HowTo: Automated Querying of PubMed Data

Jeff Gentry
October 28, 2003

1 Overview

This article demonstrates how you can make use of the query toolset available in
the Bioconductor project to automatically search PubMed and other resources,
and utilize that data within your R session. To do this you will need the Biobase,
XML, and annotate packages. These must be installed in your version of R and
when you start R you must load with the 1ibrary command.

2 Accessing PubMed information

First we load the annotate package (this will automatically load the Biobase
package, as well as the XML package if it is needed). For this example, we are
utilizing the example data in eset to show how this could work with a real
world analysis.

> library("annotate")

> data(eset)

> affys <- geneNames (eset) [490:500]
> affys

[1] "31729_at" "31730_at" "31731_at" "31732_at" "31733_at" "31734_at"

[7] "31735_at" "31736_at" "31737_at" "31738_at" "31739_at"

Here we have selected an arbitrary set of 10 genes to be interested in from
our sample data. However, eset provided us with Affymetrix identifiers, and
for the pubmed function, we need to use PubMed ID values. To obtain these,
we can use the annotation tools within package annotate.

> library("hgu95av2")

> ids <- multiget(affys, envir = hgu95av2PMID)
> ids <- unlist(ids, use.names = FALSE)

> ids <- ids['!is.na(as.numeric(ids))]

> ids

[1] "9695952" "7729427" "12408966" "8325638" "8175896" "1889752"
[7] "12679040" "9315667" "12590922" "12198562" "10750025" "10601981"
[13] "9730618" "8735594" "7958621" "7829601" "6548703" "6548702"
[19] "2040595" "2005217" "1572287" "12270951" "11069162" "9221902"
[25] "9016352" "7566110" "9582375" "8646877" "2878432" "2574852"
[31] "1973146" "1358459" "11883959" "11076525" "10508519" "10072583"
[37] "8422497" "8258301" "7780165" "6865942" "6190133" "3842206"
[43] "2907503" "12477932" "12204115" "9110174" "8619474" "7590364"

At this point, we have genes identified in a proper manner for use with the
PubMed databases. So if we want to see what, if any, material is stored there
for these genes, we can retrieve it in the following manner (Note: This is the
point where the XML package gets loaded):

> x <- pubmed(ids)
Loading required package: XML

> a <- xmlRoot (x)
> numAbst <- length(xmlChildren(a))
> numAbst

[1] 48

Our search of the 30 PubMed IDs (from the 10 Affymetrix IDs) has resulted
in the same number of abstracts from PubMed (stored in R using XML format).
The annotate package also provides a PubMedAbst class, which will take the raw
XML format from PubMed and extract the interesting sections for easy reviewal
- at this time we will generate an instance of this class for each returned abstract.
(And for a future example, at the same time, we will extract from each class
the actual abstract text).

> arts <- vector("list", length = numAbst)
> absts <- rep(NA, numAbst)

> for (i in 1:numAbst) {

+ arts[[i]] <- buildPubMedAbst(a[[i]])
+ absts[i] <- abstText(arts[[i]])
+ }

>

arts[[7]]

An object of class pubMedAbs
Slot "pmid":
[1] "12679040"

Slot
[1]

"authors":

"MH Kagey" "TA Melhuish" "D Wotton"

Slot "abstText":
Polycomb group (PcG) proteins form large multimeric complexes (PcG bod...

Slot "articleTitle":
The polycomb protein Pc2 is a SUMO E3....

Slot "journmal":
[1] "Cell"

Slot "pubDate":
[1] "Apr 2003"

Slot "abstUrl":
[1] "No URL Provided"

As you can see, the PubMedAbst class provides several key pieces of infor-
mation: authors, abstract text, article title, journal, publication date of the
journal and any related URL. These can all be individually extracted utilizing
the provided methods (such as ’abstText’ in the above example).

Next, suppose we are interested in only the abstracts that deal with cDNA.
We can utilize the power of R here, now that we have all the abstracts relating
to our genes of interest neatly organized.

> found <- grep("cDNA", absts)
> goodAbsts <- arts[found]
> length(goodAbsts)

(11 17

So 12 of the articles relating to our genes of interest mention the term cDNA
in their abstracts. Suppose at this point you identify one particular abstract
that you want to look further at the 2nd abstract obtained. A brief scan of its
contents (from above) shows that it contains a URL for its journal:

> abstUrl (goodAbsts[[2]])
[1] "No URL Provided"

This URL can then be used (either using the browseURL function from an-
notate or directly from your favorite browser) to view the full article as well as
any related information provided by the authors.

Lastly, as a demonstration for how one can use the query toolset to cross
reference several databases, we can use the same set of PubMed IDs with another
function:

> y <- genbank(ids, type = "uid")
> b <- xmlRoot (x)

At this point the object b can be manipulated in a manner similar to a from
the PubMed example.

Also, note that both pubmed and genbank have an option to display the data
directly in the browser instead of XML, by specifying disp="browser" in the
parameter listing.

	Overview
	Accessing PubMed information

