
high number of false positive interactions. The vSticky parameter is also a subset of vBaitsEX.

rateFP - Through any experiment, there are a number of stochastic elements by which er-
rors can occur. How sensitive the technology, how specific the technology, etc all contribute to
error in the observed data. The rateFP parameter is a scalar in the unit interval dictating the
probability of a false positive interaction between bait b and protein p.

rateFN - Analogous to rateFP, rateFN is the probability that the technology (simulation)
will record a false negative interaction.

rateD - For each deformed bait, we need to describe how deformed the protein has become,
i.e. what proportion of prey will each deformed bait miss. rateD is a named vector of scalars
(of the same size as vDeformed) estimating this proportion for each deformed bait.

rateS - Analogous to rateD, rateS is a vector of scalars estimating how the proportion of
proteins to which each proteins interacts.

missedProtHMSPCI - The ISI’s bipartite graph might not include all the proteins, since pro-
teins not involved in any non-trivial complexes need not be recorded in the bipartite graph.
These proteins need to be re-inserted to the in silico model organism’s bipartite graph since
they would be present in the wet-lab organism. In the simulation, these prpteins will contribute
to any false positive interactions within the simulation.

seed - The seed is not used in the wet-lab experiments. It is a computational parameter
that sets the seed for the random integer generator for the purpose of reproducible data sets.
seed is any three digit positive integer.

The output from runSimulators() does not represent a bipartite graph. The simulation
derives the protein-protein interaction graph by TSNMatEX @ TSNMatEXT. This inter-
action graph does not represent direct binary protein-protein interactions, but rather protein



co-membership interaction. It is from this matrix that the simulated output is derived. This
output reflects the data output of an actual AP-MS experiment, and it is given as the incidence
matrix representation where each row indexed by the bait proteins and the columns represents
all proteins found in the cell.

> data(simEX)
> data(vBaitsEX)
> data(missedProtEX)
> vDeformed <- vBaitsEX[2]
> vSticky <- vBaitsEX[5]
> rateFP <- 0.1
> rateFN <- 0.25
> rateD <- 0.5
> rateS <- 0.66
> seeed <- 237
> runSimulators (simEX, vBaitsEX, vDeformed, vSticky, rateFP, rateFN,
+ rateD, rateS, missedProtEX, seeed)
YALO15C YALO17W YALO21C YALO36C YAROO7C YARO019C YBL021C YBLO26W YBLO36C
YALO15C 1 0 0 0 0 0 0 0 0
YALO17W 0 1 0 0 0 0 0 0 0
YALO21C 0 1 1 0 0 0 0 0 0
YALO36C 0 0 0 1 0 1 1 0 0
YAROO7C 1 0 0 0 1 0 0 0 0

YBLO49W YBLO56W YBLO88C YBRO17C YBRO55C YBRO59C YBR0O82C YBRO83W YBRO88C

YALO15C 0 0 0 0 0 0 1 0 0

YALO17W 0 0 1 0 0 0 0 0 1

YALO21C 0 0 0 0 0 1 0 1 0

YALO36C 0 0 0 0 0 0 0 0 1

YAROO7C 0 0 0 0 0 0 0 0 0
YBR094W YBR103W YBR109C YBR114W YBR125C YBR130C YPR181C YMLO14W YNLO42W

YALO15C 1 0 1 0 0 0 0 0 0

YALO17W 0 0 0 0 0 0 0 0 0

YALO21C 0 0 0 0 0 1 0 0 0

YALO36C 0 0 0 0 1 0 0 0 0

YAROO7C 0 0 0 0 0 0 0 1 0
YPR180W YHRO50W YILO69C YGLO15C YJLO87C YOL145C YML101C

YALO15C 0 0 0 0 0 0 0

YALO17W 0 0 0 0 0 0 0

YALO21C 0 0 0 0 0 0 0

YALO36C 0 0 0 0 0 0 0

YAROO7C 0 0 0 0 0 0 0



3 Complex Estimation Algorithm

From the simulated data, the simulatorAPMS package calls the findComplexes() function
in the apCompler package, a complex co-membership algorithm. For detailed instructions
concerning the apCompler package, the user can refer to its own vignette. One of the func-
tionality of the simulatorAPMS is its ability to test the effectiveness of the complex estimation
algorithms. Though the simulatorAPMS defaults to apComplex as the complex estimator, the
user can chose to use any other complex estimator.

> data(runSimEX)
> data(vBaitsEX)
> runAPComplex (runSimEX, vBaitsEX)

[1] "Finding Initial Maximal BH-complete Subgraphs"
[1] "Combining Complex Estimates"

Complexl Complex2 Complex3 Complex4 Complexb5 Complex6
YALO15C 1 0 0 1 0
YALO17W
YALO21C
YALO36C
YAROO3W
YAROO7C
YARO019C
YBL021C
YBLO26W
YBL036C
YBLO49W
YBLO56W
YBL088C
YBRO55C
YBRO59C
YBR082C
YBRO83W
YBR0O88C
YBRO94W
YBR109C
YBR114W
YBR125C
YBR130C
YMLO14W
YHRO50W
YGLO15C
YOL145C
YML101C
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The output from apComplex is the incidence matrix representation of the bipartite graph
of proteins to protein complexes. This output is an estimate for the in silico model organism



A*. After calculating this esimate, it is necessary to ascertain how accurate this estimate is -
either with respect to the in silico model organism or compared to other estimation algorithms.

4 Statistical Tools

The last component of simulatorAPMS is its statistical tools. It is necessary to compare the
simulated test results with the in silico model organism’s true state of nature, A. When we
have calculated an estimate, A using apComplex, the first step in the comparison between A
and A is calculating three statistics between the complexes C; € A and K; e A: (1) CinKj; (2)
C; \ Kj; and (3) K;\ C;. To calculate these three statistics, we call the runCompareComplex ()
function.

> data(simEX)
> data (APComEX)
> runCompareComplex (simEX, APComEX)

$intersect

Complexl Complex2 Complex3 Complex4 Complexb Complex6
MBME1 1 1 0 0 0
MBME2
MBME3
MBME4
MBMES
MBME6
MBME7
MBMES8
MBME9
MBME10
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$cminusk

Complexl Complex2 Complex3 Complex4 Complexb5 Complex6
MBME1 0 1 1
MBME2
MBME3
MBME4
MBMES
MBME6
MBME7
MBME8
MBME9

MBME10
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$kminusc
Complexl Complex2 Complex3 Complex4 Complexb Complex6
MBME1 2 8 2 2 10 21



MBME2 2 8 2 2 10 21
MBME3 2 8 2 2 10 21
MBME4 3 9 2 2 9 21
MBMES 2 8 1 1 9 20
MBME6 3 9 2 2 10 20
MBME7 3 9 2 2 10 20
MBMES8 3 9 2 2 10 20
MBME9 3 9 2 2 10 20
MBME10 3 9 2 2 10 21

The return value of runCompareComplex is a list containing three matrices. The first
component of the list is a matrix of intersection values between the complexes of A and A.
The second and third components are a matrix of the difference values between the complexes
of A and A and a matrix of the difference values between the complexes of A and A respectively.
Once we have caluculated these statistics, we can compute similarity measures between the
complexes of A and A.

The first method involves using the Jaccard similarity coefficient. This coefficient is a simple
measure of simularity between two complexes by taking the ratio of overlapping sections of the
complexes to combining the two complexes. For complex C; and Kj;, we define the Jaccard
Matrix as JC with the {7, j}th entry as

|CZ‘ ﬂKj’
- ! 1
J |CZ'UK]'| ( )

To call the JaccardCoef function, we only need the return value of the runCompareComplex
function:

JC;

> data(simEX)

> data(APComEX)

> CC = runCompareComplex(simEX, APComEX)
> JaccardCoef (CC)

Complexl Complex2 Complex3 Complex4 Complexb5  Complex6

MBME1 0.3333333 0.1111111 0.0 0.0 0.0 0.00000000
MBME2 0.3333333 0.1111111 0.0 0.0 0.0 0.00000000
MBME3 0.3333333 0.1111111 0.0 0.0 0.0 0.00000000
MBME4 0.0000000 0.0000000 0.0 0.0 0.1 0.00000000
MBMES 0.3333333 0.1111111 0.5 0.5 0.1 0.04761905
MBME6 0.0000000 0.0000000 0.0 0.0 0.0 0.04761905
MBME7 0.0000000 0.0000000 0.0 0.0 0.0 0.04761905
MBME8 0.0000000 0.0000000 0.0 0.0 0.0 0.04761905
MBME9 0.0000000 0.0000000 0.0 0.0 0.0 0.04761905
MBME10 0.0000000 0.0000000 0.0 0.0 0.0 0.00000000

The Jaccard index has its benefits. The main benefit of the Jaccard index is that it is a
very intuitive statistic. It is clear that if two complexes have almost indentical composition,
the similarity measure ought to reflect this. It is pretty easy to see that if the two complexes



are identical, the Jaccard index is one, and if they are completely different, the index is zero.
Because of its relatively easy structure, the index is a good measure of similarity. The matrix
of Jaccard coefficients above has its rows indexed by the complexes of A and the columns
indexed by the estimate A.

The second method uses a variant of the Kullbach-Liebler formula to calculate the inde-
pendence of two probability distributions. For a random protein p, we can calculate three
probabilities: 1. the probability that p is in the complex C;; 2. the probability that p is in the
complex Kj;; and 3. the probability that p is in both the complexes C; and in K;. With these
three probabilities, we can calculate the degree of independence of (1) and (2) with respect to
(3). Independence implies that the estimate is not be closely aligned to the truth. To call the
compIndep (), we need three parameters, the matrix of the bipartite graph of A, the matrix of
the bipartite graph of fl, and the intersection matrix of the function runCompareComplex().

> data(simEX)

> data (APComEX)

> CC = runCompareComplex (simEX, APComEX)
> compIndep(simEX, APComEX, CC[[1]])

Complexl  Complex2 Complex3 Complex4  Complexb Complex6

MBME1 0.08481054 0.04086605 0.0000000 0.0000000 0.00000000 0.000000000
MBME2 0.08481054 0.04086605 0.0000000 0.0000000 0.00000000 0.000000000
MBME3 0.08481054 0.04086605 0.0000000 0.0000000 0.00000000 0.000000000
MBME4 0.00000000 0.00000000 0.0000000 0.0000000 0.03665163 0.000000000
MBME5 0.08481054 0.04086605 0.1010291 0.1010291 0.03665163 0.006974135
MBME6 0.00000000 0.00000000 0.0000000 0.0000000 0.00000000 0.006974135
MBME7 0.00000000 0.00000000 0.0000000 0.0000000 0.00000000 0.006974135
MBME8 0.00000000 0.00000000 0.0000000 0.0000000 0.00000000 0.006974135
MBME9 0.00000000 0.00000000 0.0000000 0.0000000 0.00000000 0.006974135
MBME10 0.00000000 0.00000000 0.0000000 0.0000000 0.00000000 0.000000000

After we have calculated a similarity measures, we need to align complexes of A to com-
plexes of A. To find an optimal alignment, we employ a version of a greedy algorithm we
call compBijection. We find the largest entry in the similarity matrix (either Jaccard or the
Kullbach-Liebler); its row and column correspond to particular complexes in A and in the
estimate fl, and so we align these complexes. We then delete this row and column from the
matrix and recursively call compBijection() on the smaller matrix. If there is a tie in one
row (or one column), we chose larger complexes to align first, since the relative size of the
complexes is an important indicator of how well the estimation algorithm works. To call the
alignment function, we need three parameters: the matrix of A, the matrix of /l, and either
the Jaccard Matrix or the Kullbach-Liebler Matrix:

> data(simEX)

> data(APComEX)

> CC = runCompareComplex (simEX, APComEX)
> JC = JaccardCoef (CC)

> runAlignment (simEX, APComEX, JC)

10



ISMO-Complexes Est-Complexes Coefficient

1 "MBME5" "Complex3" "0.5"

2 "MBME1" "Complex1" "0.333333333333333"
3 "MBME2" "Complex2" "0.111111111111111"
4 "MBME4" "Complex5" "0.1"

5 "MBME6" "Complex6" "0.0476190476190476"
6 "MBME3" "Complex4" "o

The output of the runAlignment function is a matrix where the row contains the alignment
of the complexes of A and A with the similarity coefficient (whichever one the user decided
to use) is given in the third column. Thus is it easy to see how well the estimation algoithm
performed the complexes of the estimate are aligned with those of the ISI. There is one partic-
ular caveat for this function; the greedy algorithm is known not to return optimal alignments
is some pathelogical cases though in most cases it does.

Where do we go

The simulatorAPMS is developed for many reasons, one of which is to test the significance
of interactome estimation algorithms. The second part of the package uses the estimation
algorithm apComplex as the tool to predict the ISI, but simulatorAPMS can just as easily test
significance of any estimation algorithm. In fact, simulatorAPMS could compare and contrast
the estimations of different estimation algorithms under variable conditions, i.e. different rates
of FP/FN, using different baits, etc.

One of the most substantial elements to simulatorAPMS is that if an estimation algorithm
can be shown to be highly accurate and statistically significant, we would then have a rea-
sonably clear description of the interactome. Bait selection for AP-MS techonology is highly
related to how much information one can discern from the interactome. The more we under-
stand about the interactome, the more intelligent we can make our bait selections, and thus
we gan garner more detail from the actual wet-lab experiment.
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