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Abstract  

Background 

Gene expression data is abundantly available from the Gene Expression Omnibus (GEO) and 

various websites.  Pathway specific analyses of gene-gene correlations across these datasets 

remain relatively unexplored, though they could be informative.  

Methods 

Folate gene expression data is explored here in two ways: (1) directly, using gene-gene 

scatter plots and gene expression time course plots; and (2) indirectly, using de novo purine 

(DNPS) and thymidylate (DNTS) synthesis flux predictions of a folate model perturbed by 

relative gene expression modulations of its Vmax parameters.  

Results 

Positive correlations within and between the DNPS and DNTS folate cycles are observed in 

the folate gene expression data. For steady state measurements across childhood leukemia 

patients, positive correlations between DNPS and DNTS are consistent with higher 

proliferative fractions requiring higher levels of both fluxes.  For cells exposed to ionizing 

radiation, transient increases in both pathways are consistent with DNA damage driven dNTP 

demand, and a steadily decreasing backdrop is consistent with radiation induced cell cycle 

arrest. By and large, folate model based flux predictions paralleled these findings, the main 

differences being a gain of correlation information for the TEL-AML1 leukemia data, and the 

loss of one interesting inference, namely, that RNA repair driven DNPS precedes DNA repair 

driven DNTS after a 10 gray dose of ionizing radiation.  

Conclusions 

Pathway focused correlation analyses of DNA microarray data can be informative, with or 

without a mathematical model. Conceptual models are essential. Mathematical model based 

analyses should supplement, but should not replace, direct data analyses.  



Background  
The folate system (Figure 1A) is central to de novo purine synthesis (DNPS) and de novo 

thymidylate synthesis (DNTS) and is a key target of several anti-cancer agents. For example,  

methotrexate (MTX), in its polyglutamated forms, inhibits dihydrofolate [DHF] reductase 

(DHFR), thymidylate synthetase (TS), glycinamide ribonucleotide formyltransferase 

(GART), and other folate system enzymes (see the MTX containing reaction equations [1]  in 

Methods); the novel multi-targeted anti-folate ALIMTA has similar targets [2], though with a 

very different spectrum of inhibition constants Ki  such that GART inhibition is dominant [3]; 

the anti-folate raltitrexed (Tomudex) mostly inhibits TS [4]; and 5-fluorouracil also inhibits 

TS (as FdUMP),  though it also kills cells via incorporation into DNA and RNA [5].   

 

Folates convert serine side chains into tetrahydrofolate (THF; Figure 1B) held reactive single-

carbons with the following uses: 5-methyl-THF (CH3THF) is used to convert homocysteine 

into methionine; 5,10 methylene-THF (CH2THF) is used by TS of DNTS to convert dUMP 

(deoxyuridylate) into dTMP (thymidylate) for the sole purpose of DNA synthesis, be it 

scheduled (i.e. DNA replication driven) or unscheduled (i.e. DNA damage driven);  and 10-

formyl-THF (CHOTHF) is used to set up the purine ring closure reactions of DNPS for many 

purposes, including the synthesis of RNA, DNA, ATP, GTP and many other molecules, all of 

which are subject to purine base oxidation and thus replacement after irradiation. These three 

single-carbon consuming folate functions interact via competition for CH2THF.  Using 

publicly available DNA microarray data, this study explores folate cycle interactions at the 

higher level of mRNA. To assess the added value to analyses, of a published mathematical 

model of the folate system [1], inferences obtained directly from the DNA microarray data 

are compared here to those obtained indirectly using folate model predictions of DNPS and 

DNTS based on the same DNA microarray data. 



Methods 
Mathematical model of Morrison and Allegra 

The folate cycle model of Morrison and Allegra [1] has the following mathematical form: 
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These equations restate the system configuration information of Figure 1A, i.e. they state that 

the rate at which a metabolite concentration increases equals the sum of the synthesis reaction 

fluxes (arrows into a node) minus the sum of the degradation reaction fluxes (arrows leaving 

a node).  The ri in these equations are:  
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where DHF
T
-DHF (total DHF minus free DHF) is the concentration of DHF bound to DHFR, 

xi is the concentration of i-glutamated MTX, and all folates are assumed to be penta-

glutamated. Not shown are 10 additional differential equations for up to penta-glutamation of 

MTX either free or bound to DHFR. These 10 equations are irrelevant when MTX=0 as in 

the microarray data analyses below; they were used here only to validate the current 

implementation of the model against its previously published responses, see Figure 2 [1].  

 

Model limitations  

Since the model has only one compartment, the cytosol, it cannot handle changes in the 

mitochondrial enzymes MTHFD2 and SHMT2, nor can it handle changes in the extra-cellular 

folate hydrolase gene FOLH1 (the gene that codes for prostate-specific membrane antigen, 

PSMA), so these genes were ignored in the analyses. Further, the folate genes GGH 

(polyglutamate hydrolase), FPGS (polyglutamate synthase), and RFC (reduced folate carrier), 

were not considered in the microarray analyses because these reactions are included in the 

model only for MTX and not folate, and because MTX=0 for the microarray data.   

 



Model modifications 

Flux boundary conditions for dUMP and GAR synthesis in the original model [1] were 

replaced by downstream concentration boundary conditions set to their initial values. This 

was done because steady state flux differences across patients would otherwise be nullified; 

e.g. if the flux into GAR were fixed, the steady state flux through GART would also be fixed, 

and artificially then, there would be no variation in predictions of this flux across patients.  

 

Model-data linkage  

For steady state flux predictions of leukemia patient diagnostic samples, MAS5 microarray 

measurements of Ross et al [6] and Yeoh et al [7] were normalized by dividing by the mean 

of the  leukemia subtype medians.  Step functions from 1 (for t < 0) to the resulting metrics 

(for t ≥ 0) were then used as modulators of the baseline folate model Vmax values, i.e. 

microarray data normalization values were equated to the steady state of the model.  

Individualized patient steady states were then computed as simulation endpoints 40 hours 

after the Vmax perturbations; all time courses were inspected visually to assure settled steady 

states at 40 hours. For radiation response data [8], initial measurements were equated to the 

steady state of the model, so the data was normalized by its values at t=0. Linear 

interpolations of the normalized data were then used as time-varying Vmax modulators. For 

both the steady state leukemia data and the time course radiation response data, 

proportionality between mRNA levels and protein levels was assumed.  This assumption was 

motivated by simplicity, convenience, and a lack of better alternatives. In the future, as 

proteomic-transcriptomic combined dynamic response data (e.g. [9]) accrues,  this 

assumption will likely be replaced by a set of gene specific lead-lag filter [10] assumptions.  

In the meantime, direct proportionality can be viewed and used as a first order approximation, 

or as a temporary crutch. 



Computational details 

The computational environment R [11] was used with R packages of Bioconductor [12] to 

implement this study. Specifically, the package Biobase was used to manipulate microarray 

data as expression set (class eset) objects and SBMLR [13, 14] was used to simulate a 

systems biology markup language (SBML) [15-17] representation of the folate metabolism 

model [1]. R scripts reproducing figures 2-8 are included with SBMLR as an illustrative 

example of package use. For convenience, array data used in this study have been repackaged 

as eset objects in R data packages available from the author’s website [14]. Throughout, 

genes with multiple probe sets were represented by the set with the highest average value.   

Results  

Folate system correlations across childhood leukemias  

Childhood acute lymphoblastic leukemia (ALL) microarray data of Ross et al [6] and 

Yeoh et al [7] is shown in Figures 3 and 4. Several points can be made regarding this steady 

state diagnostic bone marrow data. Firstly, since TYMS and DHFR (similarly MTHFD1, 

GART and ATIC) operate in series, it makes sense that the system would attempt to match 

these throughput capabilities as closely as possible to avoid the costs of maintaining 

unneeded excess “equipment.”  Thus, positive correlations within the DNPS and DNTS 

branches are expected. Secondly, growing cells require commensurate increases in both 

DNTS and DNPS, so positive correlations between these cycles are also expected. Finally, 

DNPS genes are higher in T cell leukemic cells than in B-cell leukemic cells, consistent with 

measured DNPS fluxes being three fold higher in T cells than in  B cells [18].   

To assess the added value of the folate model, since MTHFD1 and TYMS are the 

gatekeepers of DNPS and DNTS, respectively, correlation plots for these genes were 

compared to corresponding flux predictions in Figure 5. The plots show that, for the most 



part, model predicted fluxes are more correlated than measured MTHFD1 vs. TYMS mRNA. 

To estimate the amount of correlation attributable to steady state flux constraints alone, 1000 

uncorrelated normally distributed (µ= 1; σ = 0.30) random numbers were applied to the 

model as Vmax modulators.  The amount of correlation (r=0.18, Figure 6) is more than that 

induced by the model (beyond gatekeeper correlations) for BCR-ABL and T cell leukemias 

(Figure 5), but less than induced for TEL-AML1 leukemias. Thus, for TEL-AML leukemias 

additional information must have been contributed by the other folate genes inputted into the 

model, suggesting more folate system coordination in this more curable leukemia subtype.  

 

Folate system analysis of radiation time course data 

Folate system correlations in radiation response time course data [8] were also investigated. 

The data (Fig. 7) shows that TS, DHFR, GARFT and MTHFD each have a dose-dependent 

transient increase after irradiation, consistent with radiation induced DNA damage causing a 

transient rise and fall in P53 activity [19] with subsequent induction of ribonucleotide 

reductase subunit P53R2 [20] causing a transient increase in de novo deoxynucleotide 

synthesis for DNA repair; a 17-fold increase in R2 protein 24 h after irradiation [21] is 

radioprotective [22], further supporting this conjecture.   The data also shows a steady decline 

in many of the gene expression time courses, possibly due to radiation induced cell cycle 

arrest.  At 10 gray, inspection of TS, DHFR, GARFT and MTHFD further suggests that RNA 

repair driven DNPS (peak at 2 hours) precedes DNA repair driven DNTS (peak at 6 hours). 

 

In Figure 7, gene expression time courses are more likely to be signals if they differ between 

3 and 10 gray only in terms of minor time shifts and dose ordered amplitude changes. Based 

on this, MTHFR and SHMT1 were dismissed as being noise. The remaining six gene 

expression time courses were normalized by their values at t=0 and applied to the folate 



model as linearly interpolated time-varying modulators of corresponding Vmax parameters.  

The resulting model-based predicted time courses are shown in Figure 8.  These plots affirm 

the “dose-dependent spike resting on a decreasing backdrop” response of DNPS and DNTS 

that was qualitatively inferred from Figure 7. In contrast to the data itself, however, at 10 

gray, RNA repair driven DNPS (peak at 12 hours) and DNA repair driven DNTS (peak at 10 

hours) are reverse ordered and delayed. Since NTP production tends to be in high gear full 

time, compared to dNTP production, it likely has a greater ability to respond rapidly to 

oxidative damage.  Further, a dNTP synthesis flux peak at 6 hours compared to 10 hours is 

more consistent with a P53 spike at 5 hours [19].  Thus, until measurements of DNPS and 

DNTS in 10 gray irradiated cells suggest otherwise, the direct data inference that RNA repair 

precedes DNA repair is tentatively more credible than its model-based counterpart.  

 

Discussion  
Pathway focused analyses are essential for gene-gene correlation studies because the number 

of possible correlations would otherwise be too large to investigate. For example, if a chip 

carries 10,000 genes, the number of 2D plots requiring correlation tests is then 10,000 choose 

2, or ~50 million, i.e. a serious problem that is not encountered in pathway focused studies.  

 

Although TS and DHFR are predominantly controlled at the protein level, Figures 3, 4 and 7 

indicate that some control effort is also exerted at the mRNA level. Thus, protein level 

control may dominate a particular regulatory system, but mRNA signals may still be 

informative of what the overall system is trying to accomplish. That DNPS and DNTS are 

correlated in a consistent manner across disparate steady state and transient datasets lends 

credence to the view that DNA microarray data is a valid source of biochemical system 

coordination and control information.  The prospect of characterizing cancers by losses in 

coordination in various biochemical systems is certainly intriguing. 



Conclusions  
The main conclusion of this paper is that interesting inferences can be gleaned from genome-

wide microarray data (with or without mathematical models) if gene-gene correlations are 

analyzed in a pathway specific manner. The added value of analyzing microarray data using 

Morrison and Allegra’s folate model, relative to simply eye-balling the gene expression data, 

was minimal. For example, in Figure 5, save the ability of the model to identify TEL-AML1 

leukemias as different, gate-keeper focused gene expression scatter plots are almost as 

revealing as model-predicted DNPS vs. DNTS scatter plots. Similarly, for the radiation time 

course data in Figures 7 and 8, the spike increase in DNPS and DNTS and the baseline 

downward trend at larger times are apparent using either approach.   

 

This study used: a) conceptual models of the functional roles of folates and of the biological 

effects of ionizing radiation, to guide, focus, validate and discriminate inferences; and b) 

knowledge of genes and system scope to reduce the multivariate analysis to a manageable 

dimension correlated subspace. Pathway focused analyses can therefore be expected to work 

best when the biochemical system and the experimental data conditions are well understood.  

 

To go beyond qualitative statements and to actually plot predictions (Figures 5 and 8), 

quantitative models are needed.  Further, as pathway knowledge expands in scope and 

complexity, gedanken experiments underlying eye-ball data analyses will become 

increasingly difficult to carry out, and mathematical models will then become indispensable.  

If metabolic flux constraints are consonant with mRNA level control system objectives, 

models may also find uses as quantifiers of gene expression coordination losses in cancer 

(Figures 5 and 6). Thus, model-based approaches must continue to be developed. The lost 

inference that RNA repair precedes DNA repair suggests that model-based approaches should 

supplement, but should not replace, direct data analyses. 
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Figures 
 

Figure 1. The folate cycle model of Morrison and Allegra [1] (A) and the molecular structure 

of folate (B). 

 

Figure 2.  Morrison and Allegra’s model [1] responding to 1 µM MTX applied continuously 

after t=0.  Concentrations are in µM (top 6 plots) and fluxes are in µM/hour (bottom 3 plots). 

 

Figure 3.  MAS5 U133a folate gene expression data of Ross et al [7].   Symbols are  TEL-

AML1 (B), BCR-ABL (b) and T-cell (T).  In mirrored positions relative to the main diagonal, 

corresponding Pearson correlation coefficients r are given with their P values. 

 

Figure 4.  MAS5 U95av2 folate gene expression data of Yeoh et al [8].   Only the Yeoh et al 

[8] patients who are also in the Ross et al dataset [7] are considered. MAS5 summary 

measures were computed from cel files using Bioconductor’s AFFY package. Symbols are as 

in Figure 3.   

 

Figure 5. Comparisons of measured MTHFD1 vs. TYMS versus predicted DNPS vs. DNTS.   

 

Figure 6. DNPS vs. DNTS predicted with random numbers replacing Figures 3 & 4. 

  

Figure 7. Lymphocyte radiation response data of Jen and Cheung [8].  SHMT1 and MTHFR 

were not applied to the folate model, see text. Time is in hours. 

 

Figure 8. The folate model’s response to the radiation time course data. Fluxes are in µM/hr. 



Figure 1
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