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Introduction

vsn is a method to preprocess DNA microarray intensity data. As input, the function vsn takes
the raw intensity measurements from the DNA probes on a series of microarrays. The intensities
from each array are calibrated by a suitable affine transformation, then transformed by a variance-
stabilizing transformation. After this, systematic array- or dye-biases should be removed, and the
variance should be approximately independent of the mean intensity. This is useful for subsequent
analyses such as hypothesis tests, ANOVA modeling, clustering, or classification that assume that
the variance is the same for all observations'. Differences between the transformed values are the so-
called "generalized log-ratios”. If both numerator and denominator are well above background, gen-
eralized log-ratios coincide with the usual log-ratios: h(z;) — h(z;) ~ log(z;) — log(z;) = log(xi/x;)
if x;,2; > 0 [1, 3]. In contrast to log-ratios, they remain well-defined and statistically meaningful
if x; or x; are close to zero.

1 The data

The prefered input type for vsn are objects of class exprSet. It is also possible to pass matrices,
data frames with numeric columns only, and objects of class marrayRaw. Furthermore, vsn can be
used as a normalization method in the function expresso in the package affy (cf. Section 6).

To load intensity data from your own experiments, you can use the function read.table, the
read-functions from the package marrayInput, or ReadAffy from the package affy.

2 Running vsn on the data from a single cDNA array

The package includes example data from a ¢cDNA array on which two biologically highly similar
samples, one labeled in green (Cy3), one in red (Cy5), were hybridized.

> library(vsn)
> data(kidney)

The two columns of the matrix exprs(kidney) contain the green and red intensities, respectively.
Let’s try out vsn on these example data. In Fig. 1 you can see the scatterplot of the calibrated
and transformed data. For comparison, the scatterplot of the log-transformed raw intensities is also
shown.

'Note that vsn only addresses the dependence of the variance on the mean intensity. There may be other factors
influencing the variance, such as gene-inherent properties, or changes of the tightness of transcriptional control in
different conditions. If necessary, these need to be addressed by other methods.
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> par(mfrow = c(1, 2))
> nkid <- vsn(kidney)

vsn: 8704 x 2 matrix (lts.quantile=0.5). Please wait for 11 dots:

> plot(exprs(nkid), main = "vsn", pch = ".")
> plot(log.na(exprs(kidney)), main = "raw", pch = ".")
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Figure 1: Scatterplots of the kidney example data

vsn returns the transformed intensities in an object of class exprSet. Its slot exprs is a matrix
of the same size as the input data. The plot in Fig. 1 shows the complete set of n = 9216 red
and green intensities, without any thresholding or masking of data points. To verify the variance
stabilization, there is the function meanSdPlot. For each probe k = 1,...,n it shows the estimated
standard deviation &3 on the y-axis versus the rank of the average fix on the z-axis,

1 . 1< A
M = d thi U[% = a—1 Z(hlm - ,Uk)z- (1)

> par(mfrow = c(1, 2))
> meanSdPlot (nkid, ranks = TRUE)
> meanSdPlot (nkid, ranks = FALSE)

Such a plot is shown in Fig. 2. The red dots, connected by lines, show the running median of the
standard deviation?. Within each window, the median may be considered a pooled estimator of the
standard deviation, and the curve given by the red line is an estimate of the systematic dependence
of the standard deviation on the mean. After variance stabilization, this should be approximately

*Window width: 10%, window midpoints 5%, 10%, 15%,
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Figure 2: Standard deviation versus rank of the mean, and the mean, respectively

a horizontal line. It may have some random fluctuations, but should not show an overall trend. If
this is not the case, that could indicate a data quality problem, see Section 8. The rank ordering
distributes the data evenly along the z-axis, which is in many cases useful for the visualization. A
plot in which the z-axis shows the average intensities themselves is obtained by calling the plot
command with the argument ranks=FALSE.

The parameter estimation in vsn works in an iterative manner. To verify that the iterations
have converged, you can call the function vsnPlotPar.

> par(mfrow = c(1, 2))
> vsnPlotPar (nkid, "offsets'")
> vsnPlotPar(nkid, "factors")

The plots in Fig. 3 show the values of the estimated calibration and variance stabilization parameters
on the y-axis as a function of the iteration index. All curves should reach a plateau well before
the last iteration. If this is not the case, the number of iterations may be increased through the
parameter iter, and/or 1ts.quantile may be decreased. It could also indicate a data quality
problem, see Section 8.

The “generalized log-ratios” [1] for this experiment may be obtained for further processing
through

> M <- exprs(nkid) [, 2] - exprs(nkid)[, 1]
> hist(M, breaks = 50, col = "#d95f0e")

The histogram is shown in Fig. 3.

3 Calibration

We can access the transformation and calibratioré parameters through
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Figure 3: Iteration trajectory of the calibration and transformation parameters
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Figure 4: Histogram of generalized log-ratios for the kidney example data



> prep <- preproc(description (nkid))
> names (prep)

[1] "vsnParams" "vsnParamsIter" "vsnTrimSelection"
> prep$vsnParams

offsi offs2 facil fac2
-0.045192754 -0.022364154 0.002657068 0.002578388

The description slot of an exprSet is an object of class MIAME, and may contain annotation
(or “metadata”) pertinent to the experiment represented by the object. For an exprSet with d
columns, prep$vsnParans is a numeric vector of length 2d. Its elements 1, ..., d contain the additive
calibration and transformation parameters a;, its elements d + 1,...,2d the multiplicative ones.
Compare the above numbers with the final values in Fig. 3.

If yp; is the matrix of uncalibrated data, with k indexing the rows and ¢ the columns, then the
calibrated data yj; is obtained through scaling by b; and shifting by a;:

Y = @i + biYi (2)

Now suppose the kidney example data were not that well measured, and the red channel had a
baseline that was shifted by 500 and a scale that differed by a factor of 0.25:

> bkid <- kidney
> exprs(bkid) [, "red"] <- 0.25 * (500 + exprs(bkid)[, "red"])

We can again call vsn on this data

> nbkid <- vsn(bkid)

> par(mfrow = c(1, 2))

> plot(exprs(bkid), main = "raw", pch = ".", log = "xy")
> plot(exprs(nbkid), main = "vsn", pch = ".")

> preproc(description(nbkid))$vsnParams

offsi offs2 facil fac2
-0.178307013 -1.542177835 0.002856737 0.011104310

The factor for the red channel is now about four times as large as before. The result is shown in
Fig. 5.

4 Running vsn on the data from multiple cDNA arrays

The package includes example data from a series of 8 cDNA arrays on which different lymphoma
were hybridized together with a reference cDNA [7].

> data(lymphoma)
> pData(lymphoma)
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Figure 5: Scatterplots for badly biased data. Left hand side: raw data on log-log scale, right hand
side: after calibration and transformation with vsn.

name sample
1c7b047 reference
1c7b047 CLL-13
1c7b048 reference
1c7b048 CLL-13
1c7b069 reference
1c7b069 CLL-52
1c7b070 reference
1c7b070 CLL-39
1c7b019 reference
1c7b019 DLCL-0032
1c7b056 reference
1c7b056 DLCL-0024
1c7b057 reference
1c7b057 DLCL-0029
1c7b058 reference
1c7b058 DLCL-0023
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The 16 columns of the lymphoma object contain the red and green intensities, respectively, from
the 8 slides, as shown in the table. Thus, the CH1 intensities are in columns 1,3, ...,15, the CH2
intensities in columns 2,4, ..., 16.

There are now two modes of operation for vsn: First, vsn can be called for each slide in turn.
Second, if there is reason to believe that the slides are of similar quality, it can also be called on all
of them at once:

> lym <- vsn(lymphoma, verbose = FALSE)



> meanSdPlot (1ym)

25
|

15

sd

1.0

0 2000 4000 6000 8000

rank(mean)

Figure 6: Standard deviation versus rank of the mean for the lymphoma example data

This calculation may take a while. Again, Fig. 6 helps to visually verify that the variance stabiliza-
tion worked. As above, we can obtain the “generalized log-ratios” for each slide, by subtracting the
common reference intensities from those for the 8 samples:

refrs <- (1:8) * 2 - 1

samps <- (1:8) * 2

M <- exprs(lym)[, samps] - exprs(lym)[, refrs]
colnames (M) <- pData(lymphoma) [samps, "sample']
A <- rowMeans (exprs (lym))

par (mfrow = c(1, 2))

plot(A, M[, "CLL-13"], pch = ".")

abline(h = 0, col = "red")

plot(A, M[, "DLCL-0032"], pch = ".")

abline(h = 0, col = "red")
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Fig. 7 shows the analagon to the M-vs-A-plots as described in reference [5]. Note that in the left
scatterplot, there is a cloud of points at low intensities that is concentrated slightly off the line
M = 0. In the right scatterplot, a similar cloud sits right on the M = 0 line. This could be related
to a quality problem with the left slide (e.g. related to the PCR amplification or the printing, see
Section 8).

5 Comparing calibration and data transformation methods

To compare different microarray calibration and data transformation methods one needs to specify a
measure of goodness. One approach is to comparg the obtained values against a known truth. This
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Figure 7: Mean-difference plots for two slides from the lymphoma example data

can be done in controlled spike-in experiments and in dilution series, which allow to systematically
assess the performance of the methods at different biologically relevant spike-in concentrations.
Like any statistical method, the methods may make different choices with respect to the trade-off
between bias and variance.

Here, we just consider a much coarser and simpler criterion: the overall sensitivity and specificity
in detecting differential transcription of the combined procedures of data preprocessing and statis-
tical hypothesis testing. Such an analysis can generally be applied to any data set that contains
replicated measurements of samples from biologically clearly distinct, known groups (e.g. [1]).

We use the t-test to find genes that are differentially transcribed between CLL and DLCL. The
comparison relies on the idea that for a given selection of genes we can estimate the False Discovery
Rate through a permutation method [6]. Thus, if a method consistently produces a smaller false
discovery rate for the same size gene list than another method, it may be considered more specific.

In the following piece of code, data is transformed to log-ratios and normalized by the global
median. The result, together with that of the previous section, is stored in the 3-dimensional array
Ms. Fig. 8 shows, for one of the arrays, a comparison of the resulting log-ratios.

Ms[, , 2] <- mn@maM
plot(Ms[, 1, ], xlab = "vsn", ylab = "global median", main = "M (array 1)",
pCh =", u)

> library(marrayNorm)

> Ms <- array(0, dim = c(dim(M), 2))

> Ms[, , 1] <- M

> mr <- new("marrayRaw", maGf = exprs(lymphoma)[, refrs], maRf = exprs(lymphoma) [,
+ samps])

> mn <- maNorm(mr, norm = "median", echo = T)

>

>

+

The function calc.fdr provides a very simple-minded implementation of the estimation of the



Figure 8: Generalized log-ratio from vsn (x-axis) versus the log-ratio after global median normal-
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false discovery rate from the permutation distribution of the sorted test statistics. The result is

shown in Fig. 9.

> library(multtest)
> calc.t <- function(classlabel, M) {

+

+ + +

t <- mt.teststat(M, classlabel)
t[abs(t) > 1e+30] <- NA
return(t)

calc.fdr <- function(M, classlabel, nrgeneselect) {

t <- calc.t(classlabel, M)
st <- sort(abs(t), decreasing = TRUE)
threshold <- st[nrgeneselect]
n <- length(classlabel)
grp2 <- which(classlabel)
nck <- nchoosek(n - 1, length(grp2) - 1)
permclasslabel <- matrix(0, nrow = n, ncol = ncol(nck))
for (p in 1:ncol(nck)) {
permclasslabel[n, p] <- 1
permclasslabel[nck[, pl, p] <- 1
}
permt <- apply(permclasslabel, 2, calc.t, M)
fdr <- numeric(length(nrgeneselect))
for (j in 1:length(threshold)) {

parsel <- apply(permt, 2, functgion(pt) length(which(abs (pt) >=
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Figure 9: False Discovery Rate
+ threshold[j])))
+ fdr[j] <- mean(pnrsel)/nrgeneselect[j]
+ }
+ return(fdr)
+ }
> classlabel <- regexpr("CLL", colnames(M)) > 0
> nrgeneselect <- c(10, 20, 50, 100, 200, 500, 1000)
> fdr <- apply(Ms, 3, calc.fdr, classlabel, nrgeneselect)
> plot(range (nrgeneselect), range(fdr), type = "n", log = "x",
+ xlab = "No. of genes selected", ylab = "Estimated FDR")
> for (j in 1:ncol(fdr)) lines(nrgeneselect, fdr[, jl, type = "b",
+ pch = 19, 1ty = j)
> legend (10, max(fdr), c("vsn", "global median"), 1ty = 1:ncol(fdr))

6 Running vsn on Affymetrix data

The package affy provides excellent functionality for reading and processing Affymetrix genechip
data. To use vsn for the calibration and transformation of the probe intensities, a wrapper for vsn
is provided that can be used within the data processing routines of affy. See the documentation for
the package affy for more information about data structures and other available methods. There
are different ways to treat the mismatch (MM) intensities, to adjust for background, and summarize
the probe sets.

The following code is taken from the example in the man page for normalize.AffyBatch.vsn.
The resulting plot is shown in Fig. 10.

> library(affy) 10
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library(affydata)

data(Dilution)

normalize.AffyBatch.methods <- c(normalize.AffyBatch.methods,
"vsn")

esl = expresso(Dilution[1:2], bg.correct = FALSE, normalize.method = "vsn",
pmcorrect.method = "pmonly", summary.method = "medianpolish")

es2 = expresso(Dilution[1:2], bgcorrect.method = "rma", normalize.method = "quantiles",
pmcorrect.method = "pmonly", summary.method = "medianpolish")

x1 = exprs(esl)

x2 = exprs(es2)

oldpar = par(mfrow = c(2, 2), pch = ".")

plot(x1, main = "vsn: chip 3 vs 4")

plot(x2, main = "rma: chip 3 vs 4")

ylim = c¢(-0.7, 0.7)

plot(rank(rowSums(x1)), diff(t(x1)), ylim = ylim, main = "rank(mean) vs differences")

abline(h = 0, col = "red")

plot (rank (rowSums (x2)), diff(t(x2)), ylim = ylim, main = "rank(mean) vs differences")

abline(h = 0, col = "red")

par (oldpar)

7 Verifying and assessing the performance of vsn with simulated

data

There are two functions sagmbSimulateData and sagmbAssess that can be used to generate simu-
lated data and assess the difference between the 'true’ and ’estimated’ data calibration and trans-
formation by vsn. An example is shown in the code chunk below. Reference [2] describes in more
detail (i) the simulation model, (ii) the assessment strategy, and (iii) a comprehensive suite of assess-
ments with respect to the number of probes n, the number of arrays d, the fraction of differentially
expressed genes de, and the fraction of up-regulated genes up.

>
>
>
>
>
>
>
+
+
+
+
+
+
+
+

>
>

n <- c¢(500, 1000, 2000, 4000, 8000)
d <- 2
de <- c(0, 0.2)
up <- 0.5
nrrep <- 8
res <- array(NA, dim = c(length(n), nrrep, length(de)))
for (i in seq(along = de)) {
for (k in seq(along = n)) {
for (r in 1:nrrep) {
sim <- sagmbSimulateData(nl[k], d, de = de[il, up = 0.5)
ny <- vsn(sim$y)
reslk, r, i] <- sagmbAssess(exprs(ny), sim)
}
}
}
par (mfrow = c(1, 2))

for (i in seq(along = de)) { 1
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Figure 10: normalize.AffyBatch.vsn example
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+ matplot(n, res[, , i], pch = 20, log = "xy", col = "#909090",
+ main = paste("de=", de[i]))
+ lines(n, rowMeans(res[, , i]), col = "blue")
+ F
de=0 de=0.2
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Figure 11: Estimation error for the transformation: the root mean squared difference between true
and estimated transformed data, as a function of the number of genes n. If vsn works correctly, the
estimation error should decrease roughly as n~'/2.

8 Quality control

vsn makes some assumptions about your data that need to hold if it is to produce meaningful results.
We have found them appropriate for many microarray experiments, but it is your responsibility to
make sure that they hold for your data.

First, vsn assumes that the measured signal y;; increases, to sufficient approximation, propor-
tionally to the mRNA abundance ¢;; of gene k on the i-th array, or on the i-th color channel:

Yik = ai + bibycik. (3)

For a series of d single-color arrays such as Affymetrix arrays or cDNA nylon membranes, i =
1,...,d, and the different factors b; reflect the different initial amounts of sample mRNA, or different
overall reverse transcription, hybridization and detection efficiencies. The probe affinity by contains
factors that affect all measurements with probe k in the same manner, such as sequence-specific
labelling efficiency. The by, are assumed to be the same across all arrays. There can be a non-zero
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overall offset a; for each color channel. For a two-color cDNA array, ¢ = 1,2, and the b; take into
account the different overall efficiencies of the two dyes?.

Situations in which the assumption (3) is violated include:

Saturation. The biochemical reactions and/or the photodetection can be run in such a manner
that saturation effects occur. It may be possible to rescue such data by using non-linear transfor-
mations. Alternatively, it is recommended that the experimental parameters are chosen to avoid
saturation.

Print-tip and PCR effects. In cDNA microarray data, systematic patterns have been observed
that are associated with the print-tips used for the spotting of DNA, and with the microtitre plates
used to store and amplify the DNA. Possibly, these effects could be included in (3) by replacing a;
and b; by print-tip and/or plate specific coefficients, but presently vsn does not include this option.

Batch effects. The probe affinities by may differ between different manufacturing batches of
arrays due, e.g., to different qualities of DNA amplification or printing. vsn cannot be used to
simultaneously calibrate and transform data from different batches.

How to reliably diagnose and deal with such violations is beyond the scope of this vignette; see
the references for more [5, 3.

Variance. A further assumption that vsn makes is that the measurement error (more exactly:
the variance) is the sum of two contributions: an additive component that has roughly the same
size for all probes on an array, and a multiplicative component that is roughly proportional in size
to the signal’s true value, with a proportionality factor (called the coefficient of variation) that is
the same for all genes [4].

Most genes unchanged assumption. vsn assumes that only a minority of genes on the arrays
is detectably differentially transcribed across the experiments. The allowed size of that minority
is controlled by the parameter 1ts.quantile and must be less than or equal to 1/2. By default,
lts.quantile=0.5, that is, the maximum.

Processing biases. Image analysis software for cDNA arrays typically estimates a local back-
ground associated with each probe intensity. For Affymetrix arrays, the intensities from mismatch
probes are thought to represent the level of non-specific signal. In both cases, the raw probe intensi-
ties may be adjusted by subtracting these background estimates. Some software packages, however,
bias the adjustment through rules based on the data values. For example, Affymetrix’ MAS 5.0
software uses the mismatch intensity only if it is smaller than the probe’s intensity, and otherwise
employs a heuristic to make sure that the net intensities always remain positive. As a consequence,
the intensities are systematically over-estimated, and cannot be used with vsn. For Affymetrix data,
we recommend to use vsn on the probe intensities from the CEL file”. For cDNA data, we recom-
mend to use only background adjustment procedures that estimate the background independent of
the observed foreground intensity.

31t has been reported that for some genes the dye bias is different from gene to gene, such that the proportionality
factor does not simply factorize as in (3). As long as this only occurs sporadically, this should not have much effect on
the estimation of the calibration and variance stabilization parameters. Further, by using an appropriate experimental
design such as color-swap or reference design, the effects of gene-specific dye-biases to subsequent analyses can also
be reduced.
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