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1 Introduction

This document describes local pooled error (LPE) test for identifying signif-
icant differentially expressed genes in microarray experiments. Local pooled
error test is especially useful when the number of replicates is low (2-3). LPE
estimation is based on pooling errors within genes and between replicate ar-
rays for genes in which expression values are similar. This is motivated by
the observation that errors between duplicates vary as a function of the av-
erage gene expression intensity and by the fact that many gene expression
studies are implemented with a limited number of replicated arrays (Chen et
al., 1997; Lee, 2002).

Step by step analysis is presented in Section [2| using data from a 6-chip
oligonucleotide microarray study of a mouse immune response study.

Details of methodology and application of Local Pooled Error (LPE) test
can be found at:
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Jain et. al. (2003) Local pooled error test for identifying differentially ex-
pressed genes with a small number of replicated microarrays, Bioinformatics,
19, 1945-1951.

2 Mouse Immune Response Study dataset
Load the library

> library(LPE)

> data(Ley)

> dim(Ley)

[1] 12488 7

> Ley[1:3,]

ID cl c2 c3 t1 t2 t3
1 AFFX-MurIl2_at 16.0 14.1 19.3 2782.7 2861.3 2540.2
2 AFFX-MurIL10_at 22.7 6.9 28.2 18.6 12.7 7.5
3 AFFX-MurIl4_at 33.9 17.1 23.9 24.9 256.2 24.9

\4

Ley[,2:7] <- preprocess(Ley[,2:7], data.type = "MAS5")

\2

Ley[1:3,]
ID cl c2 c3 t1 t2

W N -

AFFX-MurIL4_at 5.141769 4.095924 4.591015 4.670059 4.709151

Mouse immune response study was conducted by Dr. Klaus Ley, Uni-
veristy of Virginia. Three replicates of Affymetrix oligonucleotide chips per
condition were used. Based on M vs A sctater plot matrix, IQR normaliza-
tion was performed, so that interquartile ranges on all chips are set to their
widest range. It is performed by multiplying by a scaling factor. Note that
this is a simple constant-scale & location normalization step. Finally log

t3

AFFX-MurIL2_at 4.058556 3.817623 4.282605 11.474255 11.536254 11.340841
AFFX-MurIL10_at 4.563176 2.786596 4.829699 4.249216 3.720556 2.937006
4.668189


http://hsc.Virginia.EDU/medicine/basic-sci/biomed/ley/
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based 2 transformation was done. Replcates of Naive condition are named
as cl, ¢2, ¢3 and those of Actiavted condition are named as t1, t2 and t3
respectively.

Remove the control spots

> Ley <- Ley[substring(Ley$ID,1,4) !="AFFX",]
> dim(Ley)
[1] 12422 7
> Ley[1:3,]
ID cl c2 c3 t1 t2 t3
67  92539_at 11.999273 12.151683 12.292905 12.08051 12.180762 11.936893

68 92540_f_at 8.948516 9.003377 8.642889 11.38866 11.429816 11.370188
69 92541 _at 6.242440 6.078951 6.101659 5.18579 5.313072 5.937006

Calculate the baseline error distribution of Naive contdition, which returns a
dataframe of A vs M for selected number of bins (= 1/q), where q = quantile.

> var.Naive <- baseOlig.error(Ley[,2:4],9=0.01)
> dim(var.Naive)
[1] 100 2
> var.Naive[1:3,]
A var.M
[1,] 0.8360439 1.107993

[2,] 1.4865603 1.069400
[3,] 1.8709628 1.035059
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Similarly calculate the base-line distribution of Activated condition:

> var.Activated <- baseOlig.error(Ley[,5:7], 9=0.01)
> dim(var.Activated)

[1] 100 2

> var.Activated[1:3,]

A var.M
[1,] 0.2528533 0.9453008
[2,] 0.8687306 0.9474678
[3,] 1.2006186 0.9876654

Calculate the lpe variance estimates as described above. The function Ipe
takes the first two arguments as the replicated data, next two arguments as
the baseline distribution of the replicates calculated from the baseOlig.error
function, Gene IDs as probe.set.name. Adjustment for multiple comparison
is applied using Bioconductor’s multtest package (Dudoit et. al.)

> lpe.val <- data.frame(lpe(Ley[,5:7], Ley[,2:4], var.Activated, var.Naive,
probe.set.name=Ley$ID))

> lpe.val <- round(lpe.val, digits=2)
> dim (1lpe.val)
[1]1 12422 13
> lpe.val[1:3,]
x.tl x.t2 x.t3 median.l std.dev.l y.cl y.c2 y.c3 median.2
92639_at  12.08 12.18 11.94 12.08 0.12 12.00 12.15 12.29 12.15

92540_f_at 11.39 11.43 11.37 11.39 0.14 8.95 9.00 8.64 8.95
92541 _at 5.19 5.31 5.94 5.31 0.56 6.24 6.08 6.10 6.10
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std.dev.2 median.diff pooled.std.dev z.stats

92539_at 0.22 -0.07 0.18 -0.40
92540_f_at 0.23 2.44 0.20 12.50
92541 _at 0.51 -0.79 0.55 -1.44

Doing FDR correction

> fdr.BH <- fdr.adjust(lpe.val, adjp="BH")
> dim(fdr.BH)

[1] 12422 16

> fdr.BH[1, ]

x.x.tl x.x.t2 x.x.t3 median.1 std.dev.l y.y.cl y.y.c2 y.y.c3 median.2

92539_at 12.08 12.18 11.94 12.08 0.12 12 12.15 12.29 12.15
std.dev.2 median.diff pooled.std.dev abs.z.stats p.adj.adjp.rawp

92539_at 0.22 -0.07 0.18 0.4 0.6973583
p.-adj.adjp.BH p.adj.index

92539_at 0.812549 2

Resampling based FDR adjustment takes a while to run, and returns the
critical z-values and corresponding FDR.

> fdr.2 <- fdr.adjust(lpe.val, adjp="resamp", iterations=2)

iteration number 1 is in progress
iteration number 1 finished
iteration number 2 is in progress
iteration number 2 finished
Computing FDR...
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> fdr.2

target.fdr z.critical

[1,] 0.001 4.2589217
[2,] 0.010 2.9612657
(3,] 0.020 2.5032199
[4,] 0.030 2.2778116
(5,] 0.040 2.0959562
[6,] 0.050 1.9955792
(7,1 0.060 1.8833591
[8,] 0.070 1.7896138
[9,] 0.080 1.7184356
[10,] 0.090 1.6488528
[11,] 0.100 1.5894605
[12,] 0.150 1.3653030
[13,] 0.200 1.2058491
[14,] 0.500 0.6876795

Note that above table may differ slightly due to generation of 'NULL dis-
tribution’ by resampling. For each target.fdr, we can note critical z-value,
above which all genes are considered significant.

3 Discussion

Using our LPE approach, the sensitivity of detecting subtle expression changes
can be dramatically increased and differential gene expression patterns can be
identified with both small false-positive and small false-negative error rates.
This is because, in contrast to the individual gene’s error variance, the local
pooled error variance can be estimated very accurately.
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http://hesweb1.med.virginia.edu/bioinformatics
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