
Systems Biology Markup Language for R
SBMLR Version 1.16 (2/1/2005)

Tomas Radivoyevitch

Department of Epidemiology and Biostatistics
Case Western Reserve University

Cleveland, Ohio 44106
Email: radivot@hal.cwru.edu

Website: http://epbi-radivot.cwru.edu/

Systems biology markup language (SBML) (http://sbml.org/) is a standard for representing dynamical
systems of biological interest (Finney and Hucka, 2003; Hucka et al., 2003). SBMLR (Radivoyevitch,
2004, 2005) connects biochemical systems represented in SBML to R (Ihaka and Gentleman, 1996),
the base language of Bioconductor (Gentleman et al., 2004) tools used by biostatisticians. By
connecting SBML to Bioconductor, SBMLR connects systems biology to biostatistics.

Package Contents
The SBMLR package defines an SBML-like R model structure and 4 functions: write.sbml for
exporting SBMLR models to SBML level
2 models, read.SBML for importing a
limited range of SBML level 2 models
(events, algebraic rules and function
definitions are not currently implemented
in SBMLR), getIncidenceMatrix
for creating stoichiometic matrices given
the reactant and product lists in a specific
SBMLR model, and fderiv as a generic
state derivative function that gets passed
to lsoda of the ODESOLVE package in
SBMLR simulations. These 4 functions
fall into two categories: model sharing
functions (write.SBML and
read.SBML) and model using functions
(getIncidenceMatrix and
fderiv). These SBMLR functions, and the objects which they act open, are illustrated in Figure 1.

Documentation
Programming concepts and details as of the initial release (version 1.00) are given in (Radivoyevitch,
2004). Illustrative examples of SBMLR-based biochemical system analyses of DNA microarray data
(Radivoyevitch, submitted in 2004) are given in the BMCcancer04 directory. SBMLR models of
purine metabolism (Curto et al., 1997) and folate metabolism (Morrison and Allegra, 1989) are given
in the models directory. R scripts that use these models are given in the demos directory, and also as
examples under standard R help. This manual serves as a brief supplement to these examples. The
Appendix given below contains up-to-date versions of out-dated portions of (Radivoyevitch, 2004).

read.SBML

SBML model
definition file

SBMLR model
definition file

write.SBML

source

SBML model
object in R

getIncidenceMatrixIncidence
matrix

(Model sharing)

(Model using)

MCA analysis

fderiv

Simulation
Figure 1. SBMLR objects and functions.

Getting Started
The essential components of SBML, namely, compartments, chemical species and reactions, can all be
readily identified in the SBMLR files in the models directory. The first step to learning SBMLR is to
look at these files. The second step is to give the paper BMC.BioInformatics04.pdf (in the
doc directory) a light reading. The third step is to explore and understand the standard R help
examples that come with SBMLR. The next two sections support this third step.

File Conversions
File conversions between SBMLR model representations and SBML level 2 are carried out using
write.SBML and read.SBML. Examples can be found through R help, e.g.
library(SBMLR)
setwd(file.path(.path.package("SBMLR"), "models"))
write.SBML("Curto") # writes model in Curto.r to SBML (level 2) file Curto.xml
read.SBML("Curto") # converts SBML file Curto.xml into SBMLR model file CurtoX.r

To see that the final file conversion executed at the end of this code was successful, the simulation
runCurto.r in the package’s demo directory can be changed to act on the newly created file
CurtoX.r instead of Curto.r. The plots come out the same. The SBML file Curto.xml can also be
validated through http://sbml.org/tools/htdocs/sbmltools.php.

SBMLR Model Simulations
The demo script runCurto.r simulates the response
of Curto’s purine metabolism model (Curto et al.,
1997, 1998) to a bolus 10-fold increase in
phosphoribosylpyrophosphate (PRPP) at time t=0.
Plots of inosine monophosphate (IMP) and
hypoxanthine (HX) are shown in Figure 2. Since HX
reacts with PRPP to form IMP in the purine salvage
pathway, the model’s response seems reasonable.

The demo script runMorrison.r simulates the
response of the folate model (Morrison and Allegra,
1989) to a continuous exposure to 1 µM MTX
(methotrexate). The results of this simulation (not
shown) are consistent with the model validation plots
given in (Morrison and Allegra, 1989). In these two
examples given here, since no microarray data is being
applied to the models, fderiv is passed
p=c(mod=0) to indicate that the Vmax‘s are not
being modulated, see fderiv help.

Microarray data driven simulations of Morrison’s model
To learn SBMLR on an advanced level, the fourth step is to study the biochemical system analyses of
DNA microarray data (Radivoyevitch, submitted in 2004) provided in the BMCcancer04 directory.
In these analyses, direct proportionality is assumed between enzyme mRNA levels and enzyme protein
levels (Radivoyevitch, 2001). For steady state data, a matrix M containing Vmax modulators must be

Figure 2. Model of Curto et al. responding to a 10-fold
increase in PRPP treated as a new “initial state” at time
t=0. Time is in minutes and concentration is in µM.

defined prior to calling lsoda. The matrix M is such that genes are in rows, patients are in columns, and
values of 1 leave corresponding Vmax values unchanged. The matrix M is passed globally to fderiv
which must now be called with p=c(mod=1)to indicate that steady state data is being applied as a
Vmax step function perturbation at t=0. For time course data, a list of interpolation functions which map
times t into Vmax modulator values must be defined prior to calling lsoda. The list must be named
Mt and must be passed globally to fderiv. In this case p=c(mod=2).

Future Work

1. Add events and function definitions.
2. Provide graphic renderings of reaction rate equations in R.
3. Extend SBML to include unigene ID(s) for each reaction. If there is more than one gene

involved in the production of a single functional enzyme [i.e. if the enzyme is a complex],
a prescription of how gene expression values should be mapped into a modulator of Vmax
for the corresponding reaction rate law should be included in the SBML code.

4. It is anticipated that SBML level 3 will include graphical configuration information. When
this happens, the SBMLR structure will be modified to include/carry such information.

Appendix

For those who are interested in modifying the SBMLR source codes, a fifth step to learning SBMLR
would be to carefully reread (Radivoyevitch, 2004). The appendix here supplements this paper with
updates of descriptions that have changed since SBMLR version 1.00. Thus, fderiv is updated
below to reflect microarray data handling capability gained since version 1.10.

fderiv <-function(t, X, p) # state derivative function sent to ODEsolve
{v=rep(0,nrxns);xp=rep(0,nStates)
St=S0
X[X<0]=0
St[BC==FALSE]=X
nrules=length(model$rules)
if (nrules>0)
 for (j in 1:nrules)
 St[model$rules[[j]]$output]=model$rules[[j]]$law(St[model$rule[[j]]$inputs])
if (p["mod"]==1) if (t<0) m=M[,"control"] else m=M[,patient]
for (j in 1:nrxns)
 if (model$rxns[[j]]$rever==FALSE){
 if (p["mod"]==0) v[j]=model$rxns[[j]]$law(

St[c(model$rxns[[j]]$reacts, model$rxns[[j]]$mods)],model$rxns[[j]]$params)
 if (p["mod"]==1) v[j]=m[rIDs[j]]*model$rxns[[j]]$law(

St[c(model$rxns[[j]]$reacts,model$rxns[[j]]$mods)],model$rxns[[j]]$params)
 if (p["mod"]==2) v[j]=Mt[[rIDs[j]]](t)*model$rxns[[j]]$law(

St[c(model$rxns[[j]]$reacts,model$rxns[[j]]$mods)],model$rxns[[j]]$params)
 }
xp=incid%*%v
names(xp)<-names(y0)
names(v)<-rIDs
aux=c(v,St[BC==TRUE])
list(xp,aux)} # ****************** END fderiv function

In this code, the current species vector St is created by overriding initial states S0 with current states X
clipped to positive values, and by overriding any time-varying boundary conditions defined by rules. If
p[“mod”]=1, a step function at t=0 modulates the reaction rates in the subsequent for-loop. Before

the loop, the modulator m is set to the “control” column of M for negative times and the current patient
column for positive times; the “control/average” patient corresponds to the model’s initial steady state.
fderiv then enters the reaction for-loop to compute the flux vector v based on the current species
vector St. If p[“mod”]=0, there are no modulators. If p[“mod”]=1, the step function modulator is
applied. And if p[“mod”]=2, interpolating functions Mt evaluated at time t are applied. The current
flux vector v then multiplies the incidence matrix to produce the current state derivative vector xp. At
the end of each function call, the indexing names within xp and v are reset to override the problem of
variables gaining new composite names from the names of their expression arguments.

Acknowledgements This work was supported by the Biostatistics Core Facility of the Comprehensive Cancer
Center of Case Western Reserve University and University Hospitals of Cleveland (P30 CA43703), the
Integrative Cancer Biology Program (1 P20 CA112963-01) and the American Cancer Society (IRG-91-022-09).

References
1. Curto, R., Voit, E. O., Sorribas, A. and Cascante, M. Validation and steady-state analysis of a

power-law model of purine metabolism in man. Biochem.J. 324 (Pt 3), 761-775 (1997).
2. Curto, R., Voit, E. O., Sorribas, A. and Cascante, M. Mathematical models of purine

metabolism in man. Math.Biosci. 151, 1-49 (1998).
3. Finney, A. and Hucka, M. Systems biology markup language: Level 2 and beyond. Biochem

Soc Trans 31, 1472-3 (2003).
4. Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B.,

Gautier, L., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus, S., Irizarry, R.,
Leisch, F., Li, C., Maechler, M., Rossini, A. J., Sawitzki, G., Smith, C., Smyth, G., Tierney, L.,
Yang, J. Y. and Zhang, J. Bioconductor: open software development for computational biology
and bioinformatics. Genome Biol 5, R80 (2004).

5. Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., Arkin, A. P.,
Bornstein, B. J., Bray, D., Cornish-Bowden, A., Cuellar, A. A., Dronov, S., Gilles, E. D.,
Ginkel, M., Gor, V., Goryanin, II, Hedley, W. J., Hodgman, T. C., Hofmeyr, J. H., Hunter, P.
J., Juty, N. S., Kasberger, J. L., Kremling, A., Kummer, U., Le Novere, N., Loew, L. M., Lucio,
D., Mendes, P., Minch, E., Mjolsness, E. D., Nakayama, Y., Nelson, M. R., Nielsen, P. F.,
Sakurada, T., Schaff, J. C., Shapiro, B. E., Shimizu, T. S., Spence, H. D., Stelling, J.,
Takahashi, K., Tomita, M., Wagner, J. and Wang, J. The systems biology markup language
(SBML): a medium for representation and exchange of biochemical network models.
Bioinformatics 19, 524-31 (2003).

6. Ihaka, R. and Gentleman, R. R:a language for data analysis and graphics. Journal of
Computational and graphical statistics 5, 299-314 (1996).

7. Morrison, P. F. and Allegra, C. J. Folate cycle kinetics in human breast cancer cells.
J.Biol.Chem. 264, 10552-10566 (1989).

8. Radivoyevitch, T. Sphingoid base metabolism in yeast: Mapping gene expression patterns into
qualitative metabolite time course predictions. Comparative & Functional Genomics 2, 289-
294 (2001).

9. Radivoyevitch, T. A two-way interface between limited Systems Biology Markup Language
and R. BMC Bioinformatics 5, 190 (2004).

10. Radivoyevitch, T. SBMLR (2005)
http://www.bioconductor.org/repository/devel/package/html/SBMLR.html.

11. Radivoyevitch, T. Folate system correlations in DNA microarray data. BMC Cancer (submitted
in 2004).

