We read in input.scone.csv, which is our file modified (and renamed) from the get.marker.names() function. The K-nearest neighbor generation is derived from the Fast Nearest Neighbors (FNN) R package, within our function Fnn(), which takes as input the “input markers” to be used, along with the concatenated data previously generated, and the desired k. We advise the default selection to the total number of cells in the dataset divided by 100, as has been optimized on existing mass cytometry datasets. The output of this function is a matrix of each cell and the identity of its k-nearest neighbors, in terms of its row number in the dataset used here as input.
library(Sconify)
# Markers from the user-generated excel file
marker.file <- system.file('extdata', 'markers.csv', package = "Sconify")
markers <- ParseMarkers(marker.file)
# How to convert your excel sheet into vector of static and functional markers
markers
## $input
## [1] "CD3(Cd110)Di" "CD3(Cd111)Di" "CD3(Cd112)Di"
## [4] "CD235-61-7-15(In113)Di" "CD3(Cd114)Di" "CD45(In115)Di"
## [7] "CD19(Nd142)Di" "CD22(Nd143)Di" "IgD(Nd145)Di"
## [10] "CD79b(Nd146)Di" "CD20(Sm147)Di" "CD34(Nd148)Di"
## [13] "CD179a(Sm149)Di" "CD72(Eu151)Di" "IgM(Eu153)Di"
## [16] "Kappa(Sm154)Di" "CD10(Gd156)Di" "Lambda(Gd157)Di"
## [19] "CD24(Dy161)Di" "TdT(Dy163)Di" "Rag1(Dy164)Di"
## [22] "PreBCR(Ho165)Di" "CD43(Er167)Di" "CD38(Er168)Di"
## [25] "CD40(Er170)Di" "CD33(Yb173)Di" "HLA-DR(Yb174)Di"
##
## $functional
## [1] "pCrkL(Lu175)Di" "pCREB(Yb176)Di" "pBTK(Yb171)Di" "pS6(Yb172)Di"
## [5] "cPARP(La139)Di" "pPLCg2(Pr141)Di" "pSrc(Nd144)Di" "Ki67(Sm152)Di"
## [9] "pErk12(Gd155)Di" "pSTAT3(Gd158)Di" "pAKT(Tb159)Di" "pBLNK(Gd160)Di"
## [13] "pP38(Tm169)Di" "pSTAT5(Nd150)Di" "pSyk(Dy162)Di" "tIkBa(Er166)Di"
# Get the particular markers to be used as knn and knn statistics input
input.markers <- markers[[1]]
funct.markers <- markers[[2]]
# Selection of the k. See "Finding Ideal K" vignette
k <- 30
# The built-in scone functions
wand.nn <- Fnn(cell.df = wand.combined, input.markers = input.markers, k = k)
# Cell identity is in rows, k-nearest neighbors are columns
# List of 2 includes the cell identity of each nn,
# and the euclidean distance between
# itself and the cell of interest
# Indices
str(wand.nn[[1]])
## int [1:1000, 1:30] 330 694 268 715 328 678 772 241 924 713 ...
wand.nn[[1]][1:20, 1:10]
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 330 351 533 337 1000 207 453 614 496 250
## [2,] 694 571 763 996 374 203 74 832 971 585
## [3,] 268 246 124 807 366 713 253 579 10 665
## [4,] 715 352 462 135 876 798 960 112 893 116
## [5,] 328 728 224 737 585 966 987 568 272 7
## [6,] 678 558 916 397 532 981 85 9 65 392
## [7,] 772 828 224 372 669 123 61 974 764 485
## [8,] 241 582 759 885 122 856 695 219 924 233
## [9,] 924 219 981 548 422 759 631 532 780 397
## [10,] 713 624 268 107 3 807 498 454 366 836
## [11,] 830 564 403 904 515 176 688 760 516 968
## [12,] 666 844 934 428 886 710 516 635 730 502
## [13,] 532 631 885 134 390 675 637 759 668 916
## [14,] 727 638 604 211 227 139 627 709 592 110
## [15,] 244 982 971 694 237 383 170 423 395 338
## [16,] 641 155 679 338 374 423 608 269 237 447
## [17,] 918 467 619 455 760 652 11 226 525 176
## [18,] 294 652 382 428 760 833 619 730 157 490
## [19,] 415 474 224 720 482 713 677 485 152 577
## [20,] 176 525 830 467 403 619 515 526 652 487
# Distance
str(wand.nn[[2]])
## num [1:1000, 1:30] 3.97 2.73 2.47 3.22 3.36 ...
wand.nn[[2]][1:20, 1:10]
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
## [1,] 3.965078 4.070074 4.092915 4.120268 4.164760 4.203589 4.392209 4.493517
## [2,] 2.731685 2.823732 2.903874 3.131379 3.143527 3.301202 3.392992 3.395590
## [3,] 2.469439 2.648087 2.675868 2.742256 2.811036 2.826947 2.840275 2.894083
## [4,] 3.217416 3.420631 3.694704 3.768833 3.773349 3.782414 3.820494 3.840619
## [5,] 3.364253 3.408951 3.410414 3.439393 3.574460 3.748010 3.795265 3.805915
## [6,] 3.311876 3.393849 3.422467 3.492138 3.867315 3.873742 3.918866 3.970579
## [7,] 2.827524 2.894920 3.077649 3.150315 3.203723 3.249002 3.341154 3.413131
## [8,] 3.965427 4.090961 4.133583 4.347810 4.448111 4.575837 4.578400 4.595127
## [9,] 3.016322 3.263121 3.277102 3.314453 3.330960 3.385717 3.428579 3.428636
## [10,] 2.700998 2.768821 2.809791 2.889148 2.963344 2.999035 3.021868 3.102046
## [11,] 3.221092 3.337421 3.537185 3.538971 3.717566 3.759464 3.825997 3.941702
## [12,] 5.096301 5.203686 5.312953 5.441803 5.455912 5.551291 5.561407 5.577394
## [13,] 3.190725 3.346728 3.373073 3.411534 3.587619 3.592624 3.649726 3.654425
## [14,] 4.167909 4.283862 4.310059 4.492409 4.505718 4.526049 4.614907 4.740029
## [15,] 3.410314 3.523987 3.710101 3.764044 3.793746 3.847133 3.861519 4.026012
## [16,] 2.994630 3.356877 3.550283 3.574922 3.622886 3.660669 3.665880 3.692212
## [17,] 4.366468 4.511866 4.516966 4.558253 4.601060 4.609032 4.942514 4.971157
## [18,] 4.257825 4.534855 4.652209 4.747423 4.964602 5.022785 5.090182 5.159841
## [19,] 2.856397 3.088440 3.137766 3.220843 3.308511 3.336355 3.368790 3.417319
## [20,] 3.391197 3.800335 4.062841 4.145820 4.230996 4.241192 4.273084 4.276462
## [,9] [,10]
## [1,] 4.588153 4.595689
## [2,] 3.438974 3.473952
## [3,] 2.963344 2.973477
## [4,] 3.847745 3.859671
## [5,] 3.825955 3.838767
## [6,] 4.059805 4.181442
## [7,] 3.458267 3.490039
## [8,] 4.601476 4.605055
## [9,] 3.439355 3.489788
## [10,] 3.112000 3.150887
## [11,] 3.997109 4.009321
## [12,] 5.651117 5.773673
## [13,] 3.694518 3.734646
## [14,] 5.062603 5.195376
## [15,] 4.044000 4.045845
## [16,] 3.692374 3.706538
## [17,] 4.988718 4.999579
## [18,] 5.200807 5.317304
## [19,] 3.417989 3.422648
## [20,] 4.306341 4.309361
This function iterates through each KNN, and performs a series of calculations. The first is fold change values for each maker per KNN, where the user chooses whether this will be based on medians or means. The second is a statistical test, where the user chooses t test or Mann-Whitney U test. I prefer the latter, because it does not assume any properties of the distributions. Of note, the p values are adjusted for false discovery rate, and therefore are called q values in the output of this function. The user also inputs a threshold parameter (default 0.05), where the fold change values will only be shown if the corresponding statistical test returns a q value below said threshold. Finally, the “multiple.donor.compare” option, if set to TRUE will perform a t test based on the mean per-marker values of each donor. This is to allow the user to make comparisons across replicates or multiple donors if that is relevant to the user’s biological questions. This function returns a matrix of cells by computed values (change and statistical test results, labeled either marker.change or marker.qvalue). This matrix is intermediate, as it gets concatenated with the original input matrix in the post-processing step (see the relevant vignette). We show the code and the output below. See the post-processing vignette, where we show how this gets combined with the input data, and additional analysis is performed.
wand.scone <- SconeValues(nn.matrix = wand.nn,
cell.data = wand.combined,
scone.markers = funct.markers,
unstim = "basal")
wand.scone
## # A tibble: 1,000 x 34
## `pCrkL(Lu175)Di.IL… `pCREB(Yb176)Di.IL… `pBTK(Yb171)Di.IL… `pS6(Yb172)Di.IL7…
## <dbl> <dbl> <dbl> <dbl>
## 1 0.956 0.428 0.842 0.993
## 2 0.507 0.628 0.842 0.855
## 3 0.723 0.648 0.903 0.993
## 4 0.818 0.601 0.781 0.982
## 5 0.663 0.541 0.804 0.993
## 6 0.663 1 0.914 0.965
## 7 0.683 0.315 0.781 0.982
## 8 0.967 0.698 0.649 0.974
## 9 0.905 0.947 0.903 0.999
## 10 0.656 0.531 0.766 0.965
## # … with 990 more rows, and 30 more variables: cPARP(La139)Di.IL7.qvalue <dbl>,
## # pPLCg2(Pr141)Di.IL7.qvalue <dbl>, pSrc(Nd144)Di.IL7.qvalue <dbl>,
## # Ki67(Sm152)Di.IL7.qvalue <dbl>, pErk12(Gd155)Di.IL7.qvalue <dbl>,
## # pSTAT3(Gd158)Di.IL7.qvalue <dbl>, pAKT(Tb159)Di.IL7.qvalue <dbl>,
## # pBLNK(Gd160)Di.IL7.qvalue <dbl>, pP38(Tm169)Di.IL7.qvalue <dbl>,
## # pSTAT5(Nd150)Di.IL7.qvalue <dbl>, pSyk(Dy162)Di.IL7.qvalue <dbl>,
## # tIkBa(Er166)Di.IL7.qvalue <dbl>, pCrkL(Lu175)Di.IL7.change <dbl>,
## # pCREB(Yb176)Di.IL7.change <dbl>, pBTK(Yb171)Di.IL7.change <dbl>,
## # pS6(Yb172)Di.IL7.change <dbl>, cPARP(La139)Di.IL7.change <dbl>,
## # pPLCg2(Pr141)Di.IL7.change <dbl>, pSrc(Nd144)Di.IL7.change <dbl>,
## # Ki67(Sm152)Di.IL7.change <dbl>, pErk12(Gd155)Di.IL7.change <dbl>,
## # pSTAT3(Gd158)Di.IL7.change <dbl>, pAKT(Tb159)Di.IL7.change <dbl>,
## # pBLNK(Gd160)Di.IL7.change <dbl>, pP38(Tm169)Di.IL7.change <dbl>,
## # pSTAT5(Nd150)Di.IL7.change <dbl>, pSyk(Dy162)Di.IL7.change <dbl>,
## # tIkBa(Er166)Di.IL7.change <dbl>, IL7.fraction.cond.2 <dbl>, density <dbl>
If one wants to export KNN data to perform other statistics not available in this package, then I provide a function that produces a list of each cell identity in the original input data matrix, and a matrix of all cells x features of its KNN.
I also provide a function to find the KNN density estimation independently of the rest of the “scone.values” analysis, to save time if density is all the user wants. With this density estimation, one can perform interesting analysis, ranging from understanding phenotypic density changes along a developmental progression (see post-processing vignette for an example), to trying out density-based binning methods (eg. X-shift). Of note, this density is specifically one divided by the aveage distance to k-nearest neighbors. This specific measure is related to the Shannon Entropy estimate of that point on the manifold (https://hal.archives-ouvertes.fr/hal-01068081/document).
I use this metric to avoid the unusual properties of the volume of a sphere as it increases in dimensions (https://en.wikipedia.org/wiki/Volume_of_an_n-ball). This being said, one can modify this vector to be such a density estimation (example http://www.cs.haifa.ac.il/~rita/ml_course/lectures_old/KNN.pdf), by treating the distance to knn as the radius of a n-dimensional sphere and incoroprating said volume accordingly.
An individual with basic programming skills can iterate through these elements to perform the statistics of one’s choosing. Examples would include per-KNN regression and classification, or feature imputation. The additional functionality is shown below, with the example knn.list in the package being the first ten instances:
# Constructs KNN list, computes KNN density estimation
wand.knn.list <- MakeKnnList(cell.data = wand.combined, nn.matrix = wand.nn)
wand.knn.list[[8]]
## # A tibble: 30 x 51
## `CD3(Cd110)Di` `CD3(Cd111)Di` `CD3(Cd112)Di` `CD235-61-7-15(I… `CD3(Cd114)Di`
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 -0.720 -0.0535 -0.985 -1.08 -0.759
## 2 -0.669 -0.241 0.515 0.816 -0.0304
## 3 -0.0558 -0.0951 -0.193 -0.324 -0.0136
## 4 -0.439 -0.346 0.138 0.609 -0.784
## 5 0.0474 -0.0432 -0.387 -0.325 -0.184
## 6 -1.39 -0.148 -1.70 -1.30 -1.53
## 7 -0.129 -0.398 -0.0986 0.186 0.375
## 8 -0.0688 0.199 -0.447 -0.571 -0.320
## 9 -0.358 -0.270 1.55 -0.700 -0.306
## 10 -0.713 -0.109 -1.60 -0.356 -1.12
## # … with 20 more rows, and 46 more variables: CD45(In115)Di <dbl>,
## # CD19(Nd142)Di <dbl>, CD22(Nd143)Di <dbl>, IgD(Nd145)Di <dbl>,
## # CD79b(Nd146)Di <dbl>, CD20(Sm147)Di <dbl>, CD34(Nd148)Di <dbl>,
## # CD179a(Sm149)Di <dbl>, CD72(Eu151)Di <dbl>, IgM(Eu153)Di <dbl>,
## # Kappa(Sm154)Di <dbl>, CD10(Gd156)Di <dbl>, Lambda(Gd157)Di <dbl>,
## # CD24(Dy161)Di <dbl>, TdT(Dy163)Di <dbl>, Rag1(Dy164)Di <dbl>,
## # PreBCR(Ho165)Di <dbl>, CD43(Er167)Di <dbl>, CD38(Er168)Di <dbl>,
## # CD40(Er170)Di <dbl>, CD33(Yb173)Di <dbl>, HLA-DR(Yb174)Di <dbl>,
## # Time <dbl>, Cell_length <dbl>, cPARP(La139)Di <dbl>, pPLCg2(Pr141)Di <dbl>,
## # pSrc(Nd144)Di <dbl>, pSTAT5(Nd150)Di <dbl>, Ki67(Sm152)Di <dbl>,
## # pErk12(Gd155)Di <dbl>, pSTAT3(Gd158)Di <dbl>, pAKT(Tb159)Di <dbl>,
## # pBLNK(Gd160)Di <dbl>, pSyk(Dy162)Di <dbl>, tIkBa(Er166)Di <dbl>,
## # pP38(Tm169)Di <dbl>, pBTK(Yb171)Di <dbl>, pS6(Yb172)Di <dbl>,
## # pCrkL(Lu175)Di <dbl>, pCREB(Yb176)Di <dbl>, DNA1(Ir191)Di <dbl>,
## # DNA2(Ir193)Di <dbl>, Viability1(Pt195)Di <dbl>, Viability2(Pt196)Di <dbl>,
## # wanderlust <dbl>, condition <chr>
# Finds the KNN density estimation for each cell, ordered by column, in the
# original data matrix
wand.knn.density <- GetKnnDe(nn.matrix = wand.nn)
str(wand.knn.density)
## num [1:1000] 0.217 0.289 0.333 0.252 0.257 ...