
HowTo: get pretty HTML output for my gene list

R. Gentleman

May 2, 2004

1 Overview

This document demonstrates how you can get a nice–ish annotated html (web–
page) output for the genes or probes that you have selected. To do this you will
need both the Biobase and annotate packages. You will also need to obtain an-
notation data for the experiment itself. In the example here the data come from
Affymetrix U95A chips and that annotation is supplied by the Bioconductor
Project.

First we load the annotate package (this will automatically load Biobase as
well) and then obtain our test data. We have arbitrarily selected 15 genes of
interest, you will have obtained your list in some meaningful way!

> library("annotate")

> library("hgu95av2")

> data(eset)

> igenes <- geneNames(eset)[245:260]

> igenes

[1] "31484_at" "31485_at" "31486_s_at" "31487_at" "31488_s_at"
[6] "31489_at" "31490_at" "31491_s_at" "31492_at" "31493_s_at"
[11] "31494_at" "31495_at" "31496_g_at" "31497_at" "31498_f_at"
[16] "31499_s_at"

Now, given this set of genes (or Affymetrix identifiers) we would like to
provide some meaningful output.

The example data in eset has three (made–up) covariates.

> eset

Expression Set (exprSet) with
500 genes
26 samples

phenoData object with 3 variables and 26 cases
varLabels

cov1: Covariate 1; 2 levels
cov2: Covariate 2; 2 levels
cov3: Covariate 3; 3 levels

1

We will use cov2. The function esApply takes an exprSet and applies a function
to it. So, suppose we are interested in differences in the mean expression for
these genes, between the two groups defined by cov2. We can obtain the t–tests
by using esApply First, we make up an function that can be used by esApply
to do what we want1.

> mytt <- function(y) {

+ ys <- split(y, cov2)

+ t.test(ys[[1]], ys[[2]])

+ }

> ttout <- esApply(eset[245:260,], 1, mytt)

> length(ttout)

[1] 16

> ttout[1]

$"31484_at"

Welch Two Sample t-test

data: ys[[1]] and ys[[2]]
t = -0.4822, df = 18.601, p-value = 0.6353
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-43.19992 27.04101
sample estimates:
mean of x mean of y
145.8687 153.9482

> igenes.pvals <- sapply(ttout, function(x) x$p.value)

> igenes.pvals

31484_at 31485_at 31486_s_at 31487_at 31488_s_at 31489_at 31490_at
0.6352895 0.8922614 0.4468717 0.3111451 0.8643903 0.8732372 0.7667428
31491_s_at 31492_at 31493_s_at 31494_at 31495_at 31496_g_at 31497_at
0.6059114 0.7363639 0.8204156 0.7730418 0.7143153 0.4551546 0.3538565
31498_f_at 31499_s_at
0.4399743 0.4475066

> igenes.gp1mean <- sapply(ttout, function(x) x$estimate[1])

> igenes.gp2mean <- sapply(ttout, function(x) x$estimate[2])

And we see that ttout contains the output for the t–tests for the 16 genes.
Notice that none of the p–values or test statistics are unusual – that is because

1See the esApply man pages and HOWTO’s for more details on this function

2

we simply choose genes at random. You should see small p–values and large test
statistics (we hope).

Now, to assemble our web page we need to get the annotation data and
to then associate the annotation with the t–test results. We first obtain gene
symbol and the LocusLink identifier data by loading the appropriate environ-
ments using data. We extract the data from the environment using either get
or multiget.

> igenes.ll <- getLL(igenes, "hgu95av2")

> igenes.sym <- getSYMBOL(igenes, "hgu95av2")

And now we are ready to wrap this all up using ll.htmlpage. This function
takes the LocusLink identifiers and wraps them in an HTML anchor that is
linked to the appropriate LocusLink web page.

> ll.htmlpage(igenes.ll, "HOWTO.igenes", "Genes seleced in an arbitrary way",

+ list(igenes.sym, igenes, round(igenes.gp1mean, 3), round(igenes.gp2mean,

+ 3), round(igenes.pvals, 3)))

And you can load this page up in your favorite browser. The genes are clickable.
An NA in the output for LocusLink represents a gene or EST that we have not
yet successfully mapped to a LocusLink identifier.

3

	Overview

