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1. Introduction 

Limma is a package for the analysis of gene expression microarray data, especially the use of linear 
models for analysing designed experiments and the assessment of differential expression. Limma 
provides the ability to analyse comparisons between many RNA targets simultaneously. It has features 
which make the analyses stable even for experiments with small number of arrays - this is achieved by 
“borrowing”  information across genes. The normalization and exploratory data analysis functions are 
for two-colour spotted microarrays. The linear model and differential expression functions apply to all 
microarrays including Affymetrix and other single-channel microarray experiments. 
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This guide gives a tutorial-style introduction to the main limma features but does not describe every 
feature of the package. A full description of the package is given by the individual function help 
documents available from the R online help system. To access the online help, type 
hel p( package=l i mma)  at the R prompt or else start the html help system using hel p. st ar t ( )  or the 
Windows drop-down help menu. 

The Bioconductor packages marrayClasses, marrayInput and marrayNorm provide alternative functions 
for reading and normalizing spotted microarray data. If you are using limma in conjunction with these 
packages, see Section 10. The Bioconductor package affy provides functions for reading and 
normalizing Affymetrix microarray data. If you are using the affy package, see Sections 7.2 and 11. 

This tutorial was prepared using R Version 1.9.0 for Windows and limma version 1.6.5. The latest 
version of limma is always available from http://bioinf.wehi.edu.au/limma/. The latest version of 
limma, built for the development version of R, is always available from http://www.bioconductor.org 
under "Developmental Packages". If you are using R on a system with a suitable internet connection 
and with installation privileges on your computer, you should be able to install limma for the current 
version of R using 

 i nst al l . packages( " l i mma" , cont r i bur l =" ht t p: / / bi oi nf . wehi . edu. au/ l i mma" )  

at the R prompt. Limma is updated frequently, often a couple of times a week.  

If you are using Windows, you can install the last official Bioconductor release of limma from the drop-
down menu in R, simply select Packages  then I nst al l  package( s)  f r om Bi oconduct or . . . . Note 
however that this is updated only once every 6 months. 

The data sets used in the case study examples can be downloaded from 
http://bioinf.wehi.edu.au/marray/genstat2002/. Help with limma is available by sending questions or 
problems to bioconductor@stat.math.ethz.ch. 

This guide describes limma as a command-driven package. A menu-driven interface called limmaGUI 
is also available to most commonly used functions in limma. LimmaGUI is available from 
http://bioinf.wehi.edu.au/limmaGUI. Although using limmaGUI is easy, installing limmaGUI is at the 
time of writing a job for an IT professional or for an experienced computer user because it depends on 
tck/tk extensions which are not part of standard R. 

2. A Few Preliminaries on R 

R is a program for statistical computing. It is a command-driven language meaning that you have to 
type commands into it rather than pointing and clicking. A good way to get started is to type 

  hel p. st ar t ( )  

at the R prompt or, if you're using Windows, to follow the drop-down menu [Help > Html help]. 
Following the links [Packages > limma] from the html help page will lead you to the contents page of 
help topics for commands in limma. 

Before you can use any limma commands you have to load the package by typing 
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  l i br ar y( l i mma)  

at the R prompt. You can get help on any function in any loaded package by typing ? and the function 
name at the R prompt, for example 

  ?r ead. mai mages 

for detailed help on the r ead. mai mages  function. Anything that you create in R is an "object". Objects 
might include data sets, variables, functions, anything at all. For example 

  x  <-  2 

will create a variable x  and will assign it the value 2. At any stage of your R session you can type 

  obj ect s( )  

to get a list of all the objects you have created. You see show the contents of any object by typing the 
name of the object at the prompt, for example either of the following commands will print out the 
contents of x : 

  show( x)  
  x  

We hope that you can use limma without having to spend a lot of time learning about the R language 
itself but a little knowledge in this direction will be very helpful, especially when you want to do 
something not explicitly provided for in limma or in the other Bioconductor packages. For more details 
about the R language see An Introduction to R which is available from the online help. 

3. Quick Start 

For those who want to see very quickly what a limma analysis might look like for cDNA data, here is a 
quick analysis of four replicate arrays (including two dye-swaps). The data has been scanned using an 
Axon scanner, producing a Gene Allocation List (GAL) file, and then the intensities have been captured 
from the images using SPOT software. The GAL file and the image analysis files are in the current 
working directory of R. For more detail about the data see the Swirl Data example below. 

> f i l es <-  di r ( pat t er n=" * . spot " )             # Get  t he names of  t he f i l es cont ai ni ng t he i nt ensi t y dat a 
> RG <-  r ead. mai mages( f i l es,  sour ce=" spot " )  # Read i n t he dat a 
> RG$genes <-  r eadGAL( )                      # Read i n GAL f i l e cont ai ni ng gene names 
> RG$pr i nt er  <-  get Layout ( RG$genes)          # Set  pr i nt er  l ayout  i nf or mat i on 
> MA <-  nor mal i zeWi t hi nAr r ays( RG)            # Pr i nt - t i p gr oup l oess nor mal i zat i on 
> MA <-  nor mal i zeBet weenAr r ays( MA)           # Scal e nor mal i zat i on bet ween ar r ays,  opt i onal  
> f i t  <-  l mFi t ( MA,  desi gn=c( - 1, 1, - 1, 1) )      # Est i mat e al l  t he f ol d changes by f i t t i ng a l i near  model .  
                                            # The desi gn mat r i x i ndi cat es whi ch ar r ays ar e dye- swaps 
> f i t  <-  eBayes( f i t )                         # Appl y Bayesi an smoot hi ng t o t he st andar d er r or s 
                                            # ( ver y i mpor t ant ! )  
> opt i ons( di gi t s=3)  
> t opTabl e( f i t ,  n=30,  adj ust =" f dr " )          # Show t he t op 30 genes,  cont r ol  f al se di scover y r at e 

     Bl ock Row Col umn      I D   Name     M    A     t   P. Val ue    B 
3721     8   2      1 cont r ol    BMP2 - 2. 21 12. 1 - 21. 1 0. 000357 7. 96 
1609     4   2      1 cont r ol    BMP2 - 2. 30 13. 1 - 20. 3 0. 000357 7. 78 
3723     8   2      3 cont r ol    Dl x3 - 2. 18 13. 3 - 20. 0 0. 000357 7. 71 
1611     4   2      3 cont r ol    Dl x3 - 2. 18 13. 5 - 19. 6 0. 000357 7. 62 
8295    16  16     15 f b94h06 20- L12  1. 27 12. 0  14. 1 0. 002067 5. 78 
7036    14   8      4 f b40h07  7- D14  1. 35 13. 8  13. 5 0. 002067 5. 54 
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515      1  22     11 f c22a09 27- E17  1. 27 13. 2  13. 4 0. 002067 5. 48 
5075    10  14     11 f b85f 09 18- G18  1. 28 14. 4  13. 4 0. 002067 5. 48 
7307    14  19     11 f c10h09 24- H18  1. 20 13. 4  13. 2 0. 002067 5. 40 
319      1  14      7 f b85a01  18- E1 - 1. 29 12. 5 - 13. 1 0. 002067 5. 32 
2961     6  14      9 f b85d05 18- F10 - 2. 69 10. 3 - 13. 0 0. 002067 5. 29 
4032     8  14     24 f b87d12 18- N24  1. 27 14. 2  12. 8 0. 002067 5. 22 
6903    14   2     15 cont r ol     Vox - 1. 26 13. 4 - 12. 8 0. 002067 5. 20 
4546     9  14     10 f b85e07 18- G13  1. 23 14. 2  12. 8 0. 002067 5. 18 
683      2   7     11 f b37b09  6- E18  1. 31 13. 3  12. 4 0. 002182 5. 02 
1697     4   5     17 f b26b10  3- I 20  1. 09 13. 3  12. 4 0. 002182 4. 97 
7491    15   5      3 f b24g06  3- D11  1. 33 13. 6  12. 3 0. 002182 4. 96 
4188     8  21     12 f c18d12 26- F24 - 1. 25 12. 1 - 12. 2 0. 002209 4. 89 
4380     9   7     12 f b37e11  6- G21  1. 23 14. 0  12. 0 0. 002216 4. 80 
3726     8   2      6 cont r ol   f l i - 1 - 1. 32 10. 3 - 11. 9 0. 002216 4. 76 
2679     6   2     15 cont r ol     Vox - 1. 25 13. 4 - 11. 9 0. 002216 4. 71 
5931    12   6      3 f b32f 06  5- C12 - 1. 10 13. 0 - 11. 7 0. 002216 4. 63 
7602    15   9     18 f b50g12  9- L23  1. 16 14. 0  11. 7 0. 002216 4. 63 
2151     5   2     15 cont r ol    vent  - 1. 40 12. 7 - 11. 7 0. 002216 4. 62 
3790     8   4     22 f b23d08  2- N16  1. 16 12. 5  11. 6 0. 002221 4. 58 
7542    15   7      6 f b36g12  6- D23  1. 12 13. 5  11. 0 0. 003000 4. 27 
4263     9   2     15 cont r ol    vent  - 1. 41 12. 7 - 10. 8 0. 003326 4. 13 
6375    13   2     15 cont r ol    vent  - 1. 37 12. 5 - 10. 5 0. 004026 3. 91 
1146     3   4     18 f b22a12  2- I 23  1. 05 13. 7  10. 2 0. 004242 3. 76 
157      1   7     13 f b38a01   6- I 1 - 1. 82 10. 8 - 10. 2 0. 004242 3. 75 

4. Reading Data into Limma 

4.1 Recommended Files 

We assume that an experiment has been conducted with one or more microarrays, all printed with the 
same library of probes. Each array has been scanned to produce a TIFF image. The TIFF images have 
then been processed using an image analysis program such a ArrayVision, ImageGene, GenePix, 
QuantArray or SPOT to acquire the red and green foreground and background intensities for each spot. 
The spot intensities have then been exported from the image analysis program into a series of text files. 
There should be one file for each array or, in the case of Imagene, two files for each array.  

You will need to have (i) a file which describes the probes, often called the Gene List, and (ii) the image 
analysis output files. It most cases it is also desirable to have a Targets File which describes which 
RNA sample was hybridized to each channel of each array. A further optional file is the Spot Types file 
which identifies special probes such as control spots. 

4.2 Reading in Intensity Data 

Let f i l es  be a character vector containing the names of the image analysis output files. The foreground 
and background intensities can be read into an RGLi st  object using a command of the form 

  RG <-  r ead. mai mages( f i l es,  sour ce=" <i mageanal ysi spr ogr am>" ,  pat h=" <di r ect or y>" )  

where <i mageanal ysi spr ogr am> is the name of the image analysis program and <di r ect or y> is the 
full path of the directory containing the files. If the files are in the current R working directory then the 
argument pat h can be omitted; see the help entry for set wd for how to set the current working 
directory. For example, if the files are SPOT output and have common extension "spot" then they can 
be read using 
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  f i l es <-  di r ( pat t er n=" * \ \ . spot " )  
  RG <-  r ead. mai mages( f i l es,  sour ce=" spot " )  

The object f i l es  is then a character vector containing all the spot file names in alphabetical order. If 
the files are GenePix output files and have extension "gpr" then they can be read using 

  f i l es <-  di r ( pat t er n=" * \ \ . gpr " )  
  RG <-  r ead. mai mages( f i l es,  sour ce=" genepi x" )  

Consult the help entry for r ead. mai mages  to see which other image analysis programs are supported. 
Files are assumed by default to be tab-delimited. If the files use a different separator this may be 
specified using the sep= argument. For example if the Genepix files were comma-separated (csv) then 
the read command would be 

  RG <-  r ead. mai mages( f i l es,  sour ce=" genepi x" ,  sep=" , " )  

What should you do if your image analysis program is not currently supported by limma? If your output 
files are of a standard format, you can supply the column names corresponding to the intensities 
yourself. For example,  

  RG <-  r ead. mai mages( f i l es,  col umns=l i s t ( Rf =" F635 Mean" , Gf =" F532 Mean" , Rb=" B635 
Medi an" , Gb=" B532 Medi an" ) )  

is exactly equivalent to the earlier command with sour ce=" genepi x" . "Standard format" means here 
that there is a unique column name identifying each column of interest and that there are no lines in the 
file following the last line of data. Header information at the start of the file is ok.  

It is a good idea to look at your data to check that it has been read in correctly. Type 

  show( RG)  

to see a print out the first few lines of data. Also try 

  summar y( RG$R)  

to see a five-number summary of the red intensities for each array, and so on. 

It is possible to read the data in several steps. If RG1 and RG2 are two data sets corresponding to different 
sets of arrays then 

  RG <-  cbi nd( RG1,  RG2)  

will combine them into one large data set. Data sets can also be subsetted. For example RG[ , 1]  is the 
data for the first array while RG[ 1: 100, ]  is the data on the first 100 genes.  

4.3. Spot Quality Weights 

It is desirable to use the image analysis to compute a weight for each spot between 0 and 1 which 
indicates the reliability of the acquired intensities at that spot. For example, if the SPOT image analysis 
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program is used and the size of an ideal perfectly circular spot is known to be 100 pixels, then one 
might use 

> RG <-  r ead. mai mages( f i l es, sour ce=" spot " , wt . f un=wt ar ea( 100) )  

The function wt ar ea( 100)  gives full weight to spots with area 100 pixels and down-weights smaller 
and larger spots. Spots which have zero area or are more than twice the ideal size are given zero weight. 
This will create a component called wei ght s  in the RG list. The weights will be used automatically by 
functions such as nor mal i zeWi t hi nAr r ays  which operate on the RG-list. 

With GenePix data 

> RG <-  r ead. mai mages( f i l es, sour ce=" genepi x" , wt . f un=wt f l ags( 0. 1) )  

will give weight 0.1 to any spot which receives a negative flag from the GenePix program. 

The appropriate way to computing spot quality weights depends on the image analysis program that you 
are using. Consult the help entry Qual i t yWei ght s  to see what quality weight functions are available. 
The use of the wt . f un argument is very flexible and allows you to construct your own weights. The 
wt . f un argument can be any function which takes a data set as argument and computes the desired 
weights. For example, if you wish to give zero weight to all Genepix flags less than -50 you could use  

myf un <-  f unct i on( x)  as. numer i c( x$Fl ags > - 50. 5)  
RG <-  r ead. mai mages( f i l es,  sour ce=" genepi x" ,  wt . f un=myf un)  

4.4 The Targets File 

Although not strictly necessary, it is usually a good idea to construct a Targets File which lists the RNA 
target hybridized to each channel of each array.  The Targets File is normally in tab-delimited text 
format. It should contain a row for each microarray in your experiment. It should contain a FileName 
column, giving the file from image-analysis containing raw foreground and background intensities for 
each slide, a Cy3 column giving the RNA type reverse transcribed and labelled with Cy3 dye for that 
slide (e.g. Wild Type) and a Cy5 column giving the RNA type reverse transcribed and labelled with 
Cy5 dye for that slide. For ImaGene files, the FileName column is split into a FileNameCy3 column 
and a FileNameCy5. As well as the essential columns, you can have a Name column giving an 
alternative slide name to the default name, "Slide n", where n is the SlideNumber and you can have a 
Date column, listing the date of the hybridization, and as many extra columns as you like, as long as the 
column names are unique. 

Some examples are shown below. 

The ImaGene Targets file below shows the special case of the ImaGene image-processing software 
which gives two (tab-delimited text) output files for each slide, one for the Cy3 (Green) channel and 
one for the Cy5 (Red) channel. So instead of having a single FileName column, there are two file name 
columns: a FileNameCy3 column and a FileNameCy5 column. 
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The Dat e column is optional and is not currently used in limma. 

 

A Name column can be included, giving each array a name which can be used for plotting. In this case, a 
short name is used so that a boxplot of all sixteen arrays can be plotted with labels for all arrays along 
the horizontal axis. If no Name column is given, then a default name will be given to each slide, e.g. 
"Slide 1". 
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The Targets file below is from an experiment with four different RNA sources. The main Targets file is 
not shown. The one below is used to analyse the spiked-in scorecard controls. Spike-in controls will 
generally be analysed separately from genes because the follow different rules, e.g. for genes, the log-
ratio between A and B plus the log-ratio between B and C should equal the log-ratio between A and C, 
but for scorecard controls, all three log (red/green) ratios may be the same. 

 

The Targets File can be read using r eadTar get s( ) . The file can have any name but the default name is 
Tar get s. t xt . Very often the targets file will be first thing read because it contains the image analysis 
output file names, e.g., 
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> t ar get s <-  r eadTar get s( )  
> RG <-  r ead. mai mages( t ar get s$Fi l eName)  

4.5 Reading the Gene List 

If the arrays have been scanned with an Axon scanner, then the gene names will be available in a 
GenePix Array List (GAL) file. If the GAL file has extension "gal" and is in the current working 
directory, then it may be read into a data.frame by 

> RG$genes <-  r eadGAL( )  

The print layout of the arrays can be extracted from the GAL by 

> RG$pr i nt er  <-  get Layout ( RG$genes)  

Non-Genepix gene lists can be read into R using the function r ead. t abl e from R base. If you have 
Imagene or SMD image analysis output, then the gene list will be extracted from the image analysis 
output files by r ead. i mages . 

4.6 The Spot Types File 

The Spot Types file (STF) is another optional tab-delimited text file which allows you to identify 
different types of spots from the gene list. The STF is typically used to distinguish control spots from 
those corresponding to genes of interest, to distinguish positive from negative controls, ratio from 
calibration controls and so on. The SPF should have a column giving the names of the different spot-
types. We will assume that this column is called Spot Type. One or more other columns should have the 
same names as columns in the gene list and should contain patterns or regular expressions sufficient to 
identify the spot-type. Any other columns are assumed to contain plotting parameters, such as colors or 
symbols, to be associated with the spot-types. The STF should have one row for every spot-type which 
you want to distinguish. The STF is used to set the control status of each spot on the arrays so that plots 
may highlight different types of spots in an appropriate way. 

The STF uses simplified regular expressions to match patterns. For example, 'AA* ' means any string 
starting with 'AA', '* AA' means any code ending with 'AA', 'AA' means exactly these two letters, '* AA* ' 
means any string containing 'AA', 'AA.' means 'AA' followed by exactly one other character and 'AA\ . '  
means exactly 'AA' followed by a period and no other characters. For those familiar with regular 
expressions, any other regular expressions are allowed but the codes ^  for beginning of string and $ for 
end of string should be excluded. Note that the patterns are matched sequentially from first to last, so 
more general patterns should be included first. For example, it is often a good idea to include a default 
spot-type as the first line in the STF with pattern '* ' for all the pattern-matching columns and with 
default plotting parameters.  

Here is a short STF appropriate for the ApoAI data: 
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In this example, the columns ID and Name are found in the gene-list and contain patterns to match. The 
asterisks are wildcards which can represent anything. Be careful to use upper or lower case as 
appropriate and don't insert any extra spaces. The remaining column gives colors to be associated with 
the different types of points. 

Here is a STF below appropriate for arrays with Lucidea Universal ScoreCard control spots.  

 

You can read the STF using r eadSpot Types . For example, if the file has the default name 
Spot Types. t xt  you can use simply 

> t ypes <-  r eadSpot Types( )  
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The spot types file is used by the cont r ol St at us( )  function to set the status of each spot on the array, 
for example 

> RG$genes$St at us <-  cont r ol St at us( t ypes,  RG)  

if RG is an RGLi st  object with the gene-list set. Then 

> pl ot MA( RG)  

will produce an MA-Plot with colors, symbols and sizes and given in the STF. 

5. Data Exploration 

It is advisable to display your data in various ways as a quality check and to check for unexpected 
effects. We recommend an imageplot of the raw log-ratios and an MA-plot of the raw data for each 
array as a minimum routine displays. The following is an example MA-Plot produced by pl ot MA for an 
MALi st  object with spot-types Gene, Unknown, Control, U03, D03, U10, D10, U25, D25, Sensitivity 
and Buffer set using a spot-types file and the function cont r ol St at us  (data not included). This plot 
shows up and down-regulated spike-in control spots as well as negative controls and calibration or 
sensitivity controls. See the Swirl data case study for other examples. 
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6. Normalization and Background Correction 

Limma implements a range of normalization methods for spotted microarrays. Smyth and Speed (2003) 
describe of the mostly commonly used methods. Most of the examples given in this manual use print-tip 
loess normalization as the major method. Print-tip loess normalization is performed by 

> MA <-  nor mal i zeWi t hi nAr r ays( RG)  

By default, limma will subtract the background from the foreground intensities as part of the 
normalization process using nor mal i zeWi t hi nAr r ays  so there is no need for any special action on the 
part of users. If you want to over-ride this default background correct, for example to ensure that all the 
corrected intensities are positive, then use the backgr oundCor r ect  function. For example use 

> RG <-  backgr oundCor r ect ( RG,  met hod=" mi ni mum" )  

to reset zero or negative intensities to half the value of the minimum value of the positive intensities. No 
further background correction will be performed when nor mal i zeWi t hi nAr r ays  is used subsequently 
to normalize the intensities. 

Limma contains some more sophisticated normalization methods. Normalization of absolute expression 
levels as well as just log-ratios is covered in Section 11 at the end of this guide. 

7. Differential Expression 

7.1 Linear Models 

The package limma uses an approach called linear models to analyse designed microarray experiments. 
This approach allows very general experiments to be analysed just as easily as a simple replicated 
experiment. The approach is outlined in Smyth (2004) and Yang and Speed (2002). The approach 
requires one or two matrices to be specified. The first is the design matrix which indicates in effect 
which RNA samples have been applied to each array. The second is the contrast matrix which specifies 
which comparisons you would like to make between the RNA samples. For very simple experiments, 
you may not need to specify the contrast matrix. 

If you have data from Affymetrix experiments, from single-channel spotted microarrays or from spotted 
microarrays using a common reference, then linear modeling is the same as ordinary analysis of 
variance or multiple regression except that a model is fitted for every gene. With data of this type you 
can create design matrices as one would do for ordinary modeling with univariate data. If you have data 
from spotted microarrays using a direct design, i.e., a connected design with no common reference, then 
the linear modeling approach is very powerful but the creation of the design matrix may require more 
statistical knowledge. 

For statistical analysis and assessing differential expression, limma uses an empirical Bayes method to 
moderate the standard errors of the estimated log-fold changes. This results in more stable inference and 
improved power, especially for experiments with small numbers of arrays (Smyth, 2004). For arrays 
with within-array replicate spots, limma uses a pooled correlation method to make full use of the 
duplicate spots (Smyth et al, 2003). 
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7.2 Affymetrix and Other Single-Channel Designs 

Affymetrix data will usually be normalized using the affy package. We will assume here that the data is 
available as an expr Set  object called eset . Such an object will have an slot containing the log-
expression values for each gene on each array which can be extracted using expr s( eset ) . Affymetrix 
and other single-channel microarray data may be analysed very much like ordinary linear models or 
anova models. The difference with microarray data is that it is almost always necessary to extract 
particular contrasts of interest and so the standard parametrizations provided for factors in R are not 
usually adequate. 

There are many ways to approach the analysis of a complex experiment in limma. A straightforward 
strategy is to set up the simplest possible design matrix and then to extract from the fit the contrasts of 
interest. 

Suppose that there are three RNA sources to be compared. Suppose that the first three arrays are 
hybridized with RNA1, the next two with RNA2 and the next three with RNA3. Suppose that all pair-
wise comparisons between the RNA sources are of interest. We assume that the data has been 
normalized and stored in an expr Set  object, for example by 

> dat a <-  ReadAf f y( )  
> eset  <-  r ma( dat a)  

An appropriate design matrix can be created and a linear model fitted using 

> desi gn <-  model . mat r i x( ~ - 1+f act or ( c( 1, 1, 1, 2, 2, 3, 3, 3) ) )  
> col names( desi gn)  <-  c( " gr oup1" ,  " gr oup2" ,  " gr oup3" )  
> f i t  <-  l mFi t ( eset ,  desi gn)  

To make all pair-wise comparisons between the three groups the appropriate contrast matrix can be 
created by 

> cont r ast . mat r i x  <-  makeCont r ast s( gr oup2- gr oup1,  gr oup3- gr oup2,  gr oup3- gr oup1,  
l evel s=desi gn)  
> f i t 2 <-  cont r ast s. f i t ( f i t ,  cont r ast . mat r i x)  
> f i t 2 <-  eBayes( f i t 2)  

A list of top genes differential expressed in group2 versus group1 can be obtained from 

> t opTabl e( f i t 2,  coef =1,  adj ust =" f dr " )  

You may classify each gene according to the three pair-wise comparisons using 

> cl as <-  c l assi f yTest sF( f i t 2)  

A Venn diagram showing numbers of genes significant in each comparison can be obtained from 

> vennDi agr am( cl as)  

 

 



 14 

7.3 Common Reference Designs 

Now consider two-color microarray experiments in which a common reference has been used on all the 
arrays. Such experiments can be analysed very similarly to Affymetrix experiments except that 
allowance must be made for dye-swaps. The simplest method is to setup the design matrix using the 
desi gnMat r i x( )  function and the targets file. As an example, we consider part of an experiment 
conducted by Jöelle Michaud, Catherine Carmichael and Dr Hamish Scott at the Walter and Eliza Hall 
Institute to compare the effects of transcription factors in a human cell line. The targets file is as 
follows: 

> t ar get s <-  r eadTar get s( " r unxt ar get s. t xt " )  
> t ar get s 
   Sl i deNumber        Cy3       Cy5 
1         2144      EGFP      AML1 
2         2145      EGFP      AML1 
3         2146      AML1      EGFP 
4         2147      EGFP AML1. CBFb 
5         2148      EGFP AML1. CBFb 
6         2149 AML1. CBFb      EGFP 
7         2158      EGFP      CBFb 
8         2159      CBFb      EGFP 
9         2160      EGFP AML1. CBFb 
10        2161 AML1. CBFb      EGFP 
11        2162      EGFP AML1. CBFb 
12        2163 AML1. CBFb      EGFP 
13        2166      EGFP      CBFb 
14        2167      CBFb      EGFP 

In the experiment, green fluorescent protein (EGFP) has been used as a common reference. An 
adenovirus system was used to transport various transcription factors into the nuclei of HeLa cells. Here 
we consider the transcription factors AML1, CBFbeta or both. A simple design matrix was formed and 
a linear model fit: 

> desi gn <-  desi gnMat r i x( t ar get s, r ef =" EGFP" )  
> desi gn 
   AML1 AML1. CBFb CBFb 
1     1         0    0 
2     1         0    0 
3    - 1         0    0 
4     0         1    0 
5     0         1    0 
6     0        - 1    0 
7     0         0    1 
8     0         0   - 1 
9     0         1    0 
10    0        - 1    0 
11    0         1    0 
12    0        - 1    0 
13    0         0    1 
14    0         0   - 1 
> f i t  <-  l mFi t ( RG,  desi gn)  

It is of interest to compare each of the transcription factors to EGFP and also to compare the 
combination transcription factor with AML1 and CBFb individually. An appropriate contrast matrix 
was formed as follows: 
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> cont r ast . mat r i x  <-  makeCont r ast s( AML1, CBFb, AML1. CBFb, AML1. CBFb- AML1, AML1. CBFb-
CBFb, l evel s=desi gn)  
> cont r ast . mat r i x  
          AML1 CBFb AML1. CBFb AML1. CBFb -  AML1 AML1. CBFb -  CBFb 
AML1         1    0         0               - 1                0 
AML1. CBFb    0    0         1                1                1 
CBFb         0    1         0                0               - 1 

The linear model fit can now be expanded and empirical Bayes statistics computed: 

> f i t 2 <-  cont r ast s. f i t ( f i t ,  cont r ast s. mat r i x)  
> f i t 2 <-  eBayes( f i t 2)  

7.4 Direct Two-Color Designs 

Two-colour designs without a common reference require the most statistical knowledge to choose the 
appropriate design matrix. As an example, we consider an experiment conducted by Dr Mireille Lahoud 
at the Walter and Eliza Hall Institute to compare gene expression in three different populations of 
dendritric cells (DC). 

 

This experiment involved six cDNA microarrays in three dye-swap pairs, with each pair used to 
compare two DC types. The design is shown diagrammatically above. The targets file was as follows: 

> t ar get s 
  Sl i deNumber      Fi l eName Cy3 Cy5 
1          12 ml 12med. spot  CD4 CD8 
2          13 ml 13med. spot  CD8 CD4 
3          14 ml 14med. spot   DN CD8 
4          15 ml 15med. spot  CD8  DN 
5          16 ml 16med. spot  CD4  DN 
6          17 ml 17med. spot   DN CD4 

There are many valid choices for a design matrix for such an experiment and no single correct choice. 
We chose to setup the design matrix as follows: 
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> desi gn <-  cbi nd( " CD8- CD4" =c( 1, - 1, 1, - 1, 0, 0) , " DN- CD4" =c( 0, 0, - 1, 1, 1, - 1) )  
> r ownames( desi gn)  <-  r emoveExt ( t ar get s$Fi l eName)  
> desi gn 
 
        CD8- CD4 DN- CD4 
ml 12med       1      0 
ml 13med      - 1      0 
ml 14med       1     - 1 
ml 15med      - 1      1 
ml 16med       0      1 
ml 17med       0     - 1 

In this design matrix, the CD8 and DN populations have been compared back to the CD4 population. 
The coefficients estimated by the linear model will correspond to the log-ratios of CD8 vs CD4 (first 
column) and DN vs CD4 (second column). After appropriate normalization of the expression data, a 
linear model was fit using 

> f i t  <-  l mFi t ( MA,  desi gn,  ndups=2)  

The use of ndups  is to specify that the arrays contained duplicates of each gene, see Section 9. 

The linear model can now be interrogated to answer any questions of interest. For this experiment it was 
of interest to make all pairwise comparisons between the three DC populations. This was accomplished 
using the contrast matrix 

> cont r ast . mat r i x  <-  cbi nd( " CD8- CD4" =c( 1, 0) , " DN- CD4" =c( 0, 1) , " CD8- DN" =c( 1, - 1) )  
> r ownames( cont r ast . mat r i x)  <-  col names( desi gn)  
> cont r ast . mat r i x  
        CD8- CD4 DN- CD4 CD8- DN 
CD8- CD4       1      0      1 
DN- CD4        0      1     - 1 

The contrast matrix can be used to expand the linear model fit and then to compute empirical Bayes 
statistics: 

> f i t 2 <-  const r ast . f i t ( f i t ,  cont r ast . mat r i x)  
> f i t 2 <-  eBayes( f i t 2)  

8. Case Studies 

8.1. Swirl Zebrafish: A Single-Sample Experiment 

In this section we consider a case study in which two RNA sources are compared directly on a set of 
replicate or dye-swap arrays. The case study includes reading in the data, data display and exploration, 
as well as normalization and differential expression analysis. The analysis of differential expression is 
analogous to a classical one-sample test of location for each gene. 

In this example we assume that the data is provided as a GAL file called f i sh. gal  and raw SPOT 
output files and that these files are in the current working directory. 

Background. The experiment was carried out using zebrafish as a model organism to study the early 
development in vertebrates. Swirl is a point mutant in the BMP2 gene that affects the dorsal/ventral 
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body axis. The main goal of the Swirl experiment is to identify genes with altered expression in the 
Swirl mutant compared to wild-type zebrafish. 

The hybridizations. Two sets of dye-swap experiments were performed making a total of four replicate 
hybridizations. Each of the arrays compares RNA from swirl fish with RNA from normal ("wild type") 
fish. The experimenters have prepared a tab-delimited targets file called "SwirlSamples.txt" which 
describes the four hybridizations: 

> t ar get s <-  r eadTar get s( " Swi r l Sampl e. t xt " )  
> t ar get s 
  Sl i deNumber      Fi l eName       Cy3       Cy5      Dat e 
1          81 swi r l . 1. spot      swi r l  wi l d t ype 2001/ 9/ 20 
2          82 swi r l . 2. spot  wi l d t ype     swi r l  2001/ 9/ 20 
3          93 swi r l . 3. spot      swi r l  wi l d t ype 2001/ 11/ 8 
4          94 swi r l . 4. spot  wi l d t ype     swi r l  2001/ 11/ 8 

We see that slide numbers 81, 82, 93 and 94 were used to make the arrays. On slides 81 and 93, swirl 
RNA was labelled with green (Cy3) dye and wild type RNA was labelled with red (Cy5) dye. On slides 
82 and 94, the labelling was the other way around.  

Each of the four hybridized arrays was scanned on an Axon scanner to produce a TIFF image, which 
was then processed using the image analysis software SPOT. The data from the arrays are stored in the 
four output files listed under Fi l eName. Now we read the intensity data into an RGLi st  object in R. The 
default for SPOT output is that Rmean and Gmean are used as foreground intensities and mor phR and 
mor phG are used as background intensities: 

> RG <-  r ead. mai mages( t ar get s$Fi l eName,  sour ce=" spot " )  
Read swi r l . 1. spot   
Read swi r l . 2. spot   
Read swi r l . 3. spot   
Read swi r l . 4. spot  
> RG 
An obj ect  of  c l ass " RGLi st "  
$R 
       swi r l . 1   swi r l . 2   swi r l . 3    swi r l . 4 
[ 1, ]  19538. 470 16138. 720 2895. 1600 14054. 5400 
[ 2, ]  23619. 820 17247. 670 2976. 6230 20112. 2600 
[ 3, ]  21579. 950 17317. 150 2735. 6190 12945. 8500 
[ 4, ]   8905. 143  6794. 381  318. 9524   524. 0476 
[ 5, ]   8676. 095  6043. 542  780. 6667   304. 6190 
8443 mor e r ows . . .  
 
$G 
       swi r l . 1   swi r l . 2   swi r l . 3    swi r l . 4 
[ 1, ]  22028. 260 19278. 770 2727. 5600 19930. 6500 
[ 2, ]  25613. 200 21438. 960 2787. 0330 25426. 5800 
[ 3, ]  22652. 390 20386. 470 2419. 8810 16225. 9500 
[ 4, ]   8929. 286  6677. 619  383. 2381   786. 9048 
[ 5, ]   8746. 476  6576. 292  901. 0000   468. 0476 
8443 mor e r ows . . .  
 
$Rb 
     swi r l . 1 swi r l . 2 swi r l . 3 swi r l . 4 
[ 1, ]      174     136      82      48 
[ 2, ]      174     133      82      48 
[ 3, ]      174     133      76      48 
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[ 4, ]      163     105      61      48 
[ 5, ]      140     105      61      49 
8443 mor e r ows . . .  
 
$Gb 
     swi r l . 1 swi r l . 2 swi r l . 3 swi r l . 4 
[ 1, ]      182     175      86      97 
[ 2, ]      171     183      86      85 
[ 3, ]      153     183      86      85 
[ 4, ]      153     142      71      87 
[ 5, ]      153     142      71      87 
8443 mor e r ows . . .  

The arrays. The microarrays used in this experiment were printed with 8448 probes (spots), including 
768 control spots. The array printer uses a print head with a 4x4 arrangement of print-tips and so the 
microarrays are partitioned into a 4x4 grid of tip groups. Each grid consists of 22x24 spots that were 
printed with a single print-tip. The gene name associated with each spot is recorded in a GenePix array 
list (GAL) file: 

> RG$genes <-  r eadGAL( " f i sh. gal " )  
> RG$genes[ 1: 30, ]  
   Bl ock Row Col umn      I D     Name 
1      1   1      1 cont r ol     geno1 
2      1   1      2 cont r ol     geno2 
3      1   1      3 cont r ol     geno3 
4      1   1      4 cont r ol     3XSSC 
5      1   1      5 cont r ol     3XSSC 
6      1   1      6 cont r ol      EST1 
7      1   1      7 cont r ol     geno1 
8      1   1      8 cont r ol     geno2 
9      1   1      9 cont r ol     geno3 
10     1   1     10 cont r ol     3XSSC 
11     1   1     11 cont r ol     3XSSC 
12     1   1     12 cont r ol     3XSSC 
13     1   1     13 cont r ol      EST2 
14     1   1     14 cont r ol      EST3 
15     1   1     15 cont r ol      EST4 
16     1   1     16 cont r ol     3XSSC 
17     1   1     17 cont r ol     Act i n 
18     1   1     18 cont r ol     Act i n 
19     1   1     19 cont r ol     3XSSC 
20     1   1     20 cont r ol     3XSSC 
21     1   1     21 cont r ol     3XSSC 
22     1   1     22 cont r ol     3XSSC 
23     1   1     23 cont r ol     Act i n 
24     1   1     24 cont r ol     Act i n 
25     1   2      1 cont r ol      at h1 
26     1   2      2 cont r ol     Cad- 1 
27     1   2      3 cont r ol    Del t aB 
28     1   2      4 cont r ol      Dl x4 
29     1   2      5 cont r ol  ephr i nA4 
30     1   2      6 cont r ol      FGF8 

The 4x4x22x24 print layout also needs to be set. The easiest way to do this is to infer it from the GAL 
file: 

> RG$pr i nt er  <-  get Layout ( RG$genes)  
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Image plots. It is interesting to look at the variation of background values over the array. Consider 
image plots of the red and green background for the first array: 

> i magepl ot ( l og2( RG$Rb[ , 1] ) ,  RG$pr i nt er ,  l ow=" whi t e" ,  hi gh=" r ed" )  
> i magepl ot ( l og2( RG$Gb[ , 1] ) ,  RG$pr i nt er ,  l ow=" whi t e" ,  hi gh=" gr een" )  

 

 

Image plot of the un-normalized log-ratios or M-values for the first array: 

> MA <-  nor mal i zeWi t hi nAr r ays( RG,  met hod=" none" )  
> i magepl ot ( MA$M[ , 1] ,  RG$pr i nt er ,  z l i m=c( - 3, 3) )  
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The i magepl ot  function lies the slide on its side, so the first print-tip group is bottom left in this plot. 
We can see a red streak across the middle two grids of the 3rd row caused by a scratch or dust on the 
array. Spots which are affected by this artefact will have suspect M-values. The streak also shows up as 
darker regions in the background plots. 

MA-plots. An MA-plot plots the log-ratio of R vs G against the overall intensity of each spot. The log-
ratio is represented by the M-value, M = log2(R)-log2(G), and the overall intensity by the A-value, A = 
(log2(R)+log2(G))/2. Here is the MA-plot of the un-normalized values for the first array: 

> pl ot MA( MA)  
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The red streak seen on the image plot can be seen as a line of spots in the upper right of this plot. Now 
we plot the individual MA-plots for each of the print-tip groups on this array, together with the loess 
curves which will be used for normalization: 

> pl ot Pr i nt Ti pLoess( MA)  

 

Normalization. Print-tip loess normalization: 

> MA <-  nor mal i zeWi t hi nAr r ays( RG)  
> pl ot Pr i nt Ti pLoess( MA)  
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We have normalized the M-values with each array. A further question is whether normalization is 
required between the arrays. The following plot shows overall boxplots of the M-values for the four 
arrays. 

> boxpl ot ( MA$M~col ( MA$M) , names=col names( MA$M) )  
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There is some evidence that the different arrays have different spreads of M-values, so we will scale 
normalize between the arrays. 

> MA <-  nor mal i zeBet weenAr r ays( MA)  
> boxpl ot ( MA$M~col ( MA$M) , names=col names( MA$M) )  

 

Linear model. Now estimate the average M-value for each gene. We do this by fitting a simple linear 
model for each gene. The negative numbers in the design matrix indicate the dye-swaps. 

> desi gn <-  c( - 1, 1, - 1, 1)  
> f i t  <-  l mFi t ( MA, desi gn)  
> f i t  
An obj ect  of  c l ass " MAr r ayLM"  
$coef f i c i ent s 
[ 1]  - 0. 3943421 - 0. 3656843 - 0. 3912506 - 0. 2505729 - 0. 3432590 
8443 mor e el ement s . . .  
 
$st dev. unscal ed 
[ 1]  0. 5 0. 5 0. 5 0. 5 0. 5 
8443 mor e el ement s . . .  
 
$s i gma 
[ 1]  0. 3805154 0. 4047829 0. 4672451 0. 3206071 0. 2838043 
8443 mor e el ement s . . .  
 
$df . r esi dual  
[ 1]  3 3 3 3 3 
8443 mor e el ement s . . .  
 
$met hod 
[ 1]  " l s"  
 
$desi gn 
     [ , 1]  
[ 1, ]    - 1 
[ 2, ]     1 
[ 3, ]    - 1 
[ 4, ]     1 
 
$genes 



 24 

  Bl ock Row Col umn      I D  Name 
1     1   1      1 cont r ol  geno1 
2     1   1      2 cont r ol  geno2 
3     1   1      3 cont r ol  geno3 
4     1   1      4 cont r ol  3XSSC 
5     1   1      5 cont r ol  3XSSC 
8443 mor e r ows . . .  
 
$Amean 
[ 1]  13. 46481 13. 67631 13. 42665 10. 77730 10. 88446 
8443 mor e el ement s . . .  

In the above fit object, coef f i c i ent s  is the average M-value for each gene and si gma is the sample 
standard deviations for each gene. Ordinary t-statistics for comparing mutant to wt could be computed 
by 

> or di nar y. t  <-  f i t $coef  /  f i t $st dev. unscal ed /  f i t $s i gma 

We prefer though to use empirical Bayes moderated t-statistics which are computed below. Now create 
an MA-plot of the average M and A-values for each gene. 

> M <-  f i t $coef  
> A <-  f i t $Amean 
> pl ot ( A, M, pch=16, cex=0. 1)  
> abl i ne( 0, 0, col =" bl ue" )  

 

Empirical Bayes analysis. We will now go on and compute empirical Bayes statistics for differential 
expression. The moderated t-statistics use sample standard deviations which have been shrunk towards 
a pooled standard deviation value. 

> f i t  <-  eBayes( f i t )  
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> qqt ( f i t $t , df =f i t $df . pr i or +f i t $df . r esi dual , pch=16, cex=0. 1)  
> abl i ne( 0, 1)  

 

Visually there seems to be plenty of genes which are differentially expressed. We will obtain a 
summary table of some key statistics for the top genes. 

> opt i ons( di gi t s=3)  
> t opTabl e( f i t , number =30, adj ust =" f dr " )  
     Bl ock Row Col umn      I D   Name     M    A     t   P. Val ue    B 
3721     8   2      1 cont r ol    BMP2 - 2. 21 12. 1 - 21. 1 0. 000357 7. 96 
1609     4   2      1 cont r ol    BMP2 - 2. 30 13. 1 - 20. 3 0. 000357 7. 78 
3723     8   2      3 cont r ol    Dl x3 - 2. 18 13. 3 - 20. 0 0. 000357 7. 71 
1611     4   2      3 cont r ol    Dl x3 - 2. 18 13. 5 - 19. 6 0. 000357 7. 62 
8295    16  16     15 f b94h06 20- L12  1. 27 12. 0  14. 1 0. 002067 5. 78 
7036    14   8      4 f b40h07  7- D14  1. 35 13. 8  13. 5 0. 002067 5. 54 
515      1  22     11 f c22a09 27- E17  1. 27 13. 2  13. 4 0. 002067 5. 48 
5075    10  14     11 f b85f 09 18- G18  1. 28 14. 4  13. 4 0. 002067 5. 48 
7307    14  19     11 f c10h09 24- H18  1. 20 13. 4  13. 2 0. 002067 5. 40 
319      1  14      7 f b85a01  18- E1 - 1. 29 12. 5 - 13. 1 0. 002067 5. 32 
2961     6  14      9 f b85d05 18- F10 - 2. 69 10. 3 - 13. 0 0. 002067 5. 29 
4032     8  14     24 f b87d12 18- N24  1. 27 14. 2  12. 8 0. 002067 5. 22 
6903    14   2     15 cont r ol     Vox - 1. 26 13. 4 - 12. 8 0. 002067 5. 20 
4546     9  14     10 f b85e07 18- G13  1. 23 14. 2  12. 8 0. 002067 5. 18 
683      2   7     11 f b37b09  6- E18  1. 31 13. 3  12. 4 0. 002182 5. 02 
1697     4   5     17 f b26b10  3- I 20  1. 09 13. 3  12. 4 0. 002182 4. 97 
7491    15   5      3 f b24g06  3- D11  1. 33 13. 6  12. 3 0. 002182 4. 96 
4188     8  21     12 f c18d12 26- F24 - 1. 25 12. 1 - 12. 2 0. 002209 4. 89 
4380     9   7     12 f b37e11  6- G21  1. 23 14. 0  12. 0 0. 002216 4. 80 
3726     8   2      6 cont r ol   f l i - 1 - 1. 32 10. 3 - 11. 9 0. 002216 4. 76 
2679     6   2     15 cont r ol     Vox - 1. 25 13. 4 - 11. 9 0. 002216 4. 71 
5931    12   6      3 f b32f 06  5- C12 - 1. 10 13. 0 - 11. 7 0. 002216 4. 63 
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7602    15   9     18 f b50g12  9- L23  1. 16 14. 0  11. 7 0. 002216 4. 63 
2151     5   2     15 cont r ol    vent  - 1. 40 12. 7 - 11. 7 0. 002216 4. 62 
3790     8   4     22 f b23d08  2- N16  1. 16 12. 5  11. 6 0. 002221 4. 58 
7542    15   7      6 f b36g12  6- D23  1. 12 13. 5  11. 0 0. 003000 4. 27 
4263     9   2     15 cont r ol    vent  - 1. 41 12. 7 - 10. 8 0. 003326 4. 13 
6375    13   2     15 cont r ol    vent  - 1. 37 12. 5 - 10. 5 0. 004026 3. 91 
1146     3   4     18 f b22a12  2- I 23  1. 05 13. 7  10. 2 0. 004242 3. 76 
157      1   7     13 f b38a01   6- I 1 - 1. 82 10. 8 - 10. 2 0. 004242 3. 75 

The top gene is BMP2 which is significantly down-regulated in the Swirl zebrafish, as it should be 
because the Swirl fish are mutant in this gene. Other positive controls also appear in the top 50 genes in 
terms. 

In the table, t is the empirical Bayes moderated t-statistic, the corresponding P-values have been 
adjusted to control the false discovery rate and B is the empirical Bayes log odds of differential 
expression. Beware that the Benjamini and Hochberg method used to control the false discovery rate 
assumes independent statistics which we do not have here (see hel p( p. adj ust ) ). 

> or d <-  or der ( f i t $l ods, decr easi ng=TRUE)  
> t op30 <-  or d[ 1: 30]  
> pl ot ( A, M, pch=16, cex=0. 1)  
> t ext ( A[ t op30] , M[ t op30] , l abel s=MA$genes[ t op30, " Name" ] , cex=0. 8, col =" bl ue" )  
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8.2 ApoAI Knockout Data: A Two-Sample Experiment 

In this section we consider a case study where two RNA sources are compared through a common 
reference RNA. The analysis of the log-ratios involves a two-sample comparison of means for each 
gene. 

In this example we assume that the data is available as an RG list in the data file ApoAI . RDat a. 

Background. The data is from a study of lipid metabolism by Callow et al (2000). The apolipoprotein 
AI (ApoAI) gene is known to play a pivotal role in high density lipoprotein (HDL) metabolism. Mice 
which have the ApoAI gene knocked out have very low HDL cholesterol levels. The purpose of this 
experiment is to determine how ApoAI deficiency affects the action of other genes in the liver, with the 
idea that this will help determine the molecular pathways through which ApoAI operates.  

Hybridizations. The experiment compared 8 ApoAI knockout mice with 8 normal C57BL/6 ("black 
six") mice, the control mice. For each of these 16 mice, target mRNA was obtained from liver tissue 
and labelled using a Cy5 dye. The RNA from each mouse was hybridized to a separate microarray. 
Common reference RNA was labelled with Cy3 dye and used for all the arrays. The reference RNA was 
obtained by pooling RNA extracted from the 8 control mice. 

Number of arrays Red Green 
8 Normal "black six" mice Pooled reference 
8 ApoAI knockout Pooled reference 

This is an example of a single comparison experiment using a common reference. The fact that the 
comparison is made by way of a common reference rather than directly as for the swirl experiment 
makes this, for each gene, a two-sample rather than a single-sample setup. 

> l oad( " ApoAI . RDat a" )  
> obj ect s( )  
[ 1]  " desi gn"    " genel i s t "  " l ayout "    " RG"  
> RG$R[ 1: 4, ]  
       c1      c2      c3      c4      c5      c6      c7     c8      k1      k2      k3 
1 2765. 58 1768. 22 1440. 54  763. 06 2027. 94  864. 05  958. 68 644. 58  747. 11 1388. 79 1588. 76 
2 2868. 43 2277. 18 1599. 92 1238. 33 1513. 43 1079. 33 1228. 66 757. 33 1930. 25 2093. 00 1369. 81 
3 1236. 32 1546. 84 2639. 45  999. 48 3689. 67 1505. 20  785. 10 994. 86  753. 52 1300. 00 1301. 61 
4  383. 62  532. 50  323. 55  585. 14  250. 74  566. 58  409. 18 417. 79  829. 82  402. 84  513. 91 
       k4      k5      k6      k7      k8 
1 1280. 17 1881. 72 1733. 53 1170. 84 1512. 45 
2 1071. 17 3218. 58 2451. 04 1605. 00 1700. 82 
3 3292. 26 1149. 23 3424. 30 1901. 06 2200. 82 
4  459. 69  391. 09  601. 00  438. 03  507. 25 
> MA <-  nor mal i zeWi t hi nAr r ays( RG, l ayout )  
> boxpl ot ( MA$M~col ( MA$M) , names=col names( RG$R) )  
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The differences in scale are moderate, so we won't scale normalize between arrays. 

Now we can go on to estimate the fold change between the two groups. In this case the design matrix 
has two columns. The coefficient for the second column estimates the parameter of interest, the log-
ratio between knockout and control mice. 

> desi gn 
   Cont r ol - Ref  KO- Cont r ol  
c1           1          0 
c2           1          0 
c3           1          0 
c4           1          0 
c5           1          0 
c6           1          0 
c7           1          0 
c8           1          0 
k1           1          1 
k2           1          1 
k3           1          1 
k4           1          1 
k5           1          1 
k6           1          1 
k7           1          1 
k8           1          1 
> f i t  <-  l mFi t ( MA,  desi gn)  
> f i t $coef [ 1: 5, ]  
     Cont r ol - Ref  KO- Cont r ol  
[ 1, ]      - 0. 6595     0. 6393 
[ 2, ]       0. 2294     0. 6552 
[ 3, ]      - 0. 2518     0. 3342 
[ 4, ]      - 0. 0517     0. 0405 
[ 5, ]      - 0. 2501     0. 2230 
> f i t  <-  eBayes( f i t )  
> opt i ons( di gi t s=3)  
> t opTabl e( f i t , coef =2, number =15, adj ust =" f dr " )  
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     Gr i dROW Gr i dCOL ROW COL                 NAME TYPE      M      t   P. Val ue      B 
2149       2       2   8   7      ApoAI , l i pi d- I mg cDNA - 3. 166 - 23. 98 3. 05e- 11 14. 927 
540        1       2   7  15 EST, Hi ghl ysi mi l ar t oA cDNA - 3. 049 - 12. 96 5. 02e- 07 10. 813 
5356       4       2   9   1 CATECHOLO- METHYLTRAN cDNA - 1. 848 - 12. 44 6. 51e- 07 10. 448 
4139       3       3   8   2 EST, Weakl ysi mi l ar t oC cDNA - 1. 027 - 11. 76 1. 21e- 06  9. 929 
1739       2       1   7  17    ApoCI I I , l i pi d- I mg cDNA - 0. 933  - 9. 84 1. 56e- 05  8. 192 
2537       2       3   7  17 ESTs, Hi ghl ysi mi l ar t o cDNA - 1. 010  - 9. 02 4. 22e- 05  7. 305 
1496       1       4  15   5                  est  cDNA - 0. 977  - 9. 00 4. 22e- 05  7. 290 
4941       4       1   8   6 s i mi l ar t oyeast st er ol  cDNA - 0. 955  - 7. 44 5. 62e- 04  5. 311 
947        1       3   8   2 EST, Weakl ysi mi l ar t oF cDNA - 0. 571  - 4. 55 1. 77e- 01  0. 563 
5604       4       3   1  18                      cDNA - 0. 366  - 3. 96 5. 29e- 01 - 0. 553 
4140       3       3   8   3         APXL2, 5q- I mg cDNA - 0. 420  - 3. 93 5. 29e- 01 - 0. 619 
6073       4       4   5   4          est r ogenr ec cDNA  0. 421   3. 91 5. 29e- 01 - 0. 652 
1337       1       4   7  14 psor i asi s- associ at ed cDNA - 0. 838  - 3. 89 5. 29e- 01 - 0. 687 
954        1       3   8   9   Caspase7, hear t - I mg cDNA - 0. 302  - 3. 86 5. 30e- 01 - 0. 757 
563        1       2   8  17 FATTYACI D- BI NDI NGPRO cDNA - 0. 637  - 3. 81 5. 30e- 01 - 0. 839 

Notice that the top gene is ApoAI itself which is heavily down-regulated. Theoretically the M-value 
should be minus infinity for ApoAI because it is the knockout gene. Several of the other genes are 
closely related. The top eight genes here were confirmed by independent assay subsequent to the 
microarray experiment to be differentially expressed in the knockout versus the control line. 

> pl ot ( f i t $coef [ , 2] , f i t $l ods[ , 2] , pch=16, cex=0. 1, x l ab=" Log Fol d Change" , y l ab=" Log 
Odds" , mai n=" KO vs Cont r ol " )  
> or d <-  or der ( f i t $l ods[ , 2] , decr easi ng=TRUE)  
> t op8 <-  or d[ 1: 8]  
> t ext ( f i t $coef [ t op8, 2] , f i t $l ods[ t op8, 2] ,  
l abel s=subst r i ng( genel i s t [ t op8, " NAME" ] , 1, 5) , cex=0. 8, col =" bl ue" )  
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8.3 Ecoli Lrp Data: Affymetrix Data with Two Targets 

The data are from experiments reported in Hung et al (2002) and are available from the www site  

  http://visitor.ics.uci.edu/genex/cybert/tutorial/index.html 

The data is also available from the ecoliLeucine data package available from the Bioconductor www 
site under "Experimental Data". Hung et al (2002) state that "The purpose of the work presented here is 
to identify the network of genes that are differentially regulated by the global E. coli regulatory protein, 
leucine-responsive regulatory protein (Lrp), during steady state growth in a glucose supplemented 
minimal salts medium. Lrp is a DNA-binding protein tath has been reported to affect the expression of 
approximately 55 genes."  Gene expression in two E. coli bacteria strains, labelled lrp+ and lrp-, were 
compared using eight Affymetrix ecoli chips, four chips each for lrp+ and lrp-. 

The following code assumes that the data files for the eight chips are in your current working directory. 
The E. coli CDF is also assumed to be available, either the Ecoli CDF data package from Bioconductor 
is installed or the file Ecoli.CDF is in your current working directory. 

> di r ( )  
[ 1]  " Ecol i . CDF"             " nol r p_1. CEL"           " nol r p_2. CEL"  
[ 4]  " nol r p_3. CEL"           " nol r p_4. CEL"           " wt _1. CEL"  
[ 7]  " wt _2. CEL"              " wt _3. CEL"              " wt _4. CEL"  

The data is read and normalized using the Bioconductor affy package. 

> l i br ar y( af f y)  
Wel come t o Bi oconduct or   
         Vi gnet t es cont ai n i nt r oduct or y mat er i al .   To v i ew,   
         s i mpl y t ype:  openVi gnet t e( )   
         For  det ai l s  on r eadi ng v i gnet t es,  see 
         t he openVi gnet t e hel p page.  
> Dat a <-  ReadAf f y( )  
> eset  <-  r ma( Dat a)  
Backgr ound cor r ect i ng 
Nor mal i z i ng 
Cal cul at i ng Expr essi on 
> pDat a( eset )  
            sampl e 
nol r p_1. CEL      1 
nol r p_2. CEL      2 
nol r p_3. CEL      3 
nol r p_4. CEL      4 
wt _1. CEL         5 
wt _2. CEL         6 
wt _3. CEL         7 
wt _4. CEL         8 

Now we consider differential expression between the lrp+ and lrp- strains. 

> st r ai n <-  c( " l r p- " , " l r p- " , " l r p- " , " l r p- " , " l r p+" , " l r p+" , " l r p+" , " l r p+" )  
> desi gn <-  model . mat r i x( ~f act or ( st r ai n) )  
> col names( desi gn)  <-  c( " l r p- " , " l r p+vs- " )  
> desi gn 
  l r p-  l r p+vs-  
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1    1       0 
2    1       0 
3    1       0 
4    1       0 
5    1       1 
6    1       1 
7    1       1 
8    1       1 
at t r ( , " assi gn" )  
[ 1]  0 1 
at t r ( , " cont r ast s" )  
at t r ( , " cont r ast s" ) $" f act or ( st r ai n) "  
[ 1]  " cont r . t r eat ment "  

The first coefficient measures log2-expression of each gene in the lrp- strain. The second coefficient 
measures the log2-fold change of lrp+ over lrp-, i.e., the log-fold change induced by lrp. 

> f i t  <-  l mFi t ( eset ,  desi gn)  
> f i t  <-  eBayes( f i t )  
> opt i ons( di gi t s=2)  
> t opTabl e( f i t ,  coef =2,  n=40,  adj ust =" f dr " )  
                         Pr obeSet I D     M    A     t  P. Val ue      B 
4282  I G_821_1300838_1300922_f wd_st  - 3. 32 12. 4 - 23. 1 5. 3e- 05  8. 017 
5365                  ser A_b2913_st   2. 78 12. 2  15. 8 6. 0e- 04  6. 603 
1389                  gl t D_b3213_st   3. 03 10. 9  13. 3 1. 6e- 03  5. 779 
4625                   l r p_b0889_st   2. 30  9. 3  11. 4 4. 0e- 03  4. 911 
1388                  gl t B_b3212_st   3. 24 10. 1  11. 1 4. 0e- 03  4. 766 
4609                  l i vK_b3458_st   2. 35  9. 9  10. 8 4. 0e- 03  4. 593 
4901                  oppB_b1244_st  - 2. 91 10. 7 - 10. 6 4. 0e- 03  4. 504 
4903                  oppD_b1246_st  - 1. 94 10. 4 - 10. 5 4. 0e- 03  4. 434 
5413                  sodA_b3908_st   1. 50 10. 3   9. 7 6. 5e- 03  3. 958 
4900                  oppA_b1243_st  - 2. 98 13. 0  - 9. 1 9. 2e- 03  3. 601 
5217                   r mf _b0953_st  - 2. 71 13. 6  - 9. 0 9. 3e- 03  3. 474 
7300                  y t f K_b4217_st  - 2. 64 11. 1  - 8. 9 9. 3e- 03  3. 437 
5007                  pnt A_b1603_st   1. 58 10. 1   8. 3 1. 4e- 02  3. 019 
4281  I G_820_1298469_1299205_f wd_st  - 2. 45 10. 7  - 8. 1 1. 6e- 02  2. 843 
4491                  i l v I _b0077_st   0. 95 10. 0   7. 4 2. 9e- 02  2. 226 
5448                  s t pA_b2669_st   1. 79 10. 0   7. 4 2. 9e- 02  2. 210 
611                        b2343_st  - 2. 12 10. 8  - 7. 1 3. 4e- 02  2. 028 
5930                  ybf A_b0699_st  - 0. 91 10. 5  - 7. 0 3. 5e- 02  1. 932 
1435                  gr xB_b1064_st  - 0. 91  9. 8  - 6. 9 3. 8e- 02  1. 810 
4634                  l ysU_b4129_st  - 3. 30  9. 3  - 6. 9 3. 9e- 02  1. 758 
4829                   ndk_b2518_st   1. 07 11. 1   6. 7 4. 3e- 02  1. 616 
2309 I G_1643_2642304_2642452_r ev_st   0. 83  9. 6   6. 7 4. 3e- 02  1. 570 
4902                  oppC_b1245_st  - 2. 15 10. 7  - 6. 3 5. 9e- 02  1. 238 
4490                  i l vH_b0078_st   1. 11  9. 9   5. 9 8. 8e- 02  0. 820 
1178                  f i mA_b4314_st   3. 40 11. 7   5. 9 8. 8e- 02  0. 743 
6224                  ydgR_b1634_st  - 2. 35  9. 8  - 5. 8 8. 8e- 02  0. 722 
4904                  oppF_b1247_st  - 1. 46  9. 9  - 5. 8 8. 8e- 02  0. 720 
792                        b3914_st  - 0. 77  9. 5  - 5. 7 1. 0e- 01  0. 565 
5008                  pnt B_b1602_st   1. 47 12. 8   5. 6 1. 0e- 01  0. 496 
4610                  l i vM_b3456_st   1. 04  8. 5   5. 5 1. 1e- 01  0. 376 
5097                  pt sG_b1101_st   1. 16 12. 2   5. 5 1. 1e- 01  0. 352 
4886                  nupC_b2393_st   0. 79  9. 6   5. 5 1. 1e- 01  0. 333 
4898                  ompT_b0565_st   2. 67 10. 5   5. 4 1. 2e- 01  0. 218 
5482                   t dh_b3616_st  - 1. 61 10. 5  - 5. 3 1. 3e- 01  0. 092 
1927       I G_13_14080_14167_f wd_st  - 0. 55  8. 4  - 5. 3 1. 3e- 01  0. 076 
6320                  yeeF_b2014_st   0. 88  9. 9   5. 3 1. 3e- 01  0. 065 
196                   at pG_b3733_st   0. 60 12. 5   5. 2 1. 4e- 01 - 0. 033 
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954                   cydB_b0734_st  - 0. 76 11. 0  - 5. 0 1. 8e- 01 - 0. 272 
1186                  f i mI _b4315_st   1. 15  8. 3   5. 0 1. 8e- 01 - 0. 298 
4013     I G_58_107475_107629_f wd_st  - 0. 49 10. 4  - 4. 9 2. 0e- 01 - 0. 407 

It is interesting to compare this table with Tables III and IV in Hung et al (2002). Note that the top-
ranked gene is an intergenic region (IG) tRNA gene. The knock-out gene itself is in position four. Many 
of the genes in the above table, including the ser, glt, liv, opp, lys, ilv and fim families, are known 
targets of lrp. Positive M-values mean that the gene is up-regulated in lrp+, negative values mean that it 
is repressed. 

8.4 Estrogen Data: A 2x2 Factorial Experiment with Affymetrix Arrays 

This data is from the estrogen package on Bioconductor. A subset of the data is also analysed in the 
factDesign package vignette. To repeat this case study you will need to have the R packages affy, 
estrogen and hgu95av2cdf installed. 

The data gives results from a 2x2 factorial experiment on MCF7 breast cancer cells using Affymetrix 
HGU95av2 arrays. The factors in this experiment were estrogen (present or absent) and length of 
exposure (10 or 48 hours). The aim of the study is the identify genes which respond to estrogen and to 
classify these into early and late responders. Genes which respond early are putative direct-target genes 
while those which respond late are probably downstream targets in the molecular pathway. 

First load the required packages: 

> l i br ar y( l i mma)  
> l i br ar y( af f y)  
Wel come t o Bi oconduct or   
         Vi gnet t es cont ai n i nt r oduct or y mat er i al .   To v i ew,   
         s i mpl y t ype:  openVi gnet t e( )   
         For  det ai l s  on r eadi ng v i gnet t es,  see 
         t he openVi gnet t e hel p page.  
> l i br ar y( hgu95av2cdf )  

The data files are contained in the 'data' directory of the estrogen package: 

> dat adi r  <-  f i l e. pat h( . f i nd. package( " est r ogen" ) , " dat a" )  
> di r ( dat adi r )  
 [ 1]  " 00I ndex"        " bad. cel "        " hi gh10- 1. cel "   " hi gh10- 2. cel "   " hi gh48- 1. cel "   
 [ 6]  " hi gh48- 2. cel "   " l ow10- 1. cel "    " l ow10- 2. cel "    " l ow48- 1. cel "    " l ow48- 2. cel "    
[ 11]  " phenoDat a. t xt "  

The target file is called phenoData.txt. We see there are two arrays for each experimental condition, 
giving a total of 8 arrays. 

> t ar get s <-  r eadTar get s( " phenoDat a. t xt " , pat h=dat adi r , sep=" " , r ow. names=" f i l ename" )  
> t ar get s 
             f i l ename est r ogen t i me. h 
l ow10- 1   l ow10- 1. cel    absent      10 
l ow10- 2   l ow10- 2. cel    absent      10 
hi gh10- 1 hi gh10- 1. cel   pr esent      10 
hi gh10- 2 hi gh10- 2. cel   pr esent      10 
l ow48- 1   l ow48- 1. cel    absent      48 
l ow48- 2   l ow48- 2. cel    absent      48 
hi gh48- 1 hi gh48- 1. cel   pr esent      48 
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hi gh48- 2 hi gh48- 2. cel   pr esent      48 

Now read the cel files into an AffyBatch object and normalize using the r ma( )  function from the affy 
package: 

> ab <-  ReadAf f y( f i l enames=f i l e. pat h( dat adi r , t ar get s$f i l ename) )  
> eset  <-  r ma( ab)  
Backgr ound cor r ect i ng 
Nor mal i z i ng 
Cal cul at i ng Expr essi on 

There are many ways to construct a design matrix for this experiment. Given that we are interested in 
the early and late estrogen responders, we can choose a parametrization which includes these two 
contrasts. 

> t r eat ment s <-  f act or ( c( 1, 1, 2, 2, 3, 3, 4, 4) , l abel s=c( " e10" , " E10" , " e48" , " E48" ) )  
> cont r ast s( t r eat ment s)  <-  cbi nd( Ti me=c( 0, 0, 1, 1) , E10=c( 0, 1, 0, 0) , E48=c( 0, 0, 0, 1) )  
> desi gn <-  model . mat r i x( ~t r eat ment s)  
> col names( desi gn)  <-  c( " I nt er cept " , " Ti me" , " E10" , " E48" )  

The second coefficient picks up the effect of time in the absence of estrogen. The third and fourth 
coefficients estimate the log2-fold change for estrogen at 10 hours and 48 hours respectively. 

> f i t  <-  l mFi t ( eset , desi gn)  

We are only interested in the estrogen effects, so we choose a contrast matrix which picks these two 
coefficients out: 

> cont . mat r i x  <-  cbi nd( E10=c( 0, 0, 1, 0) , E48=c( 0, 0, 0, 1) )  
> f i t 2 <-  cont r ast s. f i t ( f i t ,  cont . mat r i x)  
> f i t 2 <-  eBayes( f i t 2)  

We can examine which genes respond to estrogen at either time by computing moderated F-statistics on 
2 degrees of freedom: 

> F. st at  <-  FSt at ( f i t 2)  
> p. val ue <-  
pf ( F. st at , df 1=at t r ( F. st at , " df 1" ) , df 2=at t r ( F. st at , " df 2" ) , l ower . t ai l =FALSE)  

What p-value cutoff should be used? One guide is to examine control probe-clusters which are known 
not to be differentially expressed. We find that the smallest p-value amongst these is about 0.00007. A 
cutoff p-value of 0.00001, say, would be conservatively below this. 

> i  <-  gr ep( " AFFX" , geneNames( eset ) )  
> summar y( p. val ue[ i ] )  
     Mi n.    1st  Qu.     Medi an      Mean   3r d Qu.       Max.   
0. 0000695 0. 1023000 0. 2374000 0. 3480000 0. 5655000 0. 9888000  

Now we consider those genes with moderated F-statistics with p-values below 0.00001, and classify 
these according to whether they are significantly up or down regulated at the early or late times: 

> r esul t s <-  c l assi f yTest sF( f i t 2,  p. val ue=0. 00001)  
> vennDi agr am( r esul t s)  
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> t abl e( E10=r esul t s[ , 1] , E48=r esul t s[ , 2] )  
    E48 
E10  - 1    0     1     
  - 1    19    17     0 
  0     11 12450    17 
  1      0    53    58 

We see that 111 genes were up regulated at 10 hours, 58 of these still up at 48 hours. Also, 38 genes 
were down-regulated at 10 hours, 19 of these still down at 48 hours. 

t opTabl e gives a detailed look at individual genes: 

> t opTabl e( f i t 2, coef =" E10" , n=20)  
             I D         M         A         t       P. Val ue         B 
9735   39642_at   2. 939426  7. 876575  33. 53605 3. 263133e- 06 12. 882267 
12472    910_at   3. 113819  9. 660238  33. 36231 3. 408787e- 06 12. 857926 
1814   31798_at   2. 800171 12. 115770  23. 17554 7. 259227e- 05 10. 851057 
11509  41400_at   2. 380968 10. 041576  22. 94090 7. 903170e- 05 10. 787022 
10214  40117_at   2. 555276  9. 676543  22. 17506 1. 049435e- 04 10. 570530 
953     1854_at   2. 507612  8. 532131  21. 43709 1. 391853e- 04 10. 350484 
9848   39755_at   1. 679301 12. 131838  21. 30103 1. 467649e- 04 10. 308626 
922   1824_s_at   1. 914703  9. 238878  21. 04113 1. 625698e- 04 10. 227520 
140   1126_s_at   1. 782902  6. 880018  19. 55894 2. 986124e- 04  9. 734305 
580     1536_at   2. 662459  5. 937141  18. 75855 4. 224811e- 04  9. 444440 
12542    981_at   1. 818656  7. 781324  18. 50787 4. 723375e- 04  9. 349974 
3283   33252_at   1. 740210  8. 000383  17. 80210 6. 518589e- 04  9. 074028 
546     1505_at   2. 395901  8. 764730  17. 64897 7. 001317e- 04  9. 012134 
4405   34363_at  - 1. 747992  5. 553825 - 17. 24692 8. 470921e- 04  8. 846054 
985   1884_s_at   2. 799342  9. 034811  17. 04239 9. 347963e- 04  8. 759523 
6194   36134_at   2. 491428  8. 275763  16. 66637 1. 123814e- 03  8. 596722 
7557   37485_at   1. 607645  6. 672829  16. 10218 1. 492706e- 03  8. 343041 
1244     239_at   1. 569561 11. 249179  14. 71210 3. 133528e- 03  7. 665514 
8195   38116_at   2. 318462  9. 513126  14. 70398 3. 147486e- 03  7. 661319 
10634  40533_at   1. 256442  8. 466023  14. 64962 3. 244150e- 03  7. 633173 
> t opTabl e( f i t 2, coef =" E48" , n=20)  
             I D         M         A         t       P. Val ue         B 
12472    910_at   3. 855057  9. 660238  29. 20644 1. 044142e- 05 11. 605898 
1814   31798_at   3. 597260 12. 115770  21. 05243 1. 619209e- 04  9. 891525 
953     1854_at   3. 340938  8. 532131  20. 19570 2. 288594e- 04  9. 641554 
8195   38116_at   3. 758902  9. 513126  16. 85702 1. 024068e- 03  8. 480462 
8143   38065_at   2. 993559  9. 097207  16. 20839 1. 415357e- 03  8. 213990 
9848   39755_at   1. 765238 12. 131838  15. 83289 1. 716547e- 03  8. 052632 
642     1592_at   2. 296473  8. 311364  15. 78691 1. 757989e- 03  8. 032497 
11509  41400_at   2. 243529 10. 041576  15. 28528 2. 292179e- 03  7. 807410 
3766   33730_at  - 2. 041424  8. 573493 - 15. 14238 2. 475711e- 03  7. 741406 
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732     1651_at   2. 968250 10. 504291  14. 78105 3. 017689e- 03  7. 570639 
8495   38414_at   2. 016952  9. 461199  14. 58945 3. 357736e- 03  7. 477774 
1049    1943_at   2. 190196  7. 596590  14. 00517 4. 689295e- 03  7. 184233 
10214  40117_at   2. 276227  9. 676543  13. 96779 4. 792311e- 03  7. 164906 
10634  40533_at   1. 640311  8. 466023  13. 52368 6. 235641e- 03  6. 930002 
9735   39642_at   1. 614613  7. 876575  13. 02575 8. 457864e- 03  6. 654591 
4898   34851_at   1. 957261  9. 961115  12. 84558 9. 468549e- 03  6. 551650 
922   1824_s_at   1. 641325  9. 238878  12. 75402 1. 003273e- 02  6. 498648 
6053   35995_at   2. 755543  8. 871992  12. 68295 1. 049631e- 02  6. 457180 
12455    893_at   1. 540632 10. 954033  12. 66353 1. 062647e- 02  6. 445800 
10175  40079_at  - 2. 414135  8. 230565 - 12. 62725 1. 087526e- 02  6. 424480 

8.5 Weaver Mutant Data: A 2x2 Factorial Experiment with Two-Color Data 

This case study considers a more involved analysis in which the sources of RNA have a factorial 
structure. In this example we assume that data is available as an RGLi st . 

Background. This is a case study examining the development of certain neurons in wild-type and 
weaver mutant mice from Diaz et al (2002). The weaver mutant affects cerebellar granule neurons, the 
most numerous cell-type in the central nervous system. Weaver mutant mice are characterized by a 
weaving gait. Granule cells are generated in the first postnatal week in the external granule layer of the 
cerebellum. In normal mice, the terminally differentiated granule cells migrate to the internal granule 
layer but in mutant mice the cells die before doing so, meaning that the mutant mice have strongly 
reduced numbers of cells in the internal granule layer. The expression level of any gene which is 
specific to mature granule cells, or is expressed in response to granule cell derived signals, is greatly 
reduced in the mutant mice. 

Tissue dissection and RNA preparation. At each time point (P11 = 11 days postnatal and P21 = 21 
days postnatal) cerebella were isolated from two wild-type and two mutant littermates and pooled for 
RNA isolation. RNA was then divided into aliquots and labelled before hybridizing to the arrays. (This 
means that different hybridizations are biologically related through using RNA from the same mice, 
although we will ignore this here. See Yang and Speed (2002) for a detailed discussion of this issue in 
the context of this experiment.) 

Hybridizations. We have just four arrays each comparing two out of the four treatment combinations 
of time (11 days or 21 days) by genotype (wild-type or mutant). This has the structure of a 2x2 factorial 
experiment. 

> obj ect s( )  
[ 1]  " desi gnI A"  " desi gnMt "  " gal "  " l ayout "  " RG"  " Tar get s"   
> Tar get s 
   Fi l eName        Name   Cy5   Cy3 
1 cb. 1. spot  P11WT. P11MT P11WT P11MT 
2 cb. 2. spot  P11MT. P21MT P11MT P21MT 
3 cb. 3. spot  P21MT. P21WT P21MT P21WT 
4 cb. 4. spot  P21WT. P11WT P21WT P11WT 
> MA <-  nor mal i zeWi t hi nAr r ays( RG, l ayout )  
> boxpl ot ( MA$M~col ( MA$M) , names=Tar get s$Name)  
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First we consider a classical interaction parametrization. 

> desi gnI A 
            Ti meWt  Mut ant 11 I / A 
P11WT. P11MT      0       - 1   0 
P11MT. P21MT     - 1        0  - 1 
P21MT. P21WT      0        1   1 
P21WT. P11WT      1        0   0 

TimeWt is late vs early time for the wild-type mice. Mutant11 is mutant vs wild-type at the early time. 
The third column estimates the interaction between time and genotype. 

> f i t I A <-  l mFi t ( MA, desi gnI A)  
> ebI A <-  ebayes( f i t I A)  
> opt i ons( di gi t s=3)  
> t opt abl e( coef =" I / A" , n=10, genel i s t =gal , f i t =f i t I A, eb=ebI A, adj ust =" f dr " )  
           I D            Name    M     t  P. Val ue     B 
7737    RI KEN           Z6801 6. 49 12. 95   0. 886 - 4. 03 
780     RI KEN            Z636 6. 57 12. 67   0. 886 - 4. 03 
4063    RI KEN           Z3559 6. 41 12. 37   0. 886 - 4. 03 
3627  Cont r ol               L1 6. 08 11. 89   0. 886 - 4. 03 
3084    RI KEN           Z2652 4. 88  9. 38   1. 000 - 4. 04 
16230 Cont r ol   T7/ SP6 7-  Vr g2 6. 00  9. 12   1. 000 - 4. 05 
12537   RI KEN          Z11025 5. 03  9. 03   1. 000 - 4. 05 
2866    RI KEN           Z2506 4. 19  8. 46   1. 000 - 4. 05 
11430 Cont r ol  T7/ SP6 5-  msx 1 3. 31  6. 40   1. 000 - 4. 08 
15590   RI KEN          Z13718 3. 17  5. 88   1. 000 - 4. 10 

With only four arrays there is only one residual df for the linear model, so even large M-values and t-
statistics are not significant after adjusting for multiple testing. There are differentially expressed genes 
here, although it is difficult to confirm it from the four arrays that we are using for this exercise. 

Consider another parametrization. 

> desi gnMt  
            Mut ant 11 Mut ant 21 Ti meMt  
P11WT. P11MT       - 1        0      0 
P11MT. P21MT        0        0     - 1 
P21MT. P21WT        0        1      0 
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P21WT. P11WT        1       - 1      1 

Here Mutant21 is mutant vs wild-type at the later time and TimeMt is late vs early time for the mutant 
mice. 

> f i t Mt  <-  l m. ser i es( MA$M, desi gnMt )  
> ebMt  <-  ebayes( f i t Mt )  
> pl ot ( f i t Mt $coef [ , " Mut ant 11" ] , f i t Mt $coef [ , " Mut ant 21" ] , pch=16, cex=0. 1,  
x l ab=" Mut ant 11" , y l ab=" Mut ant 21" )  
> sel  <-  abs( ebMt $t [ , " Mut ant 11" ] ) >4 |  abs( ebMt $t [ , " Mut ant 21" ] ) >4 
> poi nt s( f i t Mt $coef [ sel , " Mut ant 11" ] , f i t Mt $coef [ sel , " Mut ant 21" ] , col =" bl ue" )  

 

This scatterplot allows the genes to be visually clustered according to whether they are differentially 
expressed in the mutant at the two times. 

We will now collate the results of the two fits. 

> f i t  <-  f i t I A 
> f i t $coef f i c i ent s <-  cbi nd( f i t Mt $coef , f i t I A$coef )  
> f i t $coef f i c i ent s <-  f i t $coef [ , c( 1, 2, 4, 3, 6) ]  
> f i t $coef [ 1: 5, ]  
     Mut ant 11 Mut ant 21  Ti meWt  Ti meMt     I / A 
[ 1, ]   - 0. 5396   0. 1670  1. 3362  2. 043 0. 7066 
[ 2, ]    0. 2481   0. 8601 - 0. 9112 - 0. 299 0. 6120 
[ 3, ]   - 1. 1368  - 0. 5642 - 0. 0119  0. 561 0. 5726 
[ 4, ]   - 1. 0166  - 0. 5837  0. 0837  0. 517 0. 4329 
[ 5, ]    0. 0135   0. 0614  0. 3701  0. 418 0. 0479 
> f i t $st dev. unscal ed <-  cbi nd( f i t Mt $st d, f i t I A$st d)  
> f i t $st dev. unscal ed <-  f i t $st d[ , c( 1, 2, 4, 3, 6) ]  
> f i t $st d[ 1: 5, ]  
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     Mut ant 11 Mut ant 21 Ti meWt  Ti meMt  I / A 
[ 1, ]     0. 866    0. 866  0. 866  0. 866   1 
[ 2, ]     0. 866    0. 866  0. 866  0. 866   1 
[ 3, ]     0. 866    0. 866  0. 866  0. 866   1 
[ 4, ]     0. 866    0. 866  0. 866  0. 866   1 
[ 5, ]     0. 866    0. 866  0. 866  0. 866   1 
> eb <-  ebayes( f i t )  
> heat di agr am( abs( eb$t ) , f i t $coef , " Mut ant 21" , names=gal $Name)  

 

This heat diagram shows the expression profiles for all genes judged to be differentially expressed (|t| > 
4) with respect to Mutant21. The genes are sorted from left to right in terms of their coefficients for 
Mutant21, with red meaning up-regulation and green meaning down-regulation. It is especially 
interesting to see that genes which are up-regulated (red) in the mutant at 21 days are those which have 
decreasing expression in the wild-type over time, and those which are down-regulated (green) in the 
mutant are those which increase over time in the wild-type. The mutant is not participating in normal 
development between 11 and 21 days in respect of these genes. 

9. Within-Array Replicate Spots 

In this section we consider a case study in which all genes (ESTs and controls) are printed more than 
once on the array. This means that there is both within-array and between-array replication for each 
gene. The structure of the experiment is therefore essentially a randomized block experiment for each 
gene. The approach taken here is to estimate a common correlation for all the genes for between within-
array duplicates. The theory behind the approach is explained in Smyth, Michaud and Scott (2003). This 
approach assumes that all genes are replicated the same number of times on the array and that the 
spacing between the replicates is entirely regular. 

Example. Bob Mutant Data 

In this example we assume that the data is available as an RG list. 

Background. This data is from a study of transcription factors critical to B cell maturation by Lynn 
Corcoran and Wendy Dietrich at the WEHI. Mice which have a targeted mutation in the Bob (OBF-1) 
transcription factor display a number of abnormalities in the B lymphocyte compartment of the immune 
system. Immature B cells that have emigrated from the bone marrow fail to differentiate into full 
fledged B cells, resulting in a notable deficit of mature B cells. 
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Arrays. Arrays were printed with expressed sequence tags (ESTs) from the National Institute of Aging 
15k mouse clone library, plus a range of positive, negative and calibration controls. The arrays were 
printed using a 48 tip print head and 26x26 spots in each tip group. Data from 24 of the tip groups are 
given here. Every gene (ESTs and controls) was printed twice on each array. 

Hybridizations. A retrovirus was used to add Bob back to a Bob deficient cell line. Two RNA sources 
were compared using 2 dye-swap pairs of microarrays. One RNA source was obtained from the Bob 
deficient cell line after the retrovirus was used to add GFP ("green fluorescent protein", a neutral 
protein). The other RNA source was obtained after adding both GFP and Bob protein. RNA from 
Bob+GFP was labelled with Cy5 in arrays 2 and 4, and with Cy3 in arrays 1 and 4. 

> obj ect s( )  
[ 1]  " desi gn"  " gal "     " l ayout "  " RG"      
> desi gn 
[ 1]  - 1  1 - 1  1 
> gal [ 1: 40, ]  
   Li br ar y            Name 
1  Cont r ol        cDNA1. 500 
2  Cont r ol        cDNA1. 500 
3  Cont r ol  Pr i nt i ng. buf f er  
4  Cont r ol  Pr i nt i ng. buf f er  
5  Cont r ol  Pr i nt i ng. buf f er  
6  Cont r ol  Pr i nt i ng. buf f er  
7  Cont r ol  Pr i nt i ng. buf f er  
8  Cont r ol  Pr i nt i ng. buf f er  
9  Cont r ol        cDNA1. 500 
10 Cont r ol        cDNA1. 500 
11 Cont r ol  Pr i nt i ng. buf f er  
12 Cont r ol  Pr i nt i ng. buf f er  
13 Cont r ol  Pr i nt i ng. buf f er  
14 Cont r ol  Pr i nt i ng. buf f er  
15 Cont r ol  Pr i nt i ng. buf f er  
16 Cont r ol  Pr i nt i ng. buf f er  
17 Cont r ol        cDNA1. 500 
18 Cont r ol        cDNA1. 500 
19 Cont r ol  Pr i nt i ng. buf f er  
20 Cont r ol  Pr i nt i ng. buf f er  
21 Cont r ol  Pr i nt i ng. buf f er  
22 Cont r ol  Pr i nt i ng. buf f er  
23 Cont r ol  Pr i nt i ng. buf f er  
24 Cont r ol  Pr i nt i ng. buf f er  
25 Cont r ol        cDNA1. 500 
26 Cont r ol        cDNA1. 500 
27  NI A15k             H31 
28  NI A15k             H31 
29  NI A15k             H32 
30  NI A15k             H32 
31  NI A15k             H33 
32  NI A15k             H33 
33  NI A15k             H34 
34  NI A15k             H34 
35  NI A15k             H35 
36  NI A15k             H35 
37  NI A15k             H36 
38  NI A15k             H36 
39  NI A15k             H37 
40  NI A15k             H37 



 40 

Although there are only four arrays, we have a total of eight spots for each gene, and more for the 
controls. Naturally the two M-values obtained from duplicate spots on the same array are highly 
correlated. The problem is how to make use of the duplicate spots in the best way. The approach taken 
here is to estimate the spatial correlation between the adjacent spots using REML and then to conduct 
the usual analysis of the arrays using generalized least squares. 

First normalize the data using print-tip loess regression. 

> MA <-  nor mal i zeWi t hi nAr r ays( RG, l ayout )  

Now estimate the spatial correlation. We estimate a correlation term by REML for each gene, and then 
take a trimmed mean on the atanh scale to estimate the overall correlation. This command takes a lot of 
time, perhaps as much as an hour for a series of arrays. 

> cor  <-  dupl i cat eCor r el at i on( MA, desi gn, ndups=2)  # Thi s i s  a s l ow comput at i on!  
> cor $consensus. cor r el at i on 
[ 1]  0. 571377 
> boxpl ot ( cor $al l . cor r el at i ons)  

 

> f i t  <-  l mFi t ( MA, desi gn, ndups=2, cor r el at i on=0. 571377)  
> f i t  <-  eBayes( f i t )  
> t opTabl e( f i t , n=30, adj ust =" f dr " )  
     Name          M          t       P. Val ue        B 
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1  H34599  0. 4035865  13. 053838 0. 0004860773 7. 995550 
2  H31324 - 0. 5196599 - 12. 302094 0. 0004860773 7. 499712 
3  H33309  0. 4203320  12. 089742 0. 0004860773 7. 352862 
4   H3440  0. 5678168  11. 664229 0. 0004860773 7. 049065 
5  H36795  0. 4600335  11. 608550 0. 0004860773 7. 008343 
6   H3121  0. 4408640  11. 362917 0. 0004860773 6. 825927 
7  H36999  0. 3806754  11. 276571 0. 0004860773 6. 760715 
8   H3132  0. 3699805  11. 270201 0. 0004860773 6. 755881 
9  H32838  1. 6404839  11. 213454 0. 0004860773 6. 712681 
10 H36207 - 0. 3930972 - 11. 139510 0. 0004860773 6. 656013 
11 H37168  0. 3909476  10. 839880 0. 0005405097 6. 421932 
12 H31831 - 0. 3738452 - 10. 706775 0. 0005405097 6. 315602 
13 H32014  0. 3630416  10. 574797 0. 0005405097 6. 208714 
14 H34471 - 0. 3532587 - 10. 496483 0. 0005405097 6. 144590 
15 H37558  0. 5319192  10. 493157 0. 0005405097 6. 141856 
16  H3126  0. 3849980  10. 467091 0. 0005405097 6. 120389 
17 H34360 - 0. 3409371 - 10. 308779 0. 0005852911 5. 988745 
18 H36794  0. 4716704  10. 145670 0. 0006399135 5. 850807 
19  H3329  0. 4125222  10. 009042 0. 0006660758 5. 733424 
20 H35017  0. 4337911   9. 935639 0. 0006660758 5. 669656 
21 H32367  0. 4092668   9. 765338 0. 0006660758 5. 519781 
22 H32678  0. 4608290   9. 763809 0. 0006660758 5. 518423 
23 H31232 - 0. 3717084  - 9. 758581 0. 0006660758 5. 513778 
24  H3111  0. 3693533   9. 745794 0. 0006660758 5. 502407 
25 H34258  0. 2991668   9. 722656 0. 0006660758 5. 481790 
26 H32159  0. 4183633   9. 702614 0. 0006660758 5. 463892 
27 H33192 - 0. 4095032  - 9. 590227 0. 0007130533 5. 362809 
28 H35961 - 0. 3624470  - 9. 508868 0. 0007205823 5. 288871 
29 H36025  0. 4265827   9. 503974 0. 0007205823 5. 284403 
30  H3416  0. 3401763   9. 316136 0. 0008096722 5. 111117 
> pl ot ( f i t $coef , eb$l ods, x l ab=" Log2 Fol d Change" , y l ab=" Log Odds" , pch=16, cex=0. 1)  

 

10. Using limma with the marray Packages 
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The packages marrayClasses, marrayInput, marrayNorm and marrayTools are designed to read and 
normalize cDNA data. The marrayNorm package provides some normalization methods which are not 
provided by limma. Data input using the marray packages produces a data object of class mar r ayRaw. 
Normalization using marrayNorm will produce a data object of class mar r ayNor m. Suppose that you 
have an mar r ayNor m object called Dat a. 

The mar r ayNor m data object may be used directly in the l mFi t  function in limma, for example 

> f i t  <-  l mFi t ( Dat a,  desi gn)  

after which one proceeds exactly as in previous sections.  

Alternatively, you may convert marray data objects to limma data objects using the convert package. 
mar r ayRaw objects may be converted to RGLi st  objects and mar r ayNor m objects to MALi st  objects: 

> l i br ar y( conver t )  
> MA <-  as( Dat a,  " MALi st " )  

11. Single-Channel Normalization for Two-Color Arrays 

We provide a short background on the topic of single-channel normalization for two color arrays. 
Throughout this section the ApoAI data set will be used to demonstrate single-channel normalization. 

Load the ApoAI data and perform background correction on the RGLi st  data object: 

> l oad( " ApoAI . RDat a" )  
> RG. b <- backgr oundCor r ect ( RG, met hod=" mi ni mum" )  

cDNA (or oligo) microarrays compare the gene expression between two different sources of RNA for 
thousands of genes simultaneously. In general, the log-ratio of spot intensities for the red and green 
channels form the primary data used for downstream analysis. Thus traditional normalization methods, 
which remove systematic variation in microarray data, focus on adjusting the log-ratios within each 
slide. However sometimes it is desirable to work with single-channel (log-intensity) data rather than the 
log-ratios and so new techniques for normalizing such single-channel data have been investigated. In 
the current literature there has been limited attention given to single-channel normalization despite 
many groups basing their entire analyses on single channel data. Single- channel data display a higher 
level of systematic variation than that observed in log-ratio data. 

For example below are i magepl ot s  of the log-intensity single-channels and the log-ratio for a single 
array from the ApoAI data set. (The i magepl ot s  below are based on non-normalised background 
corrected data). Clearly some of the systematic spatial variation is cancelled out by forming the log-
ratio. This is just a simple demonstration of how M-values are less noisy than single-channels.  

> i magepl ot ( l og( RG. b$R[ , 4] , 2) ,  l ayout ,  l ow=" whi t e" ,  hi gh=" r ed" )   
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> i magepl ot ( l og( RG. b$G[ , 4] , 2) ,  l ayout ,  l ow=" whi t e" ,  hi gh=" gr een" )   
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> i magepl ot ( l og( MA. n$M[ , 4] , 2) ,  l ayout ,  l ow=" whi t e" ,  hi gh=" bl ue" )   

 

It should be noted that analysing log-ratios corresponds to doing all analysis on the basis of within-array 
contrasts while the single-channel approach gives the possibility of recovering information from the 
between-array variation. This should only be considered after careful single- channel normalization to 
remove uncontrolled systematic effects at the array level. Yang and Thorne (2003) provides an outline 
of the motivations for performing single-channel (log-intensity) analysis. We currently perform single-
channel normalization using a quantile method based on Bolstad et al.'s quantile normalization of high 
density oligonucleotide data). In the following we demonstrate within-slide and between-slide single-
channel normalization routines. We use the ApoAI data set to illustrate the methods. 

We perform the normalization of single-channel data using methods in the nor mal i zeWi t hi nAr r ays  
and nor mal i zeBet weenAr r ays  functions.  

Note that RG. b contains unlogged single-channel intensities and nor mal i zeWi t hi nAr r ays expects its 
input RGl i st  to be unlogged. There is an argument l og. t r ansf or m=F which needs to be implemented 
if the RGl i st  supplied is already logged. The following command creates an MALi st  containing non-
normalized background corrected values. 

> MA. n <- nor mal i zeWi t hi nAr r ays( RG. b, l ayout , met hod=" n" )  

Next we normalize the M-values via the default within array normalization of pr i nt t i pl oess (we 
could have use the method l oess instead, but we find that pr i nt t i pl oess is often a good choice 
since it acts as a proxy for spatial normalization of the Mvalues. 

> MA. p <- nor mal i zeWi t hi nAr r ays( RG. b, l ayout )  

At any stage we can recover the RGLi st  of normalized single-channels using RG. MA. RG. MA( MA. p)  
would give us within-array only normalized single-channels. Next we perform between array 
normalization of the single-channels. We use the function nor mal i zeBet weenAr r ays  which takes and 
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returns an MALi st . nor mal i zeBet weenAr r ays forms an RG matrix when implementing the quant i l e 
normalization method on the single-channels; and although it returns an MALi st  the single-channel 
normalised values can be obtained by using the function RG. MA. We show how to implement the 
following between array normalization methods respectively, quantile normalization between all single-
channels only (q); quantile normalization after printtiploess normalization within arrays (pq); quantile 
normalization between the arrays on the Aq values which is then combined with the within array 
printtiploess normalization Mp to give MpAq . Notice that for MpAq we have mixed and matched 
different within and between array normlizations to create a simultaneous within and between array 
single-channel normalization method. 

> MA. q <-  nor mal i zeBet weenAr r ays( MA. n,  met hod=" quant i l e" )   
> MA. pq <-  nor mal i zeBet weenAr r ays( MA. p,  met hod=" quant i l e" )   
> MA. Aq <-  nor mal i zeBet weenAr r ays( MA. n,  met hod=" Aquant i l e" )   
> MA. MpAq <-  new( " MALi st " ,  l i s t ( M=MA. p$M,  A=MA. Aq$A) )  

We find that pq and MpAq work quite well. Next we show some plots of the single-channel log-
intensity densities which illustrate the results of the different single-channel normalization methods. We 
use the function pl ot Densi t i es  which will take either an RGLi st  or an MALi st  . The form of the call 
is: pl ot Densi t i es( obj ect ,  l og. t r ansf or m = FALSE,  ar r ays = NULL,  s i ngl echannel s = 

NULL,  gr oups = NULL,  col  = NULL) . The default usage of pl ot Densi t i es  results in red/green 
coloring of the densities. 

Without any background correction there is a significant difference between the red and green single-
channel intensity distributions: 

 > pl ot Densi t i es( RG,  l og. t r ansf or m=TRUE)  

 

> pl ot Densi t i es( RG. b,  l og. t r ansf or m=TRUE)  
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> pl ot Densi t i es( MA. n)  

 

Pr i nt t i pl oess  makes the single-channels within arrays similar: 
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> pl ot Densi t i es( MA. p)  

 

All the single-channels have the same distribution.  

> pl ot Densi t i es( MA. q,  col =" bl ack" )  

 

> pl ot Densi t i es( MA. pq,  col =" bl ack" )  
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MpAq gives very similar results as pq. 

> pl ot Densi t i es( MA. MpAq)  
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Conventions 

Where possible, limma tries to use the convention that class names are in upper CamelCase, i.e., the 
first letter of each word is capitalized, while function names are in lower camelCase, i.e., first word is 
lowercase. When periods appear in function names, the first word should be an action while the second 
word is the name of a type of object on which the function acts. 
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