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Systems biology markup language (SBML) (http://sbml.org/) is a standard for representing dynamical 
systems of biological interest (Finney and Hucka, 2003; Hucka et al., 2003). SBMLR (Radivoyevitch, 
2004, 2005) connects biochemical systems represented in SBML to R (Ihaka and Gentleman, 1996), 
the base language of Bioconductor (Gentleman et al., 2004) tools used by biostatisticians. By 
connecting SBML to Bioconductor, SBMLR connects systems biology to biostatistics.  
 
Package Contents 
The SBMLR package defines an SBML-like R model structure and 4 functions: write.sbml for 
exporting SBMLR models to SBML level 
2 models, read.SBML for importing a 
limited range of SBML level 2 models 
(events, algebraic rules and function 
definitions are not currently implemented 
in SBMLR), getIncidenceMatrix 
for creating stoichiometic matrices given 
the reactant and product lists in a specific 
SBMLR model, and fderiv as a generic 
state derivative function that gets passed 
to lsoda of the ODESOLVE package in 
SBMLR simulations.  These 4 functions 
fall into two categories: model sharing 
functions (write.SBML and 
read.SBML) and model using functions 
(getIncidenceMatrix and 
fderiv). These SBMLR functions, and the objects which they act open, are illustrated in Figure 1. 
 
Documentation 
Programming concepts and details as of the initial release (version 1.00) are given in (Radivoyevitch, 
2004). Illustrative examples of  SBMLR-based biochemical system analyses of DNA microarray data 
(Radivoyevitch, submitted in 2004) are given in the BMCcancer04 directory.  SBMLR models of 
purine metabolism (Curto et al., 1997)  and folate metabolism (Morrison and Allegra, 1989)  are given 
in the models directory. R scripts that use these models are given in the demos directory, and also as 
examples under standard R help. This manual serves as a brief supplement to these examples. The 
Appendix given below contains up-to-date versions of out-dated portions of (Radivoyevitch, 2004).  
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Figure 1. SBMLR objects and functions.  



 
Getting Started 
The essential components of SBML, namely, compartments, chemical species and reactions, can all be 
readily identified in the SBMLR files in the models directory.  The first step to learning SBMLR is to 
look at these files.  The second step is to give the paper BMC.BioInformatics04.pdf (in the 
doc directory) a light reading.  The third step is to explore and understand the standard R help 
examples that come with SBMLR. The next two sections support this third step.  
 
File Conversions 
File conversions between SBMLR model representations and SBML level 2 are carried out using 
write.SBML and read.SBML.  Examples can be found through R help, e.g.  
library(SBMLR) 
setwd(file.path(.path.package("SBMLR"), "models")) 
write.SBML("Curto") # writes model in Curto.r to SBML (level 2) file Curto.xml 
read.SBML("Curto") # converts SBML file Curto.xml into SBMLR model file CurtoX.r 

 
To see that the final file conversion executed at the end of this code was successful, the simulation 
runCurto.r in the package’s demo directory can be changed to act on the newly created file 
CurtoX.r instead of Curto.r. The plots come out the same. The SBML file Curto.xml can also be 
validated through http://sbml.org/tools/htdocs/sbmltools.php.  
 
SBMLR Model Simulations  
The demo script runCurto.r simulates the response 
of Curto’s purine metabolism model (Curto et al., 
1997, 1998)  to a bolus 10-fold increase in 
phosphoribosylpyrophosphate  (PRPP) at time t=0.  
Plots of inosine monophosphate (IMP) and 
hypoxanthine (HX) are shown in Figure 2. Since HX 
reacts with PRPP to form IMP in the purine salvage 
pathway, the model’s response seems reasonable. 
 
The demo script runMorrison.r simulates the 
response of the folate model (Morrison and Allegra, 
1989) to a continuous exposure to 1 µM MTX 
(methotrexate). The results of this simulation (not  
shown) are consistent with the model validation plots 
given in (Morrison and Allegra, 1989). In these two 
examples given here, since no microarray data is being 
applied to the models, fderiv is passed 
p=c(mod=0) to indicate that the Vmax‘s are not 
being modulated, see fderiv help.  
 
Microarray data driven simulations of Morrison’s model 
To learn SBMLR on an advanced level, the fourth step is to study the biochemical system analyses of 
DNA microarray data (Radivoyevitch, submitted in 2004) provided in the BMCcancer04 directory. 
In these analyses, direct proportionality is assumed between enzyme mRNA levels and enzyme protein 
levels (Radivoyevitch, 2001).  For steady state data, a matrix M containing Vmax modulators must be 

 
Figure 2. Model of Curto et al. responding to a 10-fold 
increase in PRPP treated as a new “initial state” at time 
t=0. Time is in minutes and concentration is in µM. 



defined prior to calling lsoda.  The matrix M is such that genes are in rows, patients are in columns, and 
values of 1 leave corresponding Vmax values unchanged.  The matrix M is passed globally to fderiv 
which must now be called with p=c(mod=1)to indicate that steady state data is being applied as a 
Vmax step function perturbation at t=0. For time course data, a list of interpolation functions which map 
times t into Vmax modulator values must be defined prior to calling lsoda. The list must be named 
Mt and must be passed globally to fderiv.  In this case p=c(mod=2).  
 
Future Work 

1. Add events and function definitions. 
2. Provide graphic renderings of reaction rate equations in R.  
3. Extend SBML to include unigene ID(s) for each reaction. If there is more than one gene 

involved in the production of a single functional enzyme [i.e. if the enzyme is a complex], 
a prescription of how gene expression values should be mapped into a modulator of Vmax 
for the corresponding reaction rate law should be included in the SBML code. 

4. It is anticipated that SBML level 3 will include graphical configuration information. When 
this happens, the SBMLR structure will be modified to include/carry such information.    

 
Appendix 

For those who are interested in modifying the SBMLR source codes, a fifth step to learning SBMLR 
would be to carefully reread  (Radivoyevitch, 2004). The appendix here supplements this paper with 
updates of descriptions that have changed since SBMLR version 1.00. Thus, fderiv is updated 
below to reflect microarray data handling capability gained since version 1.10. 
 
fderiv <-function(t, X, p)  # state derivative function sent to ODEsolve 
{v=rep(0,nrxns);xp=rep(0,nStates) 
St=S0 
X[X<0]=0 
St[BC==FALSE]=X 
nrules=length(model$rules)  
if (nrules>0)  
 for (j in 1:nrules) 
    St[model$rules[[j]]$output]=model$rules[[j]]$law(St[model$rule[[j]]$inputs])  
if (p["mod"]==1) if (t<0) m=M[,"control"] else m=M[,patient] 
for (j in 1:nrxns) 
  if (model$rxns[[j]]$rever==FALSE){ 
   if (p["mod"]==0)   v[j]=model$rxns[[j]]$law( 

St[c(model$rxns[[j]]$reacts, model$rxns[[j]]$mods)],model$rxns[[j]]$params) 
   if (p["mod"]==1)  v[j]=m[rIDs[j]]*model$rxns[[j]]$law( 

St[c(model$rxns[[j]]$reacts,model$rxns[[j]]$mods)],model$rxns[[j]]$params) 
   if (p["mod"]==2) v[j]=Mt[[rIDs[j]]](t)*model$rxns[[j]]$law( 

St[c(model$rxns[[j]]$reacts,model$rxns[[j]]$mods)],model$rxns[[j]]$params) 
   } 
xp=incid%*%v 
names(xp)<-names(y0) 
names(v)<-rIDs 
aux=c(v,St[BC==TRUE]) 
list(xp,aux)}    # ******************  END fderiv function  
 
In this code, the current species vector St is created by overriding initial states S0 with current states X 
clipped to positive values, and by overriding any time-varying boundary conditions defined by rules. If 
p[“mod”]=1, a step function at t=0 modulates the reaction rates in the subsequent for-loop. Before 



the loop, the modulator m is set to the “control” column of M for negative times and the current patient 
column for positive times; the “control/average” patient corresponds to the model’s initial steady state.  
fderiv then enters the reaction for-loop to compute the flux vector v based on the current species 
vector St. If p[“mod”]=0, there are no modulators. If p[“mod”]=1, the step function modulator is 
applied. And if p[“mod”]=2, interpolating functions Mt evaluated at time t are applied.  The current 
flux vector v then multiplies the incidence matrix to produce the current state derivative vector xp. At 
the end of each function call, the indexing names within xp and v are reset to override the problem of 
variables gaining new composite names from the names of their expression arguments.  
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